EDMONDS SCHOOL DISTRICT NO. 15 ENVIRONMENTAL CHECKLIST Spruce Elementary School

April 2018 <u>*Revised June 2021*</u>

Project

Edmonds School District No. 15 Spruce Elementary School

Applicant

Edmonds School District No. 15 Attn: Matt Finch Taine Wilton 20420 68th Avenue West Lynnwood, Washington 98036

Environmental Consultant

SHOCKEY PLANNING GROUP Attn: Camie Anderson

2716 Colby Avenue Everett, Washington 98201 Phone: (425) 258-9308

April 2018 Revised June 2021

TABLE OF CONTENTS

A.	BA	CKGROUND	1
В.	EN	VIRONMENTAL ELEMENTS	6
	1.	EARTH	6
	2.	AIR	7
	3.	WATER	8
	4.	PLANTS	14
	6.	ENERGY AND NATURAL RESOURCES	20
	7.	ENVIRONMENTAL HEALTH	21
	8.	LAND AND SHORELINE USE	23
	9.	HOUSING	25
	10.	AESTHETICS	26
	11.	LIGHT AND GLARE	26
	12.	RECREATION	28
	13.	HISTORIC AND CULTURAL PRESERVATION	28
	14.	TRANSPORTATION	30
	15.	PUBLIC SERVICES	32
	10.	UTILITIES	32
C.	SIC	NATURE	33

List of Figures

Figure 1 - Site Plan	4
Figure 2 - Vicinity Map	5
Figure 3 – Parcel Map	
Figure 4 - Concept Planting Plans	15
Figure 5 - Site Lighting Photometrics - Phase 2	

Appendices

Appendix A – Legal Description

Appendix B – Geotechnical Report and Geotechnical Report Addendum

Appendix C – Stormwater Report and Stormwater Site Plan Report

Appendix D – Traffic Analysis Report and Updated Traffic Analysis

ENVIRONMENTAL CHECKLIST

A. BACKGROUND

- 1. Name of proposed project, if applicable: Spruce Elementary School
- 2. Name of applicant: Edmonds School District No. 15
- 3. Address and phone number of applicant and contact person:

Applicant Contact:	Edmonds School District No. 15 Attn: Matt Finch <u>Taine Wilton</u> 20420 68 th Avenue West Lynnwood, WA 98036-7400 Phone: (425) 431- 7167 <u>7172</u> Email: FinchMWiltonT@edmonds.wednet.edu
Environmental/Permitting Consultant:	Shockey Planning Group, Inc.
8	Attn: Camie Anderson
	2716 Colby Avenue
	Everett, WA 98201
	Phone: (425) 258-9308
	Email: canderson@shockeyplanning.com
Architect Contact:	Bassetti Architects
	Attn: Steve Zang
	71 Columbia Street, Suite 500
	Seattle, WA 98104
	Phone: (206) 340-9500
	Email: Szang@bassettiarch.com
Civil Engineer:	AHBL
	Attn: Bethany Steadman
	1200 6 th Avenue, Suite 1620
	Seattle, WA 98101

- 4. Date checklist prepared: September 5, 2017, revised April 17, 2018 and issued April 24, 2018. <u>An</u> <u>Addendum was issued on June 10, 2021.</u>
- **5.** Agency requesting checklist: The City of Lynnwood (City) is the agency with permitting jurisdiction. The Edmonds School District No. 15 is the Lead Agency for SEPA compliance in accordance with WAC 197-11-050.

Phone: (206) 267-2425

6. Proposed timing or schedule (including phasing, if applicable):

Phase 1 construction would commence in summer of 2018 and be completed by fall of 2019. The exact timing of Phase 2 is anticipated to begin construction in July 2021 be within the next 2 years and taking approximately 12 months to complete.

7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.

Aside from the phasing identified, there are no plans for future additions, expansions or further activity with the exception of the possible placement of portable classrooms in the future if they are needed. <u>A</u> rezone and comprehensive plan amendment will be submitted to the City of Lynnwood for the two parcels that were added to the project.

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

The following reports/information are incorporated by reference, and some are attached as appendices:

Traffic Impact Analysis (2017)	Gibson Traffic Consultants
Subsurface Exploration and Preliminary Geotechnical Engineering Report	rt Associate Earth Sciences, Inc.
Geotechnical Addendum – Additional Exploration	Associated Earth Sciences, Inc.
Geotechnical Report Addendum	Associated Earth Sciences, Inc.
Preliminary Stormwater Site Plan Report	AHBL
Stormwater Site Plan Report	AHBL
Regulated Building Material Assessment Report	Argus Pacific
Limited Underground Storage Tank Assessment	Argus Pacific
Regulated Building Materials Assessment Report (residential structures)	Argus Pacific
Spruce Elementary School Updated Traffic Analysis (2019)	Gibson Traffic Consultants
Initial Arborist Report (Residential Property 2019)	Layton Tree Consulting, LLC

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain.

There are no applications pending for governmental approvals.

10. List any government approvals or permits that will be needed for your proposal, if known.

The following permits/approvals have been identified for this proposal:

SEPA Threshold Determination	Edmonds School District No. 15
Design Review Board	City of Lynnwood
Grading Permit	City of Lynnwood
Building Permit	City of Lynnwood
Right-of-Way Permit	City of Lynnwood
Rezone Application	City of Lynnwood
Comprehensive Plan Amendment	City of Lynnwood
Boundary Line Elimination/Adjustment	City of Lynnwood
Air Quality PermitPuget S	ound Clean Air Agency (PSCAA)
Notice of Intent (NPDES) Washin	gton State Department of Ecology

Other permits may be identified during the review and permitting process.

11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.).

The Edmonds School District proposes to replace Spruce Elementary School at its existing location in a phased process. The new facility would include a one story gymnasium and commons in Phase 1 and a <u>Phase 2 addition and replacement of a</u> two-story main classroom <u>and library</u> building. The students would be moved off-site during the Phase 2 construction period. The covered play structure would be removed during Phase 1 <u>along with two residential structures and</u> all other structures would be removed during Phase 2. A new playground and associated play equipment; site improvements to the existing grass play field; revised and expanded parking; improved circulation <u>across new and existing sites including and</u> access for buses, cars, and emergency vehicles; and improved neighborhood pedestrian connections and security and safety would be part of the completed Phase 2 work. Stormwater features such as rain gardens and bioretention cells would also be constructed. See *Figure 1 – Site Plan*.

The new classroom <u>and library addition</u> <u>building</u> would be built on the <u>north</u> east portion of the site and the existing structures would be replaced with a parking lot at the completion of Phase 2. <u>New parent vehicle</u> access would enter the site at the newly acquired residential property located in the southwest corner of the property. A temporary parking lot would be provided as part of the Phase 1 work to meet the minimum parking requirements.

The total square footage of demolition would be approximately 44,820 47,620 square feet (sf), which includes 41,620 sf of buildings, and 3,200 sf of covered play area and 2,800 sf of residential structures. The total square footage of construction would be approximately 80,100 82,848 sf, which includes two floors of building areas, a covered play area, a mechanical mezzanine and roof overhangs. The new building footprint would be 49,220 49,778 sf and includes the covered play sf.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

Spruce Elementary School is located at 17405 Spruce Way, Lynnwood, Washington. The Snohomish County Tax Parcel Number is: 00372700301502 and is located in the SW ¹/₄ of Section 10, Township 27 North, Range 04 East, W.M. and totals 9.06 acres. <u>The District has acquired additional property located at 17501 Spruce Way consisting of Snohomish County Tax Parcel Numbers 00372700301501 and 00372700301504 that will also be developed as part of Phase 2. This additional area adds 0.67 acres to the 9.06 acres for a total of 9.73 acres. See *Figure 2 – Vicinity Map, Figure 3 – Parcel Map*, and *Appendix A – Legal Description*.</u>

0 30' 60'

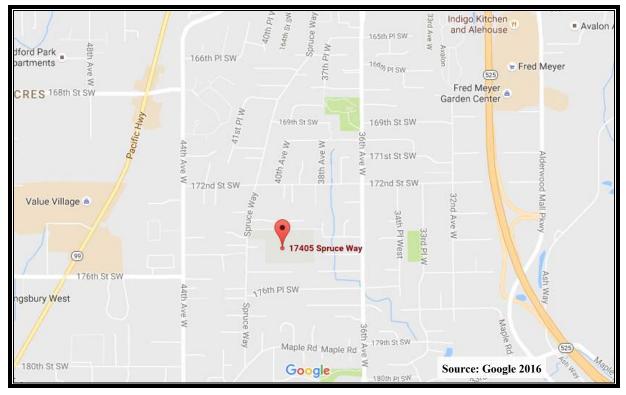


Figure 2 - Vicinity Map

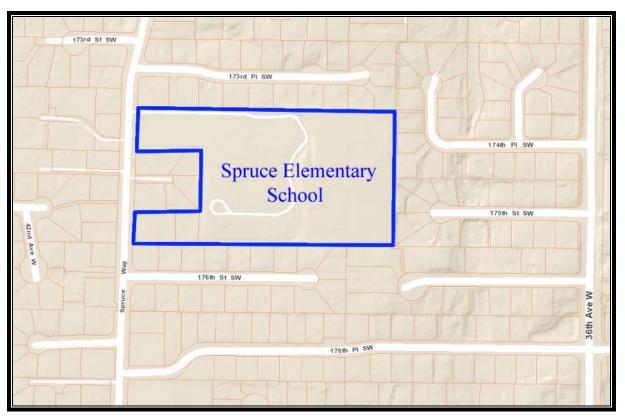


Figure 3 – Parcel Map

B. ENVIRONMENTAL ELEMENTS

1. EARTH

a. General description of the site (circle one): Flat, rolling, hilly, steep slopes, mountainous, other.

The site topography slopes gently down toward the <u>west and south</u> east, but is generally flat.

b. What is the steepest slope on the site (approximate percent slope)?

There are portions on the edge of the site between the existing school building and the playfields to the east that are 40% slopes.

c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.

According to Appendix C – Revised Subsurface Exploration, Geologic Hazards and Preliminary Geotechnical Engineering Report and Geotechnical Report Addendum, the site consists primarily of surficial topsoil and fill underlain by Vashon Lodgment Till. The United States Department of Agriculture, Natural Resources Conservation Service (USDA, NRCS) maps one soil on site: Alderwood-Urban land complex, 2 to 8 percent slopes. Alderwood-Urban land is not considered prime farmland by the USDA (Data obtained from USDA, NRCS Web Soil Survey on 7/26/16 and <u>1/3/2020 http://websoilsurvey.sc.egov.usda.gov/</u> App/WebSoilSurvey.aspx).

d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.

There are no surface indications or history of unstable soils in the immediate vicinity.

e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation, and grading proposed. Indicate source of fill.

Phase 1 includes approximately 4,500 CY of excavation and 4,500 CY of fill for site construction. Phase 2 is estimated to include an additional $\frac{13,000}{11,900}$ CY of cut and $\frac{16,000}{11,900}$ CY of fill. While the source of fill that would be imported for the proposal is unknown, it is anticipated that clean fill material would be sourced from a permitted quarry or materials site.

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe.

Erosion is possible as a result of clearing and construction, and according to the project geologist, the erosion potential is high. The contractor would be required to prevent erosion during construction per the Construction Stormwater General Permit issued by the Department of Ecology, and by utilizing Best Management Practices from the Department of Ecology Stormwater Management Manual for Western Washington, as required for use by the City of Lynnwood Municipal Code (LMC). Permanent surfacing, including hardscape and landscaping, would be provided to prevent erosion after construction. The District would provide source controls, like maintaining landscaping, to prevent erosion during use of the site.

g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?

Phase 1 would result in an impervious surface area of 60.2%, this would be reduced to 55.4 55% after the completion of Phase 2.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:

Temporary and permanent soil stabilization would occur through seeding/sodding, mulching, and plastic covering. Dust controls would include watering soils to prevent blowing of dust. Slopes would be protected through interceptor swales, check dams and pipe slope drains. Inlet protection would be provided.

To mitigate the erosion hazards and potential for off-site sediment transport, the project geotechnical engineer has recommended the following:

- 1. During the local wet season (October 1st through March 31st), exposed soil should not remain uncovered for more than 2 days unless it is actively being worked. Ground-cover measures include erosion control matting, plastic sheeting, straw mulch, crushed rock or recycled concrete or mature hydro seed.
- 2. Route surface water away from work areas.
- 3. Keep staging areas and travel areas clean and free of track-out.
- 4. Cover work areas and stockpiled soil when not in use.
- 5. Complete earthwork during dry weather and site conditions, if possible.

For additional information see Appendix C – Subsurface Exploration and Preliminary Geotechnical Engineering Report Preliminary Design Recommendations and Geotechnical Report Addendum.

2. AIR

a. What types of emissions to the air would result from the proposal (i.e., dust, automobile, odors, industrial wood smoke) during construction, operation and maintenance when the project is completed? If any, generally describe and give approximate quantities if known.

Construction of the project would result in temporary, localized increases in pollutant emissions from construction activities and equipment. For example, dust from excavation and grading would contribute to ambient concentrations of suspended particulate matter. Construction contractor(s) would have to comply with the Puget Sound Clean Air Agency's (PSCAA) Regulation I, Section 9.15 requiring reasonable precautions to minimize dust emissions. Reasonable controls may include applying water or dust suppressants during dry weather, and vehicle washing and street cleaning to prevent dirt, mud and other debris deposits on paved roadways open to the public.

The PSCAA, in connection with the Washington State Department of Ecology (Ecology), conducts air quality monitoring at several sites around Puget Sound. According to PSCAA's 201517 *Air Quality Data Summary* (the most recently available), fine particle levels in Puget Sound met the Environmental Protection Agency's health-based standard of 35 micrograms per cubic meter in 20157. However, air quality within King, Kitsap, Pierce, and Snohomish Counties continued to exceed the EPA standard for particulate (PM) air quality of 25 micrograms per cubic meter. Ozone levels remain a concern in our region.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe.

There are no off-site emissions or odors that would affect the proposal. Land uses in the vicinity are primarily residential. The predominate source of air pollution in the project area is traffic on nearby roads and the use of wood burning stoves and fireplaces. As a result, pollutants are mainly particulates (from wood stoves, fireplaces, outdoor burning, and roads) and ozone and carbon monoxide from vehicular traffic. Emissions from vehicles on nearby roads would not have an impact on the proposal.

c. Proposed measures to reduce or control emissions or other impacts to air, if any:

Under PSCAA's Regulation I, Section 9.15, contractor(s) working on construction projects are required to take all reasonable precautions to avoid or minimize fugitive dust emissions. These precautions and control measures may include street cleaning to prevent dirt, mud and other debris deposits on paved roadways open to the public. With such control measures in place, the potential from on-site air quality impacts is minimal. Construction related traffic would need to be coordinated with peak flow times, so as to alleviate congestion and reduce emissions.

3. WATER

a. Surface Water:

1) Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

There are no surface water bodies on the subject property. The City of Lynnwood maps a Fish and Wildlife Conservation Area (stream) east of the site (Tunnel Creek) (*Data obtained from City of Lynnwood website on 7/26/17 <u>and on 1/3/2020</u>). There are also tributaries to Scriber Creek northwest of the site.*

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

The proposal would not require work within 200 feet of the streams mentioned above.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

No fill or dredge would occur.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

No surface water withdrawals or division would occur as a result of the proposed project.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan.

The site does not lie within a 100-year floodplain.

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

No waste material would be discharged into the ground. The site would be served by a public sewer system.

- b. Ground Water:
 - 1) Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known.

No groundwater withdrawals would occur.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, containing the following chemicals...; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be

served (if applicable), or the number of animals or humans the system(s) are expected to serve.

No waste material would be discharged into the ground. The site would be served by a public sewer system.

c. Water Runoff (including stormwater):

1) Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.

The source of runoff would include roadway runoff from driveways and parking lots, and surface runoff from building roofs and hardscapes such as play fields and paved play areas.

Existing Conditions

The northwest portion of the site (Threshold Discharge Area (TDA) A) drains to the northwest via sheet flow and existing conveyance prior to discharging to an existing ditch located within Spruce Way. Stormwater from TDA A enters the public conveyance system and flows northwest towards Highway 99. The southwest portion of the site (TDA B) collects into a swale located along the southern edge of the site and discharges to a catch basin located at the southwest corner of the site, which flows west to Spruce Way, discharging to the existing ditch that flows to the south. Stormwater from TBA B enters the public conveyance system and flows southwest towards Highway 99. The third TDA (TDA C) sheet flows to the eastern and southern borders of the site. Stormwater from TDA C enters the public conveyance system which then discharges to Tunnel Creek.

Existing stormwater conveyance serves the existing elementary school and surrounding pedestrian areas. No conveyance is located to the east on the upper portion of the site, except for downspouts that serve the covered play area. All storm conveyance is collected in TDA A and discharges to a swale along Spruce Way. Currently, there are no water quality or flow control systems located onsite.

Developed Conditions – Phase 1

During Phase 1, the proposal is to demolish the existing play areas east of the elementary school and develop the upper field to the east. The existing fire lane, elementary school, and parking are to be retained. A new building, play areas, and temporary parking will be constructed east of the existing school. A fire lane would be constructed around the new portion of the building. The frontage along Spruce Way would be reconstructed to meet City of Lynnwood Standards. New utility infrastructure would be provided to serve the proposed improvements. Future portables have been identified and included in the stormwater calculations.

The existing stormwater infrastructure to the west (TDA A and B) would be retained. During Phase 1, stormwater improvements would be provided for the east (TDA C) only. Stormwater improvements for TDA A and B would be provided in Phase 2 when that portion of the site is developed. Improvements for

storm in TDA C include onsite stormwater management, flow control, and water quality systems, and mitigation would be provided for new and replaced surface. Onsite stormwater management would include post-construction soil quality, Silva Cells (underground bioretention), and dispersion. Flow control would be in the southeast corner of the site. Water quality would be provided for the temporary parking to the north using a compost amended filter strip and for the service area with a Silva Cell underground bioretention cell.

Developed Condition – Phase 2

During Phase 2, the project proposes to demolish the existing Spruce Elementary School, portables to the south, temporary and permanent parking and the existing fire lane. Portions of the existing drive entrance to the west would be retained and expanded to serve the new school building. A new building <u>addition</u> wing would be constructed, connecting to the newly constructed Phase 1 building. New parking would be provided to the west, with parent <u>vehicle loop</u> drop-off and bus <u>loop for</u> drop-off and pick-up. A new play field would be constructed south of the new parking lot. The majority of Phase 1 elements constructed would be retained, excluding the temporary parking to the north. New utility infrastructure would be provided to serve the proposed Phase 2 improvements.

The existing stormwater flow control facility constructed in Phase 1 would be preserved to serve Phase 2, TDA C. The existing stormwater conveyance within TDA A would be demolished and upgraded. New stormwater improvements would include onsite stormwater management, flow control, and water quality systems, and would provide mitigation for new and replaced surfaces. Onsite stormwater management would include post-construction soil quality, bioretention cells, and Silva Cell bioretention. Flow control for TDA A would be provided with below-grade 6 foot diameter pipe. An open stormwater pond combined with a stormwater wetland and underground detention pipe would be constructed to provide flow control and water quality treatment for TDA A. The constructed wetland comprises of an open pond, flow control structure, and an emergency overflow structure. The constructed wetland would encourage infiltration and evapotranspiration. A bioretention cell combined with underground detention pipe would be constructed to provide flow control and water quality treatment for TDA B. Flow control for TDA B would be provided with a pond. Water quality would be provided for the pollution generating impervious surface (PGIS) in TDA A using a bioretention cell. Water quality would be provided for the PGIS in TDA B using Silva Cells (underground bioretention cells).

Construction runoff would be treated prior to discharge from the site per the Construction Stormwater General Permit issued by the Department of Ecology.

For additional information see *Appendix C – Preliminary Stormwater Site Plan Report* and *Stormwater Site Plan Report*.

2) Could waste materials enter ground or surface waters? If so, generally describe.

No waste materials would enter ground or surface waters. Sanitary sewer is part of the existing and proposed infrastructure.

3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.

No. The proposal would convey stormwater to match the existing drainage patterns of the site.

d. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any:

The proposal would use multiple stormwater treatment best management practices (BMPs) to mimic forested pre-developed conditions and treat for Enhanced Basic water quality standards.

Flow Control

In Phase 1, design flow control for TDA C would be provided. Due to site constraints, the flow control for TDA A and TDA B would be constructed during Phase 2. The post-developed condition has been modeled in MGSFlood to confirm the design from Phase 1 meets the Phase 2 developed conditions. The flow control riser would be replaced based on the updated modeling results in Phase 2. In addition, because flow control volumes required in TDA C Phase 2 are slightly more than Phase 1, the proposal is to install the necessary volume for Phase 2 during Phase 1. The flow control restrictor would be adjusted in Phase 2, such that durations are met for both Phase 1 and Phase 2. Flow control in TDA C for Phase 1 would be provided using a pond that is interconnected with a 6-foot diameter pipe.

Flow control for Phase 2 in TDA A would be <u>implemented by constructing a pond</u> system combined with a 6-foot diameter detention tank under the northwesterly parking area. The flow control restrictor tee within the control manhole has been sized to mitigate peak flows modeled in MGSFlood. provided using a 6-foot diameter pipe that would be located under the parking lot located to the west. TDA B flow control would be provided using a pond located in the southeast corner of the site. Flow control in TBA B would be implemented by a detention pond in the northwest corner of the site with a flow control structure.

Flow control for Phase 2 in TDA C would have been constructed during Phase 1 and consists of a pond and interconnected pipe. Phase 2 would adjust the flow control restrictor such that durations are matched for both Phase 1 and Phase 2.

Water Quality Treatment

In Phase 1 of the project, pollution generating surfaces in TDA C include the temporary parking lot to the north and the service yard to the south. A compost amended filter strip would be provided for the temporary parking lot. A Silva Cell bioretention system would be provided for the service yard.

In Phase 2, pollution generating surfaces in TDA A include the school bus loop drop-off area, the north half of the parking lot and the fire lane to the east. The runoff generated by these areas would be treated by the wetland located downstream of the detention system, which would also provide treatment for the non-target and bypass pollution generating surfaces. The non-target areas are treated to help offset areas that bypass the system. the north half of the parking lot and parent drop-off area in TDA A would require water quality treatment. TDA A would be treated through the use of bioretention cells that are located at the western entrance of the site and in the center island of the parent drop-off zone. If additional water quality features are required, additional Silva Cells would be provided.

In Phase 2, the south half of the parking area would require water quality treatment. TDA B would be treated through <u>a bioretention system located near the south entrance</u>. The playfield would be covered by natural grass and therefore water quality is not required. the use of Silva Cells located throughout the parking lot.

TDA C in Phase 2 includes the removal of the temporary parking area and replacement with non-pollution generating surfaces. <u>The remaining pollution</u> generating surface in TDA C includes the service yard on the south side of the school. The Silva Cell constructed in Phase 1, for the service yard would remain. <u>The design of this system has been confirmed during the modeling for Phase 2</u>.

See *Appendix C – Preliminary Stormwater Site Plan Report* and *Stormwater Site Plan Report* for additional information.

The project is required to have a Construction Stormwater NPDES permit through the Washington State Department of Ecology. A Stormwater Pollution Prevention Plan (SWPPP) and Temporary Erosion Sedimentation Control (TESC) Plan would be developed to meet the required elements of the NPDES permit and the Ecology Stormwater Management Manual for Western Washington. To reduce impacts from runoff water during construction, measures taken by the Contractor to protect water quality and control flows may include but are not limited to:

- Marking the clearing limits with high visibility fencing and providing perimeter protection with silt fencing or similar BMPs;
- Preserving native vegetation to remain with protective fencing;
- Installing stabilized construction entrances at the entry/exit points to the site, and stabilized construction roads and parking;
- Constructing temporary sediment traps or ponds to control construction stormwater flow rates.

The permanent Stormwater Control plan would maintain the existing points of discharge and so would not impact drainage patterns.

4. PLANTS

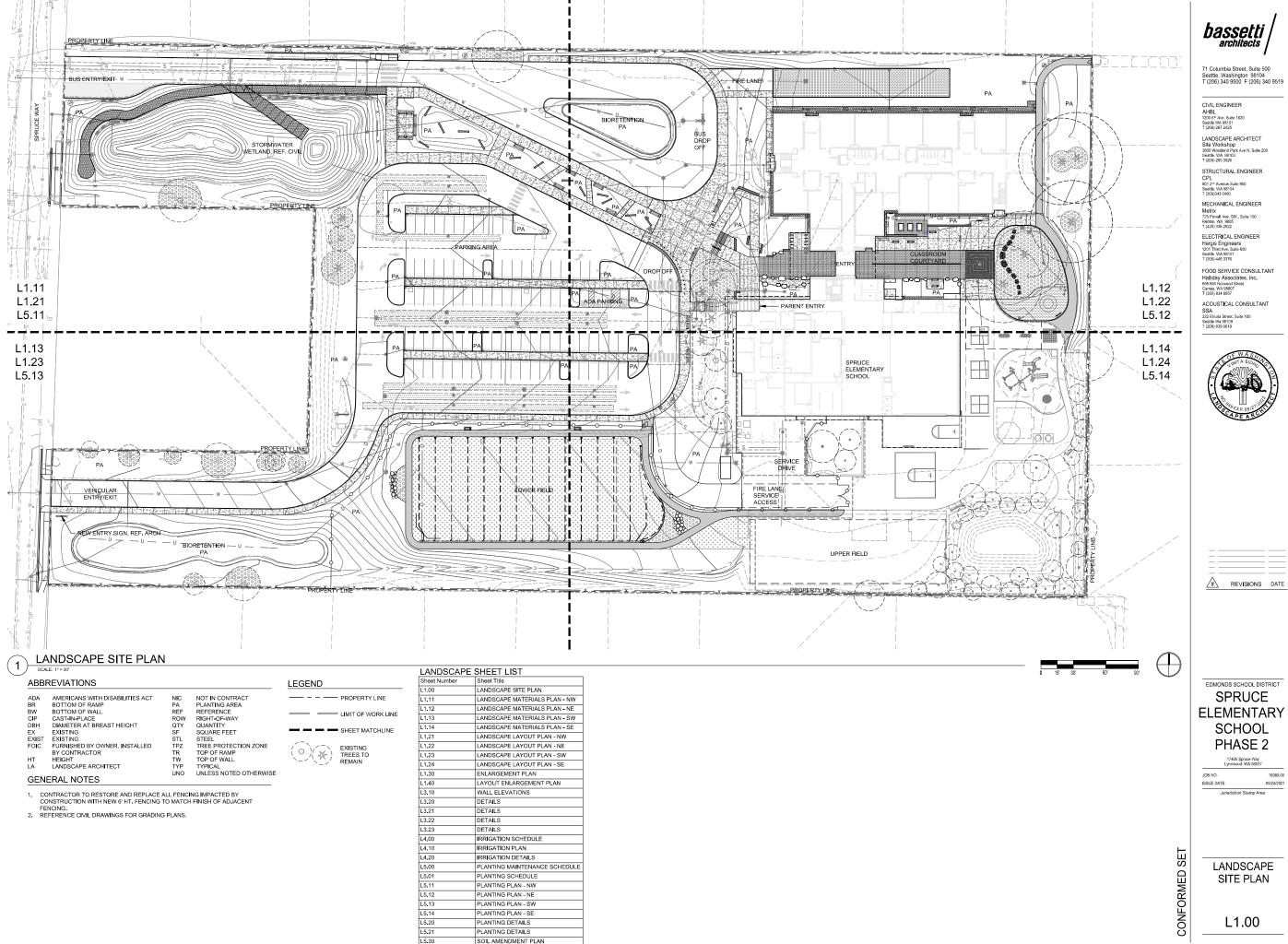
a. Check the types of vegetation found on the site:

- ✓ deciduous tree: alder, maple, aspen, other: ______
- ✓ evergreen tree: fir, cedar, pine, other: _____
- ✓ shrubs
- ✓ grass
- ____ pasture
- ___ crop or grain
- ____ orchards, vineyards or other permanent crops
- ____wet soil plants: cattail, buttercup, bulrush, skunk cabbage, other: _____
- ____water plants: water lily, eelgrass, milfoil, other: _____
- ____ other types of vegetation

b. What kind and amount of vegetation will be removed or altered?

There are not many on-site trees, and many of them are around the site perimeter. A number of trees within the internal portion of the site, as well as the residential parcel, would be removed to accommodate the proposed buildings, see *Figure 4 – Concept Planting Plans*. In addition, shrubs and grass would also be removed.

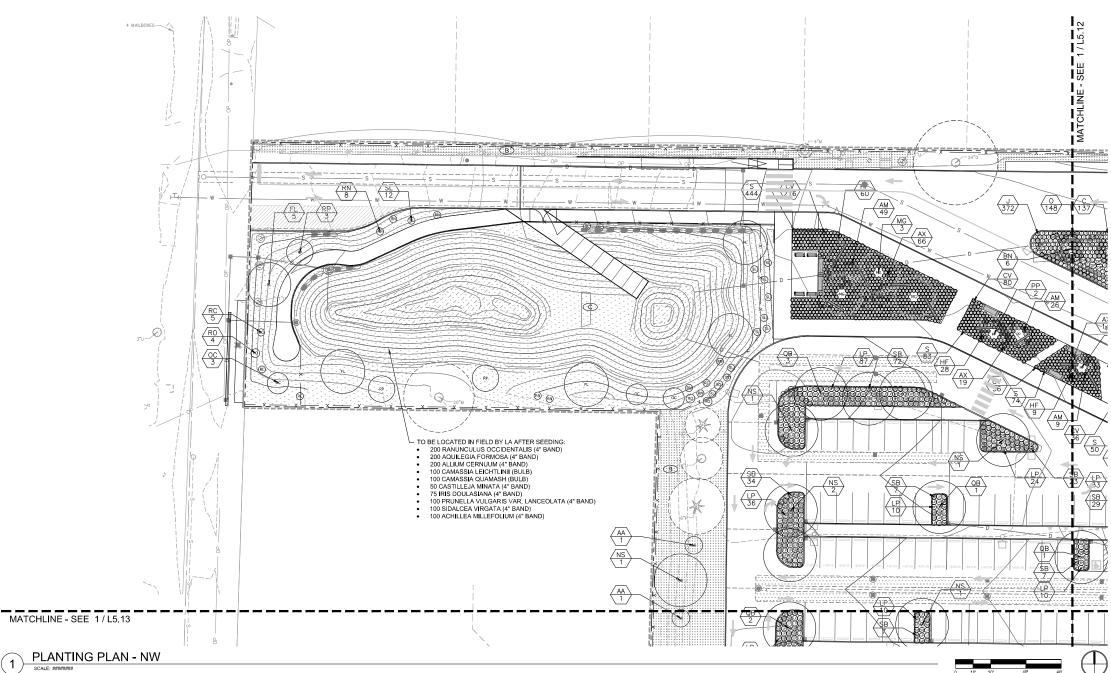
c. List threatened and endangered species known to be on or near the site, if any:


A query request was made on July 26, 2017 and again on January 3, 2020, to the Washington Department of Natural Resources (WDNR) Natural Heritage Program database, which was last updated February 6, 2017 November 18. 2019, and there are no records or known occurrences of priority plant species on or immediately adjacent to the site.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any:

Proposed plantings for the final Phase 2 condition are shown on *Figure 4 – Concept Planting Plans*. These include the installation of 40-53 large deciduous trees, $90\ 20$ small to medium deciduous trees, $18\ 15$ multi-stem trees as well as $15\ 14$ medium to large coniferous trees. In addition, areas would be hydro seeded and shrubs and other understory would be installed. Areas include parking areas, around buildings and playfields. The proposal would be in compliance with the City of Lynnwood requirements, rain garden plantings for stormwater treatment; parking lot plantings which include new parking lot trees and low plantings as required by the City of Lynnwood; meadow areas around the perimeter of the site with new trees to supplement existing remaining trees; a formal green with ornamental flowering trees; and turf field areas for active recreation.

e. List all noxious weeds and invasive species known to be on or near the site.


Washington State Class C noxious weed Himalayan blackberry (*Rubus armeniacus*) is found on the site; however, this weed is not regulated by Snohomish County.

 -	 PROPERTY LINE
 -	 LIMIT OF WORK LI

L1.00	LANDSCAPE SITE PLAN
L1.11	LANDSCAPE MATERIALS PLAN - NW
L1.12	LANDSCAPE MATERIALS PLAN - NE
L1.13	LANDSCAPE MATERIALS PLAN - SW
L1.14	LANDSCAPE MATERIALS PLAN - SE
L1.21	LANDSCAPE LAYOUT PLAN - NW
L1.22	LANDSCAPE LAYOUT PLAN - NE
L1.23	LANDSCAPE LAYOUT PLAN - SW
L1.24	LANDSCAPE LAYOUT PLAN - SE
L1.30	ENLARGEMENT PLAN
L1.40	LAYOUT ENLARGEMENT PLAN
L3.10	WALL ELEVATIONS
L3.20	DETAILS
L3.21	DETAILS
L3.22	DETAILS
L3.23	DETAILS
L4.00	IRRIGATION SCHEDULE
L4.10	IRRIGATION PLAN
L4.20	IRRIGATION DETAILS
L5.00	PLANTING MAINTENANCE SCHEDULE
L5.01	PLANTING SCHEDULE
L5.11	PLANTING PLAN - NW
L5.12	PLANTING PLAN - NE
L5.13	PLANTING PLAN - SW
L5.14	PLANTING PLAN - SE
L5.20	PLANTING DETAILS
1.5.04	PLANTING DETAILS

= =		
	REVISIONS	DATE

SCHEDIII	

(1)

	PLANT SCHED	ULE NW											
	TREES	CODE	QTY	BOTANICAL NAME	COMMON NAME	COND	SIZE	SHRUBS	CODE	QTY	BOTANICAL NAME	COMMON NAME	CONT
	AA	AA	1	AMELANCHIER ALNIFOLIA	SERVICEBERRY	B&B	MULTI-STEMMED, 3-5	e	AX	87	ALLIUM X 'WINDY CITY'	WINDY CITY ALLIUM	5 GAL
		AA	I		SERVICEBERRY	DQD	MOLTI-STEMMED, 3-5	ø	AF	4	AQUILEGIA FORMOSA	WESTERN COLUMBINE	4"POT
((BN	BN	1	BETULA NIGRA	RIVER BIRCH	B & B	2.5"CAL	0	AM	77	ASTER X FRIKARTII 'MONCH'	MONCH ASTER	#1
	FL FL	FL	5	FRAXINUS LATIFOLIA	OREGON ASH	B & B	3"CAL	٥	CV	316	CALLUNA VULGARIS 'SPRING TORCH'	SCOTCH HEATHER	#1
	NN WINYZ	FL	5	FRAAINUS LATIFOLIA	OREGONASH	DαD	3 CAL	ø	0	16	CAREX DENSA	DENSE SEDGE	#1
	Ma	MG	3	METASEQUOIA GLYPTOSTROBOIDES	DAWN REDWOOD	B & B	EVEN MIX OF 8-12' HT	©	С	10	CAREX PACHYSTACHYA	CHAMISSO SEDGE	#1
2	WWW ^{NS} NS	NS	5	NYSSA SYLVATICA	SOUR GUM	B & B	2.5"CAL	ŵ	DP	1	DARMERA PELTATA	INDIAN RHUBARB	#2
	\mathcal{L}	NS	5	NTSSA STEVATICA	SOURGOM	DQD	2.5 CAL	Θ	HF	89	HELLEBORUS FOETIDUS	BEARSFOOT HELLEBORE	#1
(QB	PP	2	PARROTIA PERSICA	PERSIAN PARROTIA	B & B	1.5"CAL	ø	I	8	IRIS DOUGLASIANA	DOUGLAS IRIS	#1
		QB	4	QUERCUS BICOLOR	SWAMP WHITE OAK	B & B	2.5"CAL	0	J	27	JUNCUS PATENS 'ELK BLUE'	SPREADING RUSH	#1
		QB	4	QUERCUS BICOLOR	SWAMP WHITE OAK	Вав	2.5 CAL	Ø	LP	157	LONICERA PILEATA	HONEYSUCKLE	#5
		RP	3	RHAMNUS PURSHIANA	CASCARA	B & B	1.5"CAL	(oc)	ос	3	OEMLERIA CERASIFORMIS	INDIAN PLUM	#15
	\bigcirc							RO	RO	4	RHODODENDRON OCCIDENTALE	WESTERN AZALEA	#5
								89	RN	8	RIBES NEVADENSE	SIERRA CURRANT	#5
-								RC	RC	5	RIBES SANGUINEUM GLUTINOSUM 'CLAREMONT'	FLOWERING CURRANT	#5
98 AN								ø	S	564	SESLERIA AUTUMNALIS	AUTUMN MOOR GRASS	#1
0:50:(•	SB	141	SPIRAEA BETULIFOLIA	BIRCH LEAF SPIREA	#3
2/8/2017 10:50:08 AM								(SL)	SL	12	SPIRAEA BETULIFOLIA LUCIDA	SHINY LEAF SPIREA	#5
2/8/2								AQUATIC	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	CONT	SPACING

334

NUPHAR POLYSEPALUM SPATTERDOCK

2" CONT.

48" o.c.

SEEDING SCHEDULE

SYMBOL	TYPE	QUANTITY
	HYDROSEED TURF GRASS	23,208 SF
B	HYDROSEED LOW GROW GRASS MIX	57,698 SF
C	HYDROSEED BIOFILTER MIX	48,983 SF

NOTE: PLANT QUANTITIES ON THIS SHEET ARE PROVIDED TO AID IN PLANT LAYOUT. REFER TO OVERALL PLANTING SCHEDULE ON L5.01 FOR TOTAL PLANT QUANTITIES.

bassetti architects

71 Columbia Street, Suite 500 Seattle, Washington 98104 T (206) 340 9500 F (206) 340 9519

CIVIL ENGINEER AHBL 1200 6th Ave, Suite 1620 Seattle WA 98101 T (206) 267 2425

LANDSCAPE ARCHITECT Site Workshop 3800 Wocdland Park Ave N, Suite 200 Seattle, WA 88103 T (206) 285 3026

STRUCTURAL ENGINEER CPL 801 2nd Avenue Suite 900 Seattle, WA 98104 T (206)343 0460

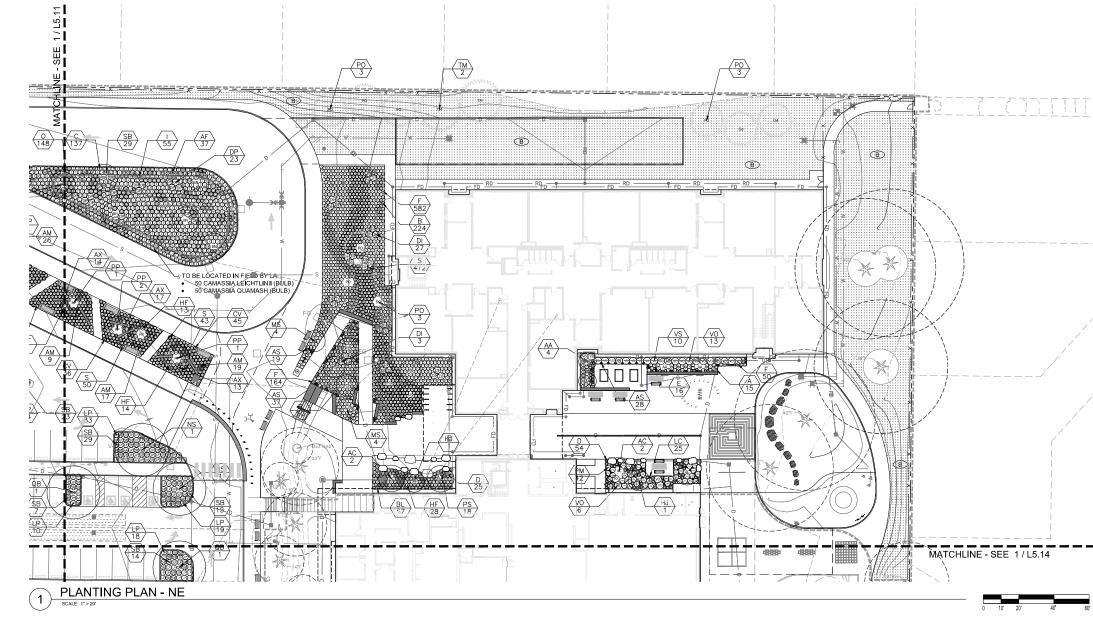
MECHANICAL ENGINEER Metrix 725 Powell Ave. SW., Suite 100 Renton, WA 9805 T (425) 336 2822

ELECTRICAL ENGINEER Hargis Engineers 1201 Third Ave, Suite 600 Seattle, WA 98101 T (206) 448 3376

FOOD SERVICE CONSULTANT Halliday Associates, Inc. 656 NW Norwood Street Camas, WA 98907 T (360) 834 6657

ACOUSTICAL CONSULTANT SSA 222 Etruria Street, Suite 100 Seattle Wa 98109 T (206) 839 0819

_#\	REVISIONS		DATE
==			
		1	



ISSUE DATE: 05/24/2021 Jurisdiction Stamp Area

> PLANTING PLAN - NW

SET

CONFORMED

нэ

(vo) (15)

VS 10 VACCINIUM X 'SUNSHINE BLUE'

PLANT SCHEDULE NE

	TREES	CODE	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	COND	SIZE	SHRUBS	CODE
	AC	AC	4	ACER CIRCINATUM	VINE MAPLE	B & B	MULTI-STEMMED, 3-5 STEMS, 8' HT. MIN.	٥	А
_	\square	AU	-	ACEN CINCINATION		DUD	MOET-OTEMMED, 0-0 OTEMO, 0 TT. MIN		AS
(•) _	AA	4	AMELANCHIER ALNIFOLIA	SERVICEBERRY	B & B	MULTI-STEMMED, 3-5 STEMS	۵	AX
	BN	BN	5	BETULA NIGRA		в&в	2.5"CAL	ø	AF
_	\bigcirc	DIV	5	DE I DER MICHA		Dab	2.5 0AL	¢	AM
(M	2	MS	8	MALUS TRANSITORIA 'SCHMIDCUTLEAF'	GOLDEN RAINDROPS FLOWERING CRABAPPLE	B & B	2"CAL	۵	BL
1	NS	NS	2	NYSSA SYLVATICA	SOUR GUM	B & B	2.5"CAL	۵	в
X	\sim /	NO	2	NIGGA STEVATION		Dab	2.5 0AL	0	CV
P	\sim	PP	4	PARROTIA PERSICA	PERSIAN PARROTIA	B & B	1.5"CAL	ø	0
\geq	A DO A	PO	9	PICEA OMORIKA	SERBIAN SPRUCE	B & B	EVEN MIX OF 8-12` HT	©	С
	North Real Provide State	PU	9	PICEA UMURIKA	SERBIAN SPRUCE	вав	EVEN MIX OF 8-12 HT	ø	DP
Q	B MMM	QB	1	QUERCUS BICOLOR	SWAMP WHITE OAK	B & B	2.5"CAL	0	DI
	The start	тм						ø	D
4		LIM	2	TSUGA MERTENSIANA	MOUNTAIN HEMLOCK	В&В	EVEN MIX OF 8-12' HT	٥	Е
	MARAN								

CODE	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	CONT
А	15	ACHILLEA X 'MOONSHINE'	MOONSHINE YARROW	#1
AS	84	ALLIUM SENESCENS GLAUCUM	ORNAMENTAL ONION	BULB
AX	42	ALLIUM X 'WINDY CITY'	WINDY CITY ALLIUM	5 GAL
AF	33	AQUILEGIA FORMOSA	WESTERN COLUMBINE	4"POT
AM	43	ASTER X FRIKARTII `MONCH`	MONCH ASTER	#1
BL	57	BLECHNUM SPICANT	DEER FERN	#1
В	274	BOUTELOUA GRACILIS 'BLONDE AMBITION'	BLUE GRAMA	#1
CV	97	CALLUNA VULGARIS 'SPRING TORCH'	SCOTCH HEATHER	#1
0	132	CAREX DENSA	DENSE SEDGE	#1
С	127	CAREX PACHYSTACHYA	CHAMISSO SEDGE	#1
DP	22	DARMERA PELTATA	INDIAN RHUBARB	#2
DI	30	DIERAMA PULCHERRIMUM	ANGEL'S FISHING ROD	#5
D	79	DRYOPTERIS ERYTHROSORA	AUTUMN FERN	#1
Е	16	ECHINACEA PURPUREA 'BRAVADO'	BRAVADO CONEFLOWER	#1
F	796	FESTUCA MAIREI	ATLAS FESCUE	#1
HJ	2	HAMAMELIS X INTERMEDIA `JELENA`	YELLOW ORANGE WITCH HAZEL	5 GAL
HF	63	HELLEBORUS FOETIDUS	BEARSFOOT HELLEBORE	#1
I	47	IRIS DOUGLASIANA	DOUGLAS IRIS	#1
J	344	JUNCUS PATENS 'ELK BLUE'	SPREADING RUSH	#1
LC	25	LILIUM COLUMBIANUM	TIGER LILY	BULB
LP	62	LONICERA PILEATA	HONEYSUCKLE	#5
PM	42	POLYSTICHUM MUNITUM	WESTERN SWORD FERN	#1
PS	18	POLYSTICHUM SETIFERUM 'PLUMOSOMULTILOBUM'	SOFT SHIELD FERN	#1
S	543	SESLERIA AUTUMNALIS	AUTUMN MOOR GRASS	#1
SB	75	SPIRAEA BETULIFOLIA	BIRCH LEAF SPIREA	#3
VO	19	VACCINIUM OVATUM	EVERGREEN HUCKLEBERRY	#3

BLUEBERRY

#5

bassetti architects

71 Columbia Street, Suite 500 Seattle, Washington 98104 T (206) 340 9500 F (206) 340 9519

CIVIL ENGINEER AHBL 1200 6th Ave, Suite 1620 Seattle WA 98101 T (206) 267 2425

LANDSCAPE ARCHITECT Site Workshop 3800 Woodland Park Ave N, Suite 200 Seattle, WA 98103 T (206) 285 3026 STRUCTURAL ENGINEER

CPL 801 2nd Avenue Suite 900 Seattle, WA 98104 T (206)343 0460

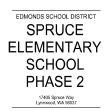
MECHANICAL ENGINEER Metrix 725 Powell Ave. SW., Suite 100 Renton, WA 9805 T (425) 336 2822

ELECTRICAL ENGINEER Hargis Engineers 1201 Third Ave, Suite 600 Seattle, WA 98101 T (206) 448 3376

FOOD SERVICE CONSULTANT Halliday Associates, Inc. 656 NW Norwood Street Camas, WA 98907 T (360) 834 6657

ACOUSTICAL CONSULTANT

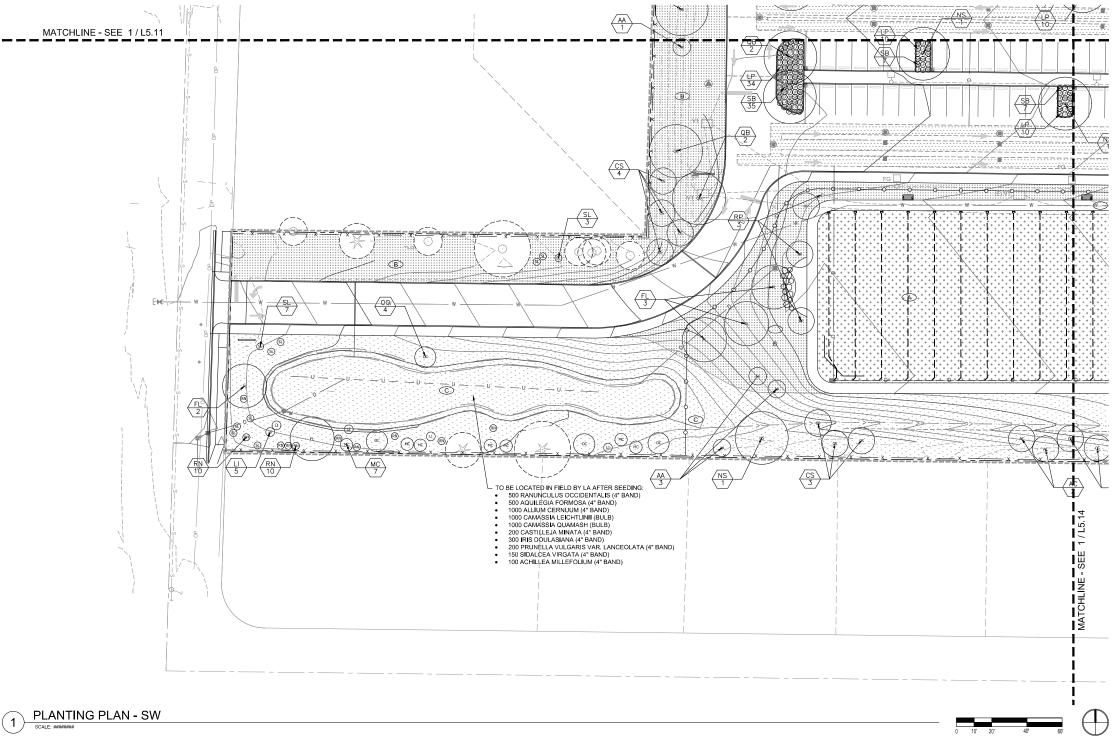
SSA 222 Etruria Street, Suite 100 Seattle Wa 98109 T (206) 839 0819


(\square
	\square

SEEDING SCHEDULE

SYMBOL	TYPE	QUANTITY
	HYDROSEED TURF GRASS	23,208 SF
₿	HYDROSEED LOW GROW GRASS MIX	57,698 SF
C	HYDROSEED BIOFILTER MIX	48,983 SF

NOTE: PLANT QUANTITIES ON THIS SHEET ARE PROVIDED TO AID IN PLANT LAYOUT. REFER TO OVERALL PLANTING SCHEDULE ON L5.01 FOR TOTAL PLANT QUANTITIES.



JOB NO: 16989.00 ISSUE DATE: 05/24/2021 Jurisdiction Stamp Area

PLANTING PLAN - NE

SET

CONFORMED

	PLANT SCH	HEDULE	SW				
	TREES	CODE	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	COND	SIZE
	AC	AC	2	ACER CIRCINATUM	VINE MAPLE	B & B	MULTI-STEMMED, 3-5 STEMS, 8' HT. MIN.
		AA	4	AMELANCHIER ALNIFOLIA	SERVICEBERRY	В&В	MULTI-STEMMED, 3-5 STEMS
_	-(1)	CS	8	CORNUS X 'STARLIGHT'	STARLIGHT DOGWOOD	B & B	2.5"CAL
		FL	5	FRAXINUS LATIFOLIA	OREGON ASH	B & B	3"CAL
$\left \right\rangle$		NS	3	NYSSA SYLVATICA	SOUR GUM	B & B	2.5"CAL
		QB	4	QUERCUS BICOLOR	SWAMP WHITE OAK	B & B	2.5"CAL
	RP	RP	3	RHAMNUS PURSHIANA	CASCARA	B & B	1.5"CAL

SHRUBS	CODE	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	<u>CONT</u>
(L)	LI	5	LONICERA INVOLUCRATA	TWINBERRY	#5
ø	LP	54	LONICERA PILEATA	HONEYSUCKLE	#5
MC	MC	7	MYRICA CALIFORNICA	PACIFIC WAX MYRTLE	#15
oc	oc	4	OEMLERIA CERASIFORMIS	INDIAN PLUM	#15
89	RN	10	RIBES NEVADENSE	SIERRA CURRANT	#5
0	SB	49	SPIRAEA BETULIFOLIA	BIRCH LEAF SPIREA	#3
9	SL	10	SPIRAEA BETULIFOLIA LUCIDA	SHINY LEAF SPIREA	#5

-			
1	J 1	20'	40'

SEEDING SCHEDULE

SYMBOL	TYPE	QUANTITY
$(\widehat{A})^{*}$	HYDROSEED TURF GRASS	23,208 SF
B	HYDROSEED LOW GROW GRASS MIX	57,698 SF
©	HYDROSEED BIOFILTER MIX	48,983 SF

NOTE: PLANT QUANTITIES ON THIS SHEET ARE PROVIDED TO AID IN PLANT LAYOUT. REFER TO OVERALL PLANTING SCHEDULE ON L5.01 FOR TOTAL PLANT QUANTITIES.

bassetti architects

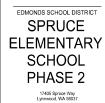
71 Columbia Street, Suite 500 Seattle, Washington 98104 T (206) 340 9500 F (206) 340 9519

CIVIL ENGINEER AHBL 1200 6th Ave, Suite 1620 Seattle WA 98101 T (206) 267 2425

LANDSCAPE ARCHITECT Site Workshop 3800 Wocdland Park Ave N, Suite 200 Seattle, WA 88103 T (206) 285 3026

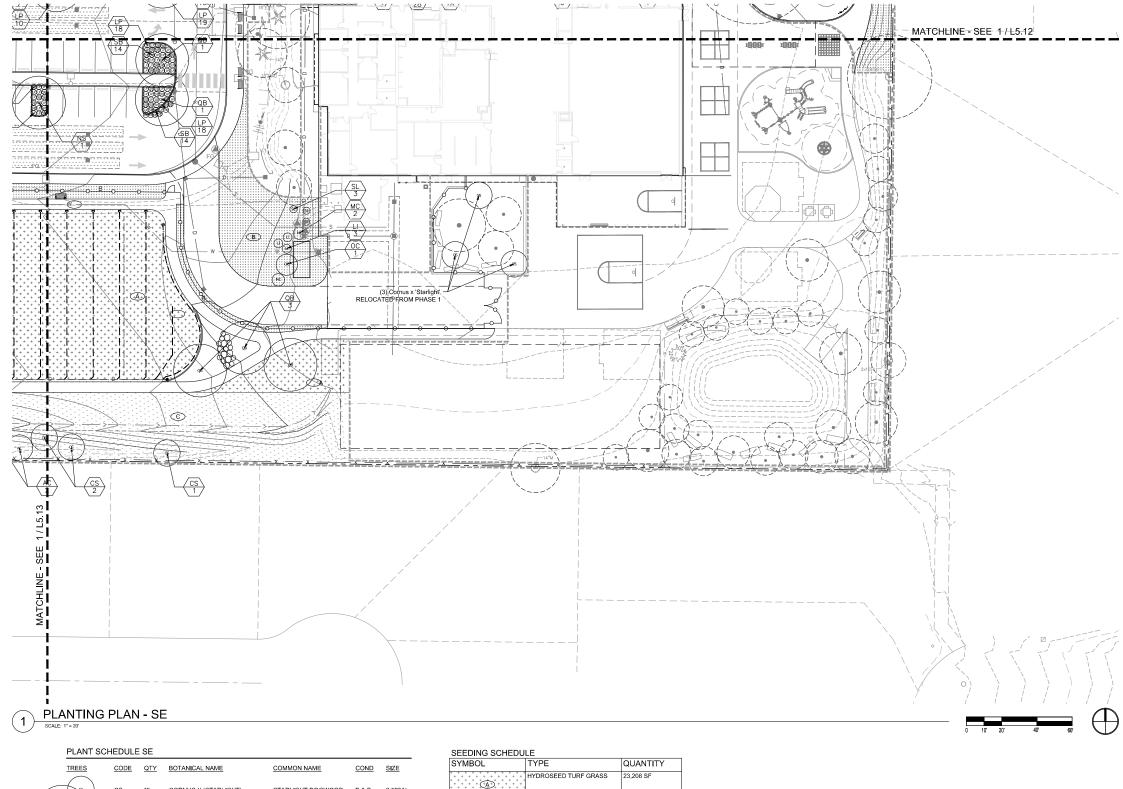
STRUCTURAL ENGINEER CPL 801 2nd Avenue Suite 900 Seattle, WA 98104 T (206)343 0460

MECHANICAL ENGINEER Metrix 725 Powell Ave. SW., Suite 100 Renton, WA 9805 T (425) 336 2822


ELECTRICAL ENGINEER Hargis Engineers 1201 Third Ave, Suite 600 Seattle, WA 98101 T (206) 448 3376

FOOD SERVICE CONSULTANT Halliday Associates, Inc. 656 NW Norwood Street Camas, WA 98907 T (360) 834 6657

ACOUSTICAL CONSULTANT SSA 222 Etruria Street, Suite 100 Seattle Wa 98109 T (206) 839 0819


<u>_</u> #	REVISIONS	DATE

JOB NO: 16989.00 ISSUE DATE: 05/24/2021 Jurisdiction Stamp Area

PLANTING PLAN - SW

CONFORMED SET

	TREES	CODE	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	COND	SIZE
_		CS	*5 (CORNUS X `STARLIGHT` *3 TO BE RELOCATED FROM PH 1)	STARLIGHT DOGWOOD	B & B	2.5"CAL
	Q8	QB	5	QUERCUS BICOLOR	SWAMP WHITE OAK	B & B	2.5"CAL
_	SHRUBS	CODE	<u>QTY</u>	BOTANICAL NAME	COMMON NAME	CONT	
	Ű	LI	3	LONICERA INVOLUCRATA	TWINBERRY	#5	
	٥	LP	36	LONICERA PILEATA	HONEYSUCKLE	#5	
	МС	MC	2	MYRICA CALIFORNICA	PACIFIC WAX MYRTLE	#15	
	oc	ос	1	OEMLERIA CERASIFORMIS	INDIAN PLUM	#15	
	۲	SB	28	SPIRAEA BETULIFOLIA	BIRCH LEAF SPIREA	#3	
	8	SL	3	SPIRAEA BETULIFOLIA LUCIDA	SHINY LEAF SPIREA	#5	

SYMBOL	TYPE	QUANTITY
· · · · (` <u>A</u> ·) · · · · ·	HYDROSEED TURF GRASS	23,208 SF
₿	HYDROSEED LOW GROW GRASS MIX	57,698 SF
C	HYDROSEED BIOFILTER MIX	48,983 SF

NOTE: PLANT QUANTITIES ON THIS SHEET ARE PROVIDED TO AID IN PLANT LAYOUT. REFER TO OVERALL PLANTING SCHEDULE ON L5.01 FOR TOTAL PLANT QUANTITIES.

bassetti architects

71 Columbia Street, Suite 500 Seattle, Washington 98104 T (206) 340 9500 F (206) 340 9519

CIVIL ENGINEER AHBL 1200 6th Ave, Suite 1620 Seattle WA 98101 T (206) 267 2425

LANDSCAPE ARCHITECT Site Workshop 3800 Woodland Park Ave N, Suite 200 Seattle, WA 98103 T (206) 285 3026

STRUCTURAL ENGINEER CPL 801 2nd Avenue Suite 900 Seattle, WA 98104 T (206)343 0460

MECHANICAL ENGINEER Metrix 725 Powell Ave. SW., Suite 100 Renton, WA 9805 T (425) 336 2822

ELECTRICAL ENGINEER Hargis Engineers 1201 Third Ave, Suite 600 Seattle, WA 98101 T (206) 448 3376

FOOD SERVICE CONSULTANT Halliday Associates, Inc. 656 NW Norwood Street Camas, WA 98607 T (360) 834 6657

ACOUSTICAL CONSULTANT SSA 222 Etruria Street, Suite 100 Seattle Wa 98109 T (206) 839 0819

	-	
 REVISIONS		DATE

JOB NO: 16989.00 ISSUE DATE: 05/24/2021 Jurisdiction Stamp Area

PLANTING PLAN - SE

CONFORMED SET

5. ANIMALS

a. <u>List</u> any birds and <u>other</u> animals which have been observed on or near the site or are known to be on or near the site. Examples include:

birds:hawk, heron, eagle, songbirds, other:mammals:deer, bear, elk, beaver, other: rodentsfish:bass, salmon, trout, herring, shellfish, other:

b. List any threatened and endangered species known to be on or near the site.

A query request of the Washington Department of Fisheries and Wildlife (WDFW) database for threatened, endangered, and priority species and habitats was made on July 26, 2017 and again on January 3, 20202. WDFW did not identify any threatened or endangered species on the subject site or in the immediate vicinity. There is an area approximately 250 feet to the northwest of the site that is listed as a being a freshwater forested/shrub wetland and contains Priority Habitat Species.

c. Is the site part of a migration route? If so, explain.

Western Washington is part of the Pacific Flyway. However, due to the extensive urban residential development patterns surrounding the site, it would most likely not be utilized by any species other than those more tolerant of urban development activities.

d. Proposed measures to preserve or enhance wildlife, if any:

Proposed landscaping would provide cover for animals. <u>Bioretention areas would</u> increase wetland habitat for water fowl.

e. List any invasive animal species known to be on or near the site.

There are no known invasive animal species known to be on or near the site.

6. ENERGY AND NATURAL RESOURCES

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project's energy needs? Describe whether it will be used for heating, manufacturing, etc.

Natural gas provides the heating for the building, domestic hot water and some kitchen cooking equipment needs. Electricity supplies the rest of the building's needs, such as for lighting and equipment/plug loads.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

The proposal would not affect the potential use of solar energy by adjacent properties. The proposed structure would not be tall enough to block sunlight from those properties.

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:

High-efficiency condensing boilers, an additive bid alternate to provide a heated pump for space heating needs is proposed, heat recovery on the ventilation systems, high efficiency LED lighting and innovative controls and systems metering/monitoring are proposed.

7. ENVIRONMENTAL HEALTH

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so describe.

During construction, it is possible that hazardous materials from equipment and vehicles could occur. A spill prevention and control plan would be prepared and implemented by the selected contractor to assist in minimizing the potential of accidental release of contaminants into the environment.

1) Describe any known or possible contamination at the site from present or past uses.

There is no known contamination to the site on the Washington State Department of Ecology's on-line database for hazardous sites (*Data obtained from Ecology Facility/Site mapping service on 7/26/17 and January 3, 2020:* <u>https://fortress.wa.gov/ecy/facilitysite/SearchData/ShowSearch.aspx?ModuleT</u> <u>ype=FacilitySite&RecordSearchMode=New</u>).

2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity.

The existing <u>school</u> building contains known asbestos and lead paint. There is also an existing 10,000 gallon heating oil underground storage tank on-site. It is located south of the existing student drop off area and is proposed to be removed. There are no known leaks; though soil around the tank would be tested during demolition as a precaution. The existing residential buildings are known to contain asbestos and lead paint as well.

3) Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project's development or construction, or at any time during the operating life of the project.

Other than cleaning supply chemicals, no toxic or hazardous chemicals would be stored on site.

During construction, it is anticipated that gasoline and other petroleum products could be stored onsite for fueling and maintenance of construction equipment.

4) Describe special emergency services that might be required.

No special emergency services would be required. Adequate circulation for fire trucks and other emergency services would be provided.

5) Proposed measures to reduce or control environmental health hazards, if any:

Environmental health hazards are not anticipated, therefore no mitigation measures are proposed. The contractor shall follow the recommendations of the Abatement and Demolition Plan to control exposure of workers to deleterious materials.

b. Noise

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other?

The area is primarily residential and park space. Noise from nearby traffic would be audible, but would not affect the proposed development.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

Activity	Leq (in decibels)*
Clearing	71
Grading	63-76
Paving	60-76
Building Erection	60-72
Finishing	62-77
Types of Equipment	Range of Noise Levels
Bulldozer	65-84
Dump Truck	70-82
Paver	74-76
Generators	59-70
Compressors	62-69
$T_{1} = \frac{1}{2} = \frac{1}{2} \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}$	· · · · · · · · · · · · · · · · · · ·

* Decibels - The decibel (abbreviated dBA) is the unit used to measure the intensity of sound.

These noise levels would be short-term and in many cases, of short duration. Noise generated from construction is exempt from City noise regulations. Sound levels for various long-term noise sources include:

	Sound Level at
Noise Sources	100 feet (dBA)
Automobile Starting	50-55
Closing Car Door	50-55
Loud Voices	50
Automobile/Bus/Truck Traffi	c 50

Noise levels would be consistent with an educational facility and be consistent with the City's noise regulations.

3) Proposed measures to reduce or control noise impacts, if any:

No impacts are anticipated, therefore no mitigation is proposed.

8. LAND AND SHORELINE USE

a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe.

The site is the current location of Spruce Elementary School <u>the two additional</u> <u>added parcels contain single family residential structures</u>. The adjacent properties are single family residential on all sides. The proposal would not have an impact on current land uses nearby.

b. Has the project site been used as working farmlands or working forest lands? If so, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use?

The site has not been used recently as working farmlands or working forest lands.

1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how:

The proposal would not affect or be affected by working farm or forest land normal business operations, as none of these land uses are located in the immediate vicinity.

c. Describe any structures on the site.

There are several structures associated with the school that house classrooms and offices. There is also one open, covered play area. <u>The residential property contains</u> two single family homes and other outbuildings.

d. Will any structures be demolished? If so, what?

Upon the completion of Phase 2, all of the buildings <u>described above</u> would have been demolished. Phase 1 includes the demolition of just the covered play structure <u>and residential structures</u>.

e. What is the current zoning classification of the site?

The <u>school</u> site is zoned P-1 (Public). <u>The residential parcels are zoned RS-8</u> (Residential 8400 SF). A rezone request of these parcels to RS-8 will be submitted to the City of Lynnwood for approval.

f. What is the current comprehensive plan designation of the site?

The <u>school</u> site is designated as PF (Public Facilities) by the Comprehensive Plan. The residential parcels are designated as SF-1 (Low-Density Single Family). A request for a Comprehensive Plan Designation Amendment to PF will be submitted to the City of Lynnwood for approval.

g. If applicable, what is the current shoreline master program designation of the site?

Not applicable.

h. Has any part of the site been classified as a critical area by the city or county? If so, specify.

No part of the site has been classified as a critical area by the City.

i. Approximately how many people would reside or work in the completed project?

Approximately 65 staff members would work in the completed school, including teachers, administrative staff, and custodial and service staff. There is a flexible number of parent volunteers that is not accounted for in this total.

j. Approximately how many people would the completed project displace?

Only temporary displacement <u>of students and staff</u> during Phase 2 construction would occur. Students and staff would be relocated off-site (the location will be determined at a later date) to former Alderwood Middle School during the construction of Phase 2. <u>The individuals living in the single family residential structures moved to other locations permanently.</u>

k. Proposed measures to avoid or reduce displacement impacts, if any:

No measures are proposed, as all employees would be relocated to the new school once it has been constructed and Phase 2 is complete. All employees have been

given proper notice of the pending demolition and temporary relocation. <u>The</u> <u>individuals living in the single family homes were given an extended period of time</u> to find an alternative place to live.

1. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:

Spruce Elementary School is a legal conforming use in the P-1 zoning designation. A request for a Comprehensive Plan Amendment and Rezone will be submitted to the City of Lynnwood to ensure that the zoning and designation are consistent with the school use for the two additional parcels. The Edmonds School District adopted a Capital Facilities Plan (CFP) in 2016 for the years 2016 – 2021 in order to assess existing school facility capacities and outline a number of improvements for its facilities. The modernization of Spruce Elementary School is included in the CFP, upon further assessment, it was determined that total replacement was in the best interest of the District and the students the school serves.

The proposal would enhance the City's Comprehensive Plan and the Community Livability Element in Policies: P-3.3, LU-6-A, and LU-6-E. The school would provide Recreation Open Space Goal RPOS-3 of the Comprehensive Plan as neighborhood resident would benefit from the improved site amenities, linking trails and pathways, safe connection to school and potential community use space.

The City of Lynnwood Comprehensive Plan (LCP) supports the location of schools within residential areas, provided the use does not generate "adverse land use or environmental impacts" (Policy LU-26). The LCP also recognizes the importance of schools to the future of the City. It not only emphasizes the role of schools as learning centers, but as community gathering spaces; proponents of arts (Policy CC-14.13 and 14.14) and active living (Policy CC-11.1); and as increasingly important to the promotion of sustainable food systems (Policy CC-12.5) and environmentally sustainable communities through the establishment of school food gardens (Policy CC-17.12).

m. Proposed measures to ensure the proposal is compatible with nearby agricultural and forest lands of long-term commercial significance, if any:

There are no measures proposed as there are no nearby agricultural or forest lands of long-term significance.

9. HOUSING

a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing.

No housing units would be provided.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.

No Two housing units have been would be eliminated.

c. Proposed measures to reduce or control housing impacts, if any:

No impacts are anticipated; therefore no measures are proposed. Advance notification to the residents living there was provided to allow them time to find alternative living arrangements.

10. AESTHETICS

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

The maximum height of the tallest proposed structure is 42 feet. The principal exterior material for the proposed buildings is primarily vertical metal panels in 3 to 4 colors. The pattern of the metal panels helps to break up the surface and reduce glare. There is a concrete masonry unit (CMU) base and CMU bounce walls near the covered play building.

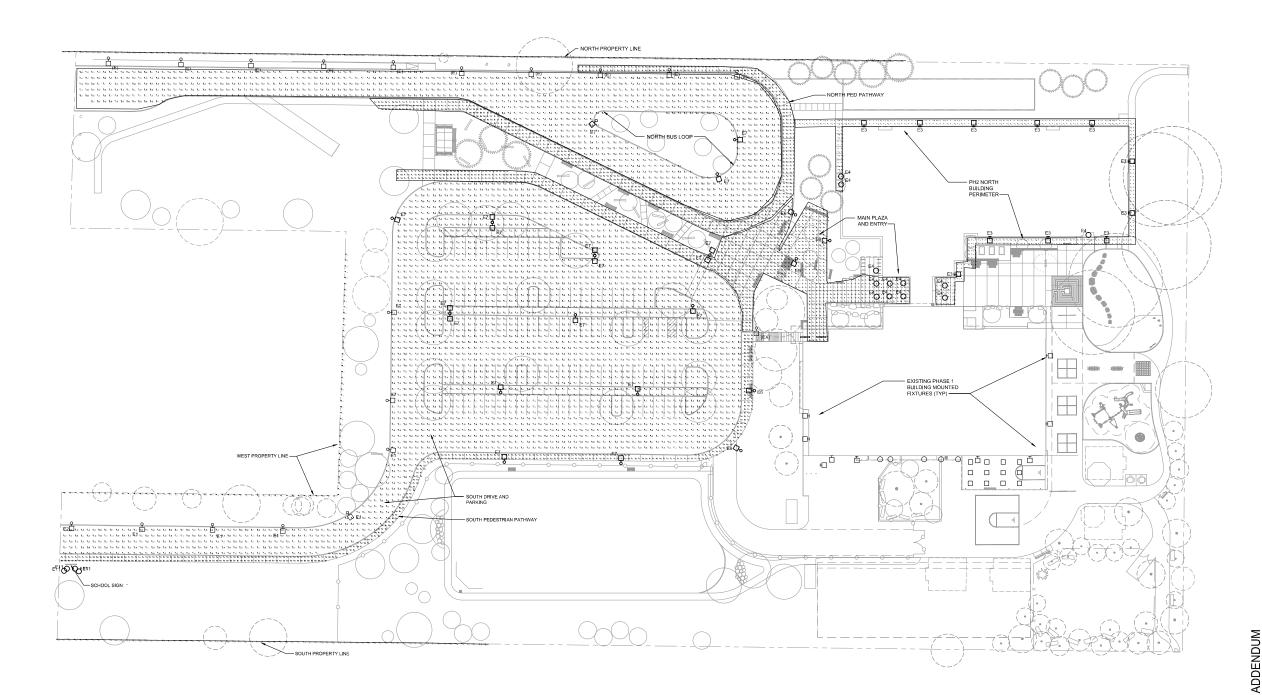
b. What views in the immediate vicinity would be altered or obstructed?

Views in the immediate vicinity would be altered by the view of the new school building, no obstructions would occur. <u>Parcels abutting the proposed access</u> driveway would notice a change in views as well.

c. Proposed measures to reduce or control aesthetic impacts, if any:

No impacts are anticipated, therefore no mitigation is proposed.

11. LIGHT AND GLARE


a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

The parking area, building lighting and vehicle lighting would produce a minimal source of light. Light from these sources would occur in the morning hours prior to the start of school until sunrise and during evening events. Any site lighting would be designed to minimize spillage beyond the site. No lighting of the play field is proposed.

The proposal includes 15' tall LED full cut-off site lighting along the entry drive. Parking areas will have 25' tall LED full cut-off poles, and 15' tall LED full cut-off poles near the east portion of the parking areas, adjacent to the building. Details regarding the fixtures and the site photometrics can be found on *Figure 5 – Electrical Site Plan – Site Lighting Photometrics – Phase 2.*

FIXTURE SCHEDULE:

- IF TALL LED FULL CUT OFF SITE LIGHTING POLE FIXTURE TYPE 3 DISTRIBUTION WITH BACK LIGHT CONTROL OPTICS AND HOUSE SIDE SHIELD-OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 Is TALL LED FULL CUT OFF SITE LIGHTING POLE FIXTURE LET CORNER TYPE DISTRIBUTION WITH BACK LIGHT CONTROL OPTICS AND HOUSE SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 LED FULL CUT OFF SITE LIGHTING POLE FIXTURE LET CORNER TYPE DISTRIBUTION SON-50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTION 50%-100% DURING ON HOURS
 SIDE SHIELD OCCUPANCY SENSOR FUNCTIO

1 ELECTRICAL SITE PLAN - SITE LIGHTING PHOTOMETRICS - PHASE 2

SITE LIGHTING PHOTOMETRIC DATA:

Cale Pis

Main Plaza anc Entry Iluminance (Fct Avciago=4.63 Maximum=690 Minimum=C.9 Avg/Min=5.14 Max/Min=76.67 h Bus Loop

lumnance (H Aveiage-2.01

Maximum-7.C Minimum-0.6 Avg/Min-4.60

Noth Ped Pathway Humpance (Fc) Avenue=2.04 Maximum=6.5 Minin

Nath Property Line Huminance (Fc) Average=0.00 Maximum=0.0 Mininum=0.0 Avg/Min=NA, Max/Min=Na

08 BaniMinuté 2 Dave

PH2 North Building Perimeter |lumnance|Fc| Average=3:55 Maximum=71.7 Minimum=C6 Avg/htm=15.32 Max/htm ah Drive and Parking

luminance (Fc) Aveage=3.39 Maximum=9.7 Minimum=0.6 Avg/Min=5.65 Max/Min=16.17 dh Ped Pathway innance (Fc) iage=1.59 Maximum+6∠ Minimum+U.5 Avg/Min=3.98 Max/Min=1.240

with Distantial

Mun Hopeny en Iluminance (Fc) Aveage=0.00 Maximum=0.0 Minimum=0.0 Avg/Min=N.A. Max/Min=N.A Aveage=0.00 Maximum=0.0 Minimum=0.0 Avg/Min=N.A. Max/Min=N.A

Weit Propetty Line ||luminance|Fc| |Avelage=0.00 Maximum=0.0 Minimum=0.0 Avg/Min=N.A. Max/Min=N.A.

bassetti architects

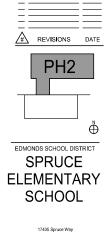
71 Columbia Street, Suite 500 Seattle, Washington 98104 T (206) 340 9500 F (206) 340 9519

CIVIL ENGINEER AHBL 1200 5th Ave, Suite 1620 Seattle WA 98101 T (206) 267 2425

LANDSCAPE ARCHITECT Site Workshop 222 Etruris St. Suite 200 Seattle, WA 98109 T (206) 285 3026

STRUCTURAL ENGINEER CPL 801 2nd Avenue Suite 900 Seattle, WA 98104 T (206)343 0460

MECHANICAL ENGINEER Metrix 725 Powell Ave. SW., Suite 100 Renton, WA 9805 T (425) 336 2822


ELECTRICAL ENGINEER Hargis Engineers 1201 Third Ave, Suite 600 Seattle, WA 98101 T (206) 448 3376

FOOD SERVICE CONSULTANT Halliday Associates, Inc. 656 NW Norwood Street Camas, WA 98607 T (360) 834 8657

ACOUSTICAL CONSULTANT

SSA 222 Etruria Street, Suite 100 Scattle Wa 98109 T (206) 839 0819

Lynnwood, WA 98037		
JOB NO:	16989.0	
ISSUE DATE:	02/11/202	

b. Could light or glare from the finished project be a safety hazard or interfere with views?

No, other than vehicle lights, no other lights (i.e. parking lot lighting and building lights) would be aimed outward.

c. What existing off-site sources of light or glare may affect your proposal?

Light and glare from the adjacent roadway and residences would not have an impact on this proposal.

d. Proposed measures to reduce or control light and glare impacts, if any:

The proposed lighting for the new buildings would be directed in a downward direction, to reduce light and glare. The light and glare would be minimized by fencing and landscape buffers, and therefore the adjacent properties would not be adversely affected by the proposal.

12. RECREATION

a. What designated and informal recreational opportunities are in the immediate vicinity?

Spruce Park is located less than $\frac{1}{2}$ mile to the north of the school site, Stadler Ridge Park is less than $\frac{1}{3}$ of a mile to the east and Maple Mini-Park is less than $\frac{1}{2}$ mile to the south. The elementary school itself provides recreational opportunities associated with the athletic fields and play equipment during non-school hours.

b. Would the proposed project displace any existing recreational uses? If so, describe.

Temporary displacement of the on-site recreational opportunities would occur during construction for safety purposes.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:

No permanent measures are anticipated, therefore no measures are proposed.

13. HISTORIC AND CULTURAL PRESERVATION

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? If so, specifically describe.

The existing Spruce Elementary School was constructed in 1966 and received two new classrooms in 2013 and three portables in 2014 <u>and another two portables in</u> <u>2016</u>. While over 45 years in age, there is no indication that the school embodies unique construction methods or design elements that would support listing the building on national, state or local preservation registers. <u>The original architect of</u> the school was Ralph Burkhard. In 1979 a modernization and addition to the original school occurred and was designed by Robert A. Bezzo. A full modernization of the school occurred in 1987 by Burr Lawrence Rising Architects. In 2009, Greene Gasaway redesigned the flat roof structures to sloped roofs with metal roofing. There have been several other classroom additions and improvements to the school over the years as well. The residential properties contained one-story structures constructed in 1956 and are also therefore older than 45 years old.

According to the Washington State Department of Archaeology and Historic Preservation (DAHP): Washington Information System for Architectural & Archaeological Records Data (WISAARD), review of historic registers indicates that there are no properties listed on or determined eligible for listing on the National Register of Historic Places or Washington Heritage Register on or adjacent to the school site.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

There are no known landmarks, feature or other evidence of Indian or historic use or occupation. The WISAARD site classifies the project area as "Moderately Low Risk" for encountering subsurface cultural resources. No professional studies were conducted.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

Review of the DAHP WISSARD on-line data base as well as review of historic mapping was used.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

No cultural resources have been identified in the project area. If cultural resources are inadvertently discovered during construction, work at the site would halt and the State's Historic Preservation Officer would be notified.

14. TRANSPORTATION

a. Identify public streets and highways serving the site or affected geographic area and describe proposed access to the existing street system. Show on-site plans, if any.

The site is accessed via Spruce Way. No change in access is proposed. Spruce Way is considered an arterial street. The acquisition of additional property has allowed the District to propose a second access to the site, south of the existing driveway. Bus traffic would be separated from staff and parent drop-off/pick-up traffic. The school's existing parent/staff access would be modified and repurposed to serve the bus loop. The parent/staff access would move approximately 250 feet to the south access point across the residential lots.

b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop?

Community Transit services the area surrounding Spruce Elementary. There are several bus stops (Route 112) located within .2 miles of the school directly on 44th Ave W. This route will transport riders in about a 5 minute ride south to the Lynnwood Terrace Transit Center or north to the Swamp Creek Park & Ride Center. From either of the Centers, access is available to other Community Transit or Sound Transit routes. Route 112 runs about every 30 minutes from approximately 6:00am to 9:00pm. The Edmonds School District also provides bus transportation for some the majority of the students.

c. How many additional parking spaces would the completed project or nonproject proposal have? How many would the project or proposal eliminate?

The completed project would add additional parking spaces. The existing school site includes 58 parking spaces. The proposed project (Phases 1 and 2) would have a total of $90 \ 96$ parking stalls.

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private).

No new or improvements to the existing roads, street or pedestrian system are required. The project would provide street improvements to Spruce Way at the north and south entrance of the school. Street improvements include new sidewalk, curb, gutter as well as pavement widening. Improvements to the existing drainage system include replacing the existing ditch and culverts with catch basins and pipes. The project would retain the existing paved trails and sidewalks in the vicinity.

e. Will the project or proposal use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

The proposed project would not occur in the immediate vicinity of water, rail or air transportation.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles). What data or transportation models were used to make these estimates?

According to the *Traffic Impact Analysis* (see *Appendix D*), the reconstruction of Spruce Elementary School is estimated to generate a total of 140.8 new average daily trips with 50.3 trips (24. inbound/25.9 outbound) during the AM peak-hour and 29.8 trips (12.2 inbound/17.6 outbound) during the school PM peak-hour. During the street peak-hour between 4 and 6 PM, it is anticipated that there would be an increase of 13.8 PM peak-hour trips (6.8 inbound/7.0 outbound). The number of buses servicing the school is not anticipated to change. Neither of the school's access points are planning on moving, however, the north access would be repurposed to serve the bus loop, while the south access would serve for the parent drop-off/pick-up and parking. The school's existing parent/staff access would turn into the bus access point, while a new parent/staff access would move approximately 250 feet to the south at the new residential lots. Additionally, the parent <u>vehicle student</u> drop-off/pick-up of simultaneous vehicles while allowing other vehicles to bypass the stopped vehicles <u>safely</u>.

In the 2020 2021 future with reconstruction analysis provided in the *Traffic Impact Analysis* (see *Appendix D*), all off site study intersection would continue to operate at LOS \in \underline{B} or better during the AM peak-hour and $\underline{\text{LOS B}}$ or better during the School PM peak-hour. The main parent access for the school, the south driveway, <u>All access points would operate at LOS B or better</u>. during the AM peak-hour and School PM peak-hour with the westbound leg (school driveway) operating as the critical approach. The bus loop, utilizing the north driveway, is anticipated to operate at acceptable LOS C during the AM peak-hour and LOS B in the School PM peak-hour.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe.

The proposal would not interfere with or be impacted by the movement of agricultural and forest products on roads or streets in the area.

h. Proposed measures to reduce or control transportation impacts, if any:

According to the *Traffic Impact Analysis* (see *Appendix D*), no measures are proposed to reduce or control transportation impacts as part of the proposal. It is anticipated that in $2020 \ 2021$ future conditions all off-site study intersections would continue to operate at LOS C or better during the AM and LOS C B or better during

the school PM peak-hour, which meets the City's Intersection Standards used for SEPA impact evaluation.

15. PUBLIC SERVICES

a. Would the project result in an increased need for public services (for example: fire protection, police protection, public transit, health care, schools, other)? If so, generally describe:

The site would continue to be served by the Lynnwood Police <u>South Snohomish</u> <u>County Fire District No. 1</u> Fire Departments. Both public services can adequately serve the site.

b. Proposed measures to reduce or control direct impacts on public services, if any.

Fire hydrants would be located to provide 300 foot hose length coverage around the proposed building.

16. UTILITIES

- a. Circle utilities currently available at the site: <u>electricity</u>, <u>natural gas</u>, <u>water</u>, <u>refuse</u> <u>service</u>, <u>telephone</u>, <u>sanitary sewer</u>, septic system, other: _____
- b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

Electricity	Snohomish County PUD
Natural Gas	Puget Sound Energy
Sewer	City of Lynnwood
Telephone/Internet	Integra/Frontier
Water City of Lynnwood/Alderwood Water & Wastewater District	

Gas service is already provided to the existing school building and will be extended from the existing gas service location onsite. Proposed gas service would be coordinated with Puget Sound Energy (PSE).

To serve the new school, a water main would be constructed around the building footprint to provide sufficient fire coverage. Fire sprinkler and domestic service would extend from the new water main to the building mechanical/fire sprinkler room. The water services would either be taken from the City of Lynnwood and/or Alderwood Water and Wastewater District.

Sanitary sewer would be extended as needed for new sanitary sewer lateral lines. Most of the stormwater from the site would pass through conveyance, flow control, and water quality treatment facilities before discharging to stormwater ponds on the south<u>east and northwest potion of the site</u>.

C. SIGNATURE

Signature:

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

anw I

Applicant Representative

Name of signee: Camie Anderson

Position and Agency/Organization: Senior Associate, Shockey Planning Group, Inc.

Date submitted: June 4, 2021

Appendix A Legal Description

Spruce Elementary School

17405 Spruce Way, Lynnwood, WA Snohomish County Tax ID #: 00372700301502

ALDERWOOD MANOR 02 BLK 003 D-02 - LOT 15 BLK 3 LESS W 245FT AS MEAS PLWW LN LOT 15 TGW LOT 16 LESS S 100FT OF W 245FT THOF & LESS PTN TO SNO CO PER QCD 354-282 TGW W 1 AC OF LOT 3 & TGW WLY 1 AC LOT 4

<u>17501 Spruce Way, Lynnwood, WA</u> Snohomish County Tax ID #'s: 03372700301501 and 00372700301504

ALDERWOOD MANOR 02 BLK 003 D-01 W 160FT FDP TH PTN OF S1/2 TR 15 DAF BEG AT THE SWCOR OF SD TR 15 TH NLY ALG THE W LN 124.63FT M/L TO THE NW COR OF SD S1/2 OFTR 15 TH ELY S89*34 20E ALG THE N LN OF SD S1/2 DIST OF 500FT TH SLY PLW W LNDIST 115.3FT M/L TO S LN OF TR 15 TH WLYALG S LN 500FT M/L TO SW COR & POB EXC THE W 10FT THOF

ALDERWOOD MANOR 02 BLK 003 D-04 - E 85FT OF W 245FT OF THAT PTN S1/2 TR 15 BLK 3 DAF - BEG SWCOR SD TR 15 TH NLY ALG W LN 124.63FT M/L TO NW COR SD S1/2 TR 15 TH S89*34 20E 500FT TH SLY PLT W LN 115.3FT M/L TO S LN TH WLY ALG S LN 500FT M/L TOSW COR & POB

Appendix B Geotechnical Report <u>and Geotechnical</u> <u>Report Addendum</u>

January 14, 2015 Project No. KE140562A

Edmonds School District No. 15 20420 68th Avenue West Lynnwood, Washington 98124

Attention: Mr. Matthew Finch

Subject: Subsurface Exploration and Preliminary Geotechnical Engineering Report Proposed Renovations and Additions Spruce Elementary School Lynnwood, Washington

Dear Mr. Finch:

We are pleased to present these copies of our preliminary geotechnical engineering report for the referenced project. This report summarizes the results of our subsurface exploration, geologic hazards, and geotechnical engineering studies, and offers preliminary recommendations for the design and development of the proposed project. At the time this report was prepared, the site was in the early planning stage and no project design or detailed concept drawings had been prepared. We recommend that we be allowed to review the recommendations contained in this report and modify them, if necessary, when a project plan has been developed.

We have enjoyed working with you on this study and are confident that the recommendations presented in this report will aid in the successful completion of your project. If you should have any questions or if we can be of additional help to you, please do not hesitate to call.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington

Kurt D. Merriman, P.E. Senior Principal Engineer

KDM/pc - KE140562A2 - Projects\20140562\KE\WP

Geotechnical Engineering

Associated Earth Sciences, Inc.

Serving the Pacific Northwest Since 1981

Subsurface Exploration and Preliminary Geotechnical Engineering Report

PROPOSED RENOVATIONS AND ADDITIONS SPRUCE ELEMENTARY SCHOOL

Lynnwood, Washington

Prepared for

Edmonds School District No. 15

Project No. KE140562A January 14, 2015

Water Resources

Environmental Assessments and Remediation

Sustainable Development Services

Geologic Assessments

SUBSURFACE EXPLORATION AND PRELIMINARY GEOTECHNICAL ENGINEERING REPORT

PROPOSED RENOVATIONS AND ADDITIONS SPRUCE ELEMENTARY SCHOOL

Lynnwood, Washington

Prepared for: Edmonds School District No. 15 20420 68th Avenue West Lynnwood, Washington 98124

Prepared by: Associated Earth Sciences, Inc. 911 5th Avenue Kirkland, Washington 98033 425-827-7701 Fax: 425-827-5424

> January 14, 2015 Project No. KE140562A

I. PROJECT AND SITE CONDITIONS

1.0 INTRODUCTION

This report presents the results of our subsurface exploration, geologic hazards, and preliminary geotechnical engineering studies for the proposed renovations and additions to the Spruce Elementary School. The site location is shown on the "Vicinity Map," Figure 1. The approximate locations of exploration borings completed for this study are shown on the "Site and Exploration Plan," Figure 2. Logs of the subsurface explorations and copies of laboratory test results completed for this study are included in the Appendix.

1.1 Purpose and Scope

The purpose of this study was to provide geotechnical engineering design recommendations to be utilized in the preliminary design of the project. This study included a review of selected available geologic literature, advancing three hollow-stem auger soil borings, and performing geologic studies to assess the type, thickness, distribution, and physical properties of the subsurface sediments and shallow ground water. Geotechnical engineering studies were completed to establish recommendations for the type of suitable foundations and floors, allowable foundation soil bearing pressure, anticipated foundation and floor settlement, pavement recommendations, and drainage considerations. At the time this report was prepared, infiltration of storm water on-site was not planned and our study was not structured to support storm water infiltration. Based on exploration data contained in this report, storm water infiltration using conventional shallow infiltration strategies is not feasible. This report summarizes our fieldwork and offers preliminary geotechnical engineering recommendations based on our present understanding of the project. We recommend that we be allowed to review the recommendations presented in this report and revise them, if needed, when a project design has been developed.

1.2 Authorization

Authorization to proceed with this study was granted by means of a District purchase order. Our work was completed in general accordance with our scope of work and cost proposal, dated October 1, 2014. This report has been prepared for the exclusive use of Edmonds School District No. 15 and their agents for specific application to this project. Within the limitations of scope, schedule, and budget, our services have been performed in accordance with generally accepted geotechnical engineering practices in effect in this area at the time our report was prepared. No other warranty, express or implied, is made.

2.0 PROJECT AND SITE DESCRIPTION

The project site is that of the existing Spruce Elementary School. The project will include renovation of portions of the existing building, and building additions. At the time this report was prepared, several design concepts were under consideration. Likely areas of new construction include the open landscaped courtyard near the center of the existing building, and existing landscape areas south and east of the existing school buildings.

The existing facility includes an existing group of school buildings near the center of the site, with paved parking areas to the west, play areas to the east, and portable classrooms to the south. Site topography in the building area slopes gently down to the south and west, and appears to have been graded to its current configuration during earlier site development. Slopes near the south property boundary are likely man-made slopes constructed during earlier site development and are approximately 5 feet tall and inclined approximately 2H:1V (Horizontal:Vertical). A slope east of the existing school buildings is inclined approximately 2H:1V and rises approximately 6 to 10 feet to the existing playfields on the east part of the site. Some of these man-made slopes appear to meet the definition for steep slope geologically critical areas in accordance with *Lynnwood Municipal Code* (LMC). Because the slopes are relatively short, relatively gently inclined, and are man-made slopes constructed during earlier site development, we anticipate that any prescriptive buffers or setbacks associated with the slopes can be exempted through provisions of LMC Section 17.10.092.

3.0 SUBSURFACE EXPLORATION

Our subsurface exploration completed for this project included advancing three hollow-stem auger soil borings. The conclusions and recommendations presented in this report are based on the explorations completed for this study. The locations and depths of the explorations were completed within site and budget constraints.

3.1 Exploration Borings

The exploration borings were completed by advancing hollow-stem auger tools with a limited-access, track-mounted drill rig. During the drilling process, samples were obtained at generally 2.5- to 5-foot-depth intervals. The exploration borings were continuously observed and logged by a representative from our firm. The exploration logs presented in the Appendix are based on the field logs, drilling action, and inspection of the samples secured.

Disturbed but representative samples were obtained by using the Standard Penetration Test (SPT) procedure in accordance with *American Society for Testing and Materials* (ASTM):D 1586. This test and sampling method consists of driving a standard, 2-inch outside-diameter, split-barrel sampler a distance of 18 inches into the soil with a 140-pound hammer free-falling a

distance of 30 inches. The number of blows for each 6-inch interval is recorded, and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance ("N") or blow count. If a total of 50 is recorded within one 6-inch interval, the blow count is recorded as the number of blows for the corresponding number of inches of penetration. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils; these values are plotted on the attached exploration boring logs.

The samples obtained from the split-barrel sampler were classified in the field and representative portions placed in watertight containers. The samples were then transported to our laboratory for further visual classification and laboratory testing.

4.0 SUBSURFACE CONDITIONS

Subsurface conditions at the project site were inferred from the field explorations accomplished for this study, visual reconnaissance of the site, and review of selected applicable geologic literature. Because of the nature of exploratory work below ground, extrapolation of subsurface conditions between field explorations is necessary. It should be noted that differing subsurface conditions may sometimes be present due to the random nature of deposition and the alteration of topography by past grading and/or filling. The nature and extent of any variations between the field explorations may not become fully evident until construction.

4.1 Stratigraphy

Surficial Topsoil

Exploration borings encountered approximately 8 to 12 inches of topsoil and grass. Topsoil is not suitable for structural support, and should be stripped from structural areas. Excavated topsoil may be suitable for reuse in landscape areas.

Fill

Existing fill was encountered in one of our exploration borings (EB-3) to a depth of approximately 3 feet below the existing ground surface. The existing fill was observed to be very loose to medium dense. The existing fill was of a similar texture to the existing undisturbed soils on-site. The existing fill is loose and will require removal or other remedial preparation below planned building areas and remedial preparation below planned paving. Excavated existing fill is suitable for reuse in structural fill applications if specifically allowed by project specifications, and if any organic or other deleterious materials are removed. Excavated existing fill material is expected to be wetter than optimum moisture content for compaction

purposes and will require drying during dry site and weather conditions prior to use in compacted fills.

Lodgement Till

Each of the exploration borings encountered native sediments consisting of very dense silty sand with gravel interpreted as Vashon lodgement till. Lodgement till was deposited at the base of an active continental glacier and was compacted by the weight of the overlying glacial ice. Lodgement till is suitable for structural support when properly prepared. Excavated lodgement till material is suitable for use in structural fill applications if suitable moisture conditions are achieved prior to compaction, and if such reuse is specifically allowed by project plans and specifications. At the time of exploration, we estimate that most or all of the lodgement till soils that we observed were above optimum moisture content for compaction in structural fill applications.

Our interpretations of subsurface conditions on-site are different from a published geologic map of the area, as represented by the J.P. Minard, 1983, *Geologic Map of the Edmonds East and part of the Edmonds West Quadrangles, Washington: U.S. Geological Survey, Miscellaneous Field Studies Map MF-1541.* The published map indicates that the site is in an area characterized by Vashon lodgement till at the ground surface.

4.2 Hydrology

No ground water was observed in our exploration borings. Ground water is expected to occur seasonally at this site "perched" above the underlying lodgement till sediments, and possibly above existing fills. Perched ground water occurs when vertical infiltration is impeded by less-permeable soil layers, resulting in horizontal flow. The quantity and duration of perched ground water flow from an excavation will vary, depending on season, soil gradation, and adjacent topography. Ground water conditions should be expected to vary in response to changes in precipitation, on- and off-site land usage, and other factors.

4.3 Laboratory Testing

As a part of our investigation, we completed one laboratory grain-size analysis. A copy of the grain-size analysis report is included in the Appendix.

4.4 Infiltration Potential

The site is underlain by existing fill in some locations that is not suitable for use as an infiltration receptor. Native sediments at shallow depth at this site consist of lodgement till. Lodgement till is not suitable for use as a storm water infiltration receptor, and therefore conventional

shallow infiltration strategies are not recommended. Deeper infiltration strategies might be feasible. Our study was not structured to investigate the feasibility of deeper infiltration strategies such as Underground Injection Control (UIC) wells and pit drains. We are available to discuss such a feasibility assessment on request.

II. GEOLOGIC HAZARDS AND MITIGATIONS

The following discussion of potential geologic hazards is based on the geologic, slope, and ground and surface water conditions, as observed and discussed herein. The discussion will be limited to slope stability, seismic, and erosion issues.

5.0 SLOPE HAZARDS AND MITIGATIONS

In our opinion, slopes at the south edge of the site and between the existing school buildings and the play fields to the east may meet City of Lynnwood criteria for treatment as geologically critical areas as defined in LMC Section 17.10.030. The definition includes any slope inclined more than 40 percent without a requirement for a minimum height. Code section 17.10.092 offers a mechanism to allow modification of critical slopes. Because the observed subsurface conditions consist primarily of very dense glacially consolidated sediments, the existing slopes are relatively gently inclined, the existing slopes are relatively short, and the existing slopes were created during earlier site grading we anticipate that that the project can be planned without assuming any buffers or setbacks for existing slopes. It is possible that additional analyses will be required at some future time to support a specific site development proposal once detailed plans are developed. No detailed slope stability analysis was completed for this preliminary study, and none is warranted, in our opinion.

6.0 SEISMIC HAZARDS AND MITIGATIONS

The City of Lynnwood critical areas code does not include a definition for seismic hazard areas. Seismic design procedures consistent with the 2012 *International Building Code* (IBC) are expected to be used for this project. The following discussion is a general assessment of seismic hazards that is intended to be useful to the District in terms of understanding seismic issues, and to the structural engineer for final structural design.

Earthquakes occur regularly in the Puget Lowland. The majority of these events are small and are usually not felt by people. However, large earthquakes do occur, as evidenced by the 1949, 7.2-magnitude event; the 2001, 6.8-magnitude event; and the 1965, 6.5-magnitude event. The 1949 earthquake appears to have been the largest in this region during recorded history and was centered in the Olympia area. Evaluation of earthquake return rates indicates that an earthquake of the magnitude between 5.5 and 6.0 is likely within a given 20-year period.

Generally, there are four types of potential geologic hazards associated with large seismic events: 1) surficial ground rupture, 2) seismically induced landslides, 3) liquefaction, and

4) ground motion. The potential for each of these hazards to adversely impact the proposed project is discussed below.

6.1 Surficial Ground Rupture

Generally, the largest earthquakes that have occurred in the Puget Sound area are sub-crustal events with epicenters ranging from 50 to 70 kilometers in depth. Earthquakes that are generated at such depths usually do not result in fault rupture at the ground surface. Current research indicates that surficial ground rupture is possible in areas close to the South Whidbey Island Fault Zone. Although our current understanding of this fault zone is limited and is an active area of research, the site appears to lie within the currently understood limits of the fault zone and therefore surface rupture due to a seismic event in the future cannot be ruled out. Because the project will include renovations and additions to an existing school, and because it is difficult to quantify surface rupture risks and difficult to mitigate such risks if they do exist, our analysis did not include a detailed analysis of the potential for surface rupture due to a seismic event. We are available to discuss the issue of surface rupture risk and possible responses on request.

6.2 Seismically Induced Landslides

It is our opinion that the potential risk of damage to the proposed development by seismically induced slope failures is low due to the lack of substantial slopes and the prevalence of relatively competent, glacially consolidated soils.

6.3 Liquefaction

Liquefaction is a process through which unconsolidated soil loses strength as a result of vibrations, such as those which occur during a seismic event. During normal conditions, the weight of the soil is supported by both grain-to-grain contacts and by the fluid pressure within the pore spaces of the soil below the water table. Extreme vibratory shaking can disrupt the grain-to-grain contact, increase the pore pressure, and result in a temporary decrease in soil shear strength. The soil is said to be liquefied when nearly all of the weight of the soil is supported by pore pressure alone. Liquefaction can result in deformation of the sediment and settlement of overlying structures. Areas most susceptible to liquefaction include those areas underlain by non-cohesive silt and sand with low relative densities, accompanied by a shallow water table.

The subsurface conditions encountered at the site pose low risk of liquefaction due to the lack of observed shallow ground water, and the high density of the lodgement till. No detailed liquefaction analysis was completed as part of this study, and none is warranted, in our opinion.

6.4 Ground Motion

Structural design for the project should follow 2012 IBC standards. The 2012 IBC defines Site Classification by reference to Table 20.3.-1 of the *American Society of Civil Engineers* publication ASCE 7, the current version of which is ASCE 7-10. In our opinion, the subsurface conditions at the site are consistent with a Site Classification of "C" as defined in the referenced documents.

7.0 EROSION HAZARDS AND MITIGATIONS

The following discussion addresses Washington State Department of Ecology (Ecology) erosion control regulations that will be applicable to the project. We anticipate that if the project complies with State requirements, it will also be acceptable with respect to City of Lynnwood requirements.

As of October 1, 2008, Ecology Construction Storm Water General Permit (also known as the National Pollutant Discharge Elimination System [NPDES] permit) requires weekly Temporary Erosion and Sedimentation Control (TESC), turbidity and pH monitoring for all sites 1 or more acres in size that discharge storm water to surface waters of the state. If the project will disturb more than 1 acre, we anticipate that these inspection and reporting requirements will be triggered. The following recommendations are related to general erosion potential and mitigation.

The erosion potential of the site soils is high. Maintaining cover measures atop disturbed ground typically provides the greatest reduction to the potential generation of turbid runoff and sediment transport. During the local wet season (October 1st through March 31st), exposed soil should not remain uncovered for more than 2 days unless it is actively being worked. Ground-cover measures can include erosion control matting, plastic sheeting, straw mulch, crushed rock or recycled concrete, or mature hydroseed.

Project planning and construction should follow local standards of practice with respect to temporary erosion and sedimentation control. Best management practices (BMPs) should include but not be limited to:

- Provide storm drain inlet protection;
- Route surface water away from work areas;
- Keep staging areas and travel areas clean and free of track-out;
- Cover work areas and stockpiled soils when not in use;
- Complete earthwork during dry weather and site conditions, if possible.

III. PRELIMINARY DESIGN RECOMMENDATIONS

8.0 INTRODUCTION

Some portions of the site are underlain by a layer of surficial existing fill that is loose and variable. Existing fill is not suitable for support of new foundations and warrants remedial preparation where it occurs below paving and similar lightly loaded structures. Structural fill or native sediments are suitable for support of shallow foundations, floor slabs, and paving with proper preparation.

9.0 SITE PREPARATION

Existing structures, paving, buried utilities, vegetation, topsoil, and any other deleterious materials should be removed where they are located below planned construction areas. All disturbed soils resulting from demolition activities should be removed to expose underlying undisturbed native sediments and replaced with structural fill, as needed. All excavations below final grade made for demolition activities should be backfilled, as needed, with structural fill. Erosion and surface water control should be established around the clearing limits to satisfy local requirements.

Once demolition has been completed, existing fill should be addressed. The observed thickness of existing fill ranged up to approximately 3 feet. We recommend that existing fill below building areas be removed and replaced with Structural Fill. It is important to include remedial preparation of the existing fill in the bid documents in a way that encourages competitive pricing and reduces the potential for claims of unanticipated conditions. We are available to review project specification sections related to geotechnical issues if requested to do so.

Below planned on-site paving, existing fill should be exposed, proof-rolled, and compacted to 95 percent of the modified Proctor maximum dry density. If a firm and unyielding condition is achieved, no further remedial preparation would be needed. If yielding conditions are encountered, existing fill would be partially removed and replaced with imported structural fill. The depth of replacement of the existing fill below paving should be determined at the time of construction when field conditions are known.

9.1 Site Drainage and Surface Water Control

The site should be graded to prevent water from ponding in construction areas and/or flowing into excavations. Exposed grades should be crowned, sloped, and smooth drum-rolled at the end of each day to facilitate drainage. Accumulated water must be removed from subgrades and work areas immediately prior to performing further work in the area. Equipment access

may be limited, and the amount of soil rendered unfit for use as structural fill may be greatly increased, if drainage efforts are not accomplished in a timely sequence. If an effective drainage system is not utilized, project delays and increased costs could be incurred due to the greater quantities of wet and unsuitable fill, or poor access and unstable conditions.

We anticipate that perched ground water could be encountered in excavations completed during construction. We do not anticipate the need for extensive dewatering in advance of excavations. The contractor should be prepared to intercept any ground water seepage entering the excavations and route it to a suitable discharge location.

Final exterior grades should promote free and positive drainage away from the buildings at all times. Water must not be allowed to pond or to collect adjacent to foundations or within the immediate building area. We recommend that a gradient of at least 3 percent for a minimum distance of 10 feet from the building perimeters be provided, except in paved locations. In paved locations, a minimum gradient of 1 percent should be provided, unless provisions are included for collection and disposal of surface water adjacent to the structures.

9.2 Subgrade Protection

To the extent that it is possible, existing pavement should be used for construction staging areas. If building construction will proceed during the winter, we recommend the use of a working surface of sand and gravel, crushed rock, or quarry spalls to protect exposed soils, particularly in areas supporting concentrated equipment traffic. In winter construction staging areas and areas that will be subjected to repeated heavy loads, such as those that occur during construction of masonry walls, a minimum thickness of 12 inches of quarry spalls or 18 inches of pit run sand and gravel is recommended. If subgrade conditions are soft and silty, a geotextile separation fabric, such as Mirafi 500X or approved equivalent, should be used between the subgrade and the new fill. For building pads where floor slabs and foundation construction will be completed in the winter, a similar working surface should be used, composed of at least 6 inches of pit run sand and gravel or crushed rock. Construction of working surfaces from advancing fill pads could be used to avoid directly exposing the subgrade soils to vehicular traffic.

Foundation subgrades may require protection from foot and equipment traffic and ponding of runoff during wet weather conditions. Typically, compacted crushed rock or a lean-mix concrete mat placed over a properly prepared subgrade provides adequate subgrade protection. Foundation concrete should be placed and excavations backfilled as soon as possible to protect the bearing surface.

9.3 Proof-Rolling and Subgrade Compaction

Following the recommended demolition, site stripping, existing fill removal, and planned excavation, the stripped subgrade within the building and paving areas should be proof-rolled with heavy, rubber-tired construction equipment, such as a fully loaded tandem-axle dump truck. Proof-rolling should be performed prior to structural fill placement or foundation excavation. The proof-roll should be monitored by the geotechnical engineer so that any soft or yielding subgrade soils can be identified. Any soft/loose, yielding soils should be removed to a stable subgrade. The subgrade should then be scarified, adjusted in moisture content, and recompacted to the required density. Proof-rolling should only be attempted if soil moisture contents are at or near optimum moisture content. Proof-rolling of wet subgrades could result in further degradation. Low areas and excavations may then be raised to the planned finished grade with compacted structural fill. Subgrade preparation and selection, placement, and compaction of structural fill should be performed under engineering-controlled conditions in accordance with the project specifications.

9.4 Overexcavation/Stabilization

Construction during extended wet weather periods could create the need to overexcavate exposed soils if they become disturbed and cannot be recompacted due to elevated moisture content and/or weather conditions. Even during dry weather periods, soft/wet soils, which may need to be overexcavated, may be encountered in some portions of the site. If overexcavation is necessary, it should be confirmed through continuous observation and testing by Associated Earth Sciences, Inc. (AESI). Soils that have become unstable may require remedial measures in the form of one or more of the following:

- 1. Drying and recompaction. Selective drying may be accomplished by scarifying or windrowing surficial material during extended periods of dry and warm weather.
- 2. Removal of affected soils to expose a suitable bearing subgrade and replacement with compacted structural fill.
- 3. Mechanical stabilization with a coarse crushed aggregate compacted into the subgrade, possibly in conjunction with a geotextile.
- 4. Soil/cement admixture stabilization.

9.5 Wet Weather Conditions

If construction proceeds during an extended wet weather construction period and the moisture-sensitive site soils become wet, they will become unstable. Therefore, the bids for site grading operations should be based upon the time of year that construction will proceed. It is expected that in wet conditions additional soils may need to be removed and/or other

stabilization methods used, such as a coarse crushed rock working mat, to develop a stable condition if silty subgrade soils are disturbed in the presence of excess moisture. The severity of construction disturbance will be dependent, in part, on the precautions that are taken by the contractor to protect the moisture- and disturbance-sensitive site soils. If overexcavation is necessary, it should be confirmed through continuous observation and testing by a representative of our firm.

9.6 Temporary and Permanent Cut Slopes

In our opinion, stable construction slopes should be the responsibility of the contractor and should be determined during construction. For estimating purposes, however, we anticipate that temporary, unsupported cut slopes in the existing fill can be made at a maximum slope of 1.5H:1V or flatter. Temporary slopes in unsaturated lodgement till sediments may be planned at 1H:1V. As is typical with earthwork operations, some sloughing and raveling may occur, and cut slopes may have to be adjusted in the field. If ground water seepage is encountered in cut slopes, or if surface water is not routed away from temporary cut slope faces, flatter slopes will be required. In addition, WISHA/OSHA regulations should be followed at all times. Permanent cut and structural fill slopes that are not intended to be exposed to surface water should be designed at inclinations of 2H:1V or flatter. All permanent cut or fill slopes should be compacted to at least 95 percent of the modified Proctor maximum dry density, as determined by ASTM:D 1557, and the slopes should be protected from erosion by sheet plastic until vegetation cover can be established during favorable weather.

9.7 Frozen Subgrades

If earthwork takes place during freezing conditions, all exposed subgrades should be allowed to thaw and then be recompacted prior to placing subsequent lifts of structural fill or foundation components. Alternatively, the frozen material could be stripped from the subgrade to reveal unfrozen soil prior to placing subsequent lifts of fill or foundation components. The frozen soil should not be reused as structural fill until allowed to thaw and adjusted to the proper moisture content, which may not be possible during winter months.

10.0 STRUCTURAL FILL

All references to structural fill in this report refer to subgrade preparation, fill type and placement, and compaction of materials, as discussed in this section. If a percentage of compaction is specified under another section of this report, the value given in that section should be used.

After stripping, planned excavation, and any required overexcavation have been performed to the satisfaction of the geotechnical engineer, the upper 12 inches of exposed ground in areas to receive fill should be recompacted to 90 percent of the modified Proctor maximum density using ASTM:D 1557 as the standard. If the subgrade contains silty soils and too much moisture, adequate recompaction may be difficult or impossible to obtain and should probably not be attempted. In lieu of recompaction, the area to receive fill should be blanketed with washed rock or quarry spalls to act as a capillary break between the new fill and the wet subgrade. Where the exposed ground remains soft and further overexcavation is impractical, placement of an engineering stabilization fabric may be necessary to prevent contamination of the free-draining layer by silt migration from below.

After recompaction of the exposed ground is tested and approved, or a free-draining rock course is laid, structural fill may be placed to attain desired grades. Structural fill is defined as non-organic soil, acceptable to the geotechnical engineer, placed in maximum 8-inch loose lifts, with each lift being compacted to 95 percent of the modified Proctor maximum density using ASTM:D 1557 as the standard. Use of soils from the site in structural fill applications is acceptable if the material meets the project specifications for the intended use, and if specifically allowed by project specifications. In the case of roadway and utility trench filling, structural fill should be placed and compacted in accordance with current City of Lynnwood codes and standards. The top of the compacted fill should extend horizontally outward a minimum distance of 3 feet beyond the locations of the roadway edges before sloping down at an angle of 2H:1V.

The contractor should note that any proposed fill soils must be evaluated by AESI prior to their use in fills. This would require that we have a sample of the material 72 hours in advance to perform a Proctor test and determine its field compaction standard. Soils in which the amount of fine-grained material (smaller than the No. 200 sieve) is greater than approximately 5 percent (measured on the minus No. 4 sieve size) should be considered moisture-sensitive. Use of moisture-sensitive soil in structural fills should be limited to favorable dry weather conditions, and is only permitted if specifically allowed by project plans and specifications. The native and existing fill soils present on-site contained significant amounts of silt and are considered highly moisture-sensitive. Existing fill can contain construction/demolition materials and/or significant organic content in which case they are not suitable for reuse in structural fill applications. If fill is placed during wet weather or if proper compaction cannot be obtained, a select import material consisting of a clean, free-draining gravel and/or sand should be used. Free-draining fill consists of non-organic soil with the amount of fine-grained material limited to 5 percent by weight when measured on the minus No. 4 sieve fraction with at least 25 percent retained on the No. 4 sieve.

A representative from our firm should inspect the stripped subgrade and be present during placement of structural fill to observe the work and perform a representative number of in-place density tests. In this way, the adequacy of the earthwork may be evaluated as filling

progresses, and any problem areas may be corrected at that time. It is important to understand that taking random compaction tests on a part-time basis will not assure uniformity or acceptable performance of a fill. As such, we are available to aid the District in developing a suitable monitoring and testing program.

11.0 FOUNDATIONS

Spread footings may be used for building support when founded directly on undisturbed lodgement till, or on structural fill placed above suitable native deposits, as previously discussed. If foundations will be underlain by a combination of very dense native sediments and new structural fill, we recommend that an allowable bearing pressure of 3,500 pounds per square foot (psf) be used for design purposes, including both dead and live loads. Higher foundation soil bearing pressures are possible for foundations supported entirely on undisturbed lodgement till, however we do not expect that higher bearing pressures will be needed. If higher foundation soil bearing pressures are needed, we should be allowed to offer situation-specific recommendations.

Perimeter footings should be buried at least 18 inches into the surrounding soil for frost protection. However, all footings must penetrate to the prescribed bearing stratum, and no footing should be founded in or above organic or loose soils. All footings should have a minimum width of 18 inches.

It should be noted that the area bound by lines extending downward at 1H:1V from any footing must not intersect another footing or intersect a filled area that has not been compacted to at least 95 percent of ASTM:D 1557. In addition, a 1.5H:1V line extending down from any footing must not daylight because sloughing or raveling may eventually undermine the footing. Thus, footings should not be placed near the edge of steps or cuts in the bearing soils.

Anticipated settlement of footings founded as described above should be on the order of ³/₄ inch or less. However, disturbed soil not removed from footing excavations prior to footing placement could result in increased settlements. All footing areas should be inspected by AESI prior to placing concrete to verify that the design bearing capacity of the soils has been attained and that construction conforms to the recommendations contained in this report. Such inspections may be required by the governing municipality. Perimeter footing drains should be provided, as discussed under the "Drainage Considerations" section of this report.

11.1 Drainage Considerations

Foundations should be provided with foundation drains. Drains should consist of rigid, perforated, polyvinyl chloride (PVC) pipe surrounded by washed pea gravel. The drains should be constructed with sufficient gradient to allow gravity discharge away from the proposed

buildings. Roof and surface runoff should not discharge into the footing drain system, but should be handled by a separate, rigid, tightline drain. In planning, exterior grades adjacent to walls should be sloped downward away from the proposed structures to achieve surface drainage.

12.0 FLOOR SUPPORT

Floor slabs can be supported on suitable native sediments, or on structural fill placed above suitable native sediments. Floor slabs should be cast atop a minimum of 4 inches of clean, washed, crushed rock or pea gravel to act as a capillary break. Areas of subgrade that are disturbed (loosened) during construction should be compacted to a non-yielding condition prior to placement of capillary break material. Floor slabs should also be protected from dampness by an impervious moisture barrier at least 10 mils thick. The moisture barrier should be placed between the capillary break material and the concrete slab.

13.0 FOUNDATION WALLS

All backfill behind foundation walls or around foundation units should be placed as per our recommendations for structural fill and as described in this section of the report. Horizontally backfilled walls, which are free to yield laterally at least 0.1 percent of their height, may be designed to resist active lateral earth pressure represented by an equivalent fluid equal to 35 pounds per cubic foot (pcf). Fully restrained, horizontally backfilled, rigid walls that cannot yield should be designed for an at-rest equivalent fluid of 50 pcf. Walls with sloping backfill up to a maximum gradient of 2H:1V should be designed using an equivalent fluid of 55 pcf for yielding conditions or 75 pcf for fully restrained conditions. If parking areas are adjacent to walls, a surcharge equivalent to 2 feet of soil should be added to the wall height in determining lateral design forces.

As required by the 2012 IBC, retaining wall design should include a seismic surcharge pressure in addition to the equivalent fluid pressures presented above. Considering the site soils and the recommended wall backfill materials, we recommend a seismic surcharge pressure of 5H and 10H psf, where H is the wall height in feet, for the "active" and "at-rest" loading conditions, respectively. The seismic surcharge should be modeled as a rectangular distribution with the resultant applied at the midpoint of the walls.

The lateral pressures presented above are based on the conditions of a uniform backfill consisting of excavated on-site soils, or imported structural fill compacted to 90 percent of ASTM:D 1557. A higher degree of compaction is not recommended, as this will increase the pressure acting on the walls. A lower compaction may result in settlement of the slab-on-grade or other structures supported above the walls. Thus, the compaction level is critical and must

be tested by our firm during placement. Surcharges from adjacent footings or heavy construction equipment must be added to the above values. Perimeter footing drains should be provided for all retaining walls, as discussed under the "Drainage Considerations" section of this report.

It is imperative that proper drainage be provided so that hydrostatic pressures do not develop against the walls. This would involve installation of a minimum, 1-foot-wide blanket drain to within 1 foot of finish grade for the full wall height using imported, washed gravel against the walls.

13.1 Passive Resistance and Friction Factors

Lateral loads can be resisted by friction between the foundation and the natural glacial soils or supporting structural fill soils, and by passive earth pressure acting on the buried portions of the foundations. The foundations must be backfilled with structural fill and compacted to at least 95 percent of the maximum dry density to achieve the passive resistance provided below. We recommend the following allowable design parameters:

- Passive equivalent fluid = 250 pcf
- Coefficient of friction = 0.30

14.0 PAVEMENT RECOMMENDATIONS

Pavement areas should be prepared in accordance with the "Site Preparation" section of this report. If the stripped native soil or existing fill pavement subgrade can be compacted to 95 percent of ASTM:D 1557 and is firm and unyielding, no additional overexcavation is required. Soft or yielding areas should be overexcavated to provide a suitable subgrade and backfilled with structural fill.

The pavement sections included in this report section are for driveway and parking areas on-site, and are not applicable to right-of-way improvements. We understand that right-of-way paving will be limited to small patches and miscellaneous work that does not require a detailed pavement thickness analysis.

Pavement subgrades underlain by existing fill should be prepared in accordance with the "Site Preparation" section of this report. The exposed ground should be recompacted to 95 percent of ASTM:D 1557. If required, structural fill may then be placed to achieve desired subbase grades. Upon completion of the recompaction and structural fill, a pavement section consisting of 2½ inches of asphaltic concrete pavement (ACP) underlain by 4 inches of 1¼-inch Crushed Surfacing Base Course is the recommended minimum in areas of planned passenger car driving and parking. In heavy traffic areas, a minimum pavement section consisting of 3 inches of ACP

underlain by 2 inches of $\frac{5}{8}$ -inch crushed surfacing top course and 4 inches of 1⁴-inch Crushed Surfacing Base Course is recommended. The crushed rock courses must be compacted to 95 percent of the maximum density, as determined by ASTM:D 1557. All paving materials should meet gradation criteria contained in the current Washington State Department of Transportation (WSDOT) Standard Specifications.

Depending on construction staging and desired performance, the Crushed Surfacing Base Course material may be substituted with asphalt treated base (ATB) beneath the final asphalt surfacing. The substitution of ATB should be as follows: 4 inches of crushed rock can be substituted with 3 inches of ATB, and 6 inches of crushed rock may be substituted with 4 inches of ATB. ATB should be placed over a native or structural fill subgrade compacted to a minimum of 95 percent relative density, and a 1½- to 2-inch thickness of crushed rock to act as a working surface. If ATB is used for construction access and staging areas, some rutting and disturbance of the ATB surface should be expected. The general contractor should remove affected areas and replace them with properly compacted ATB prior to final surfacing.

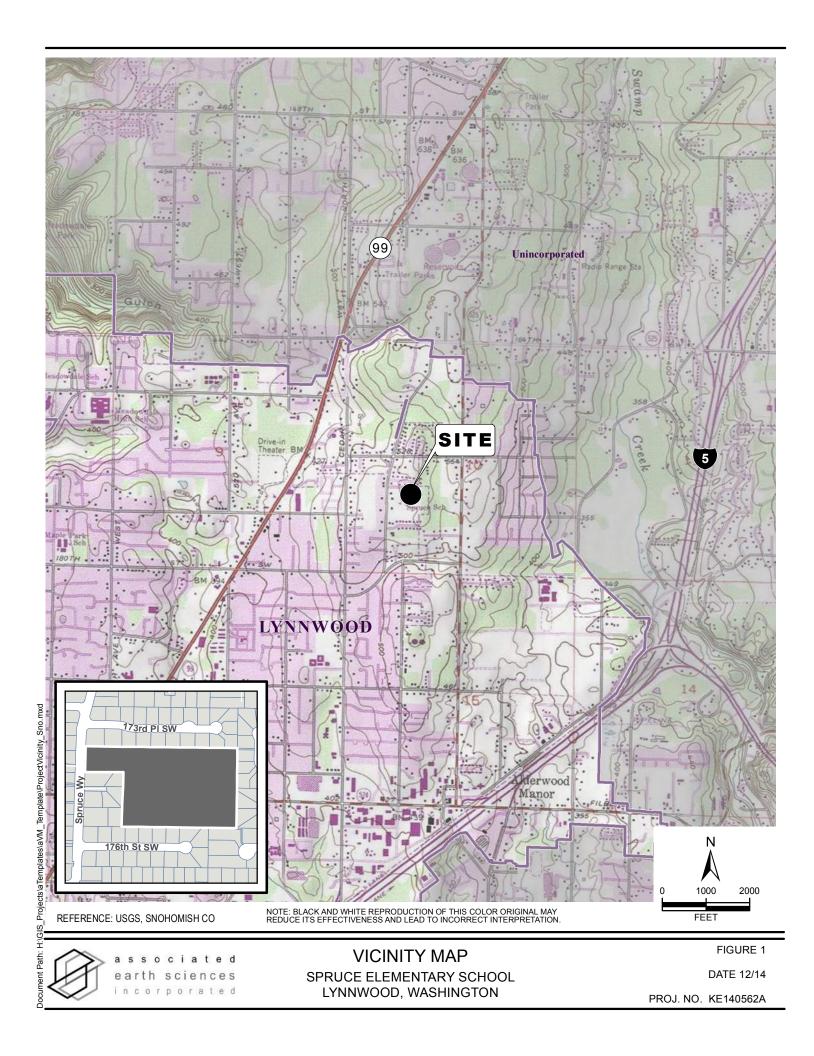
15.0 PROJECT DESIGN AND CONSTRUCTION MONITORING

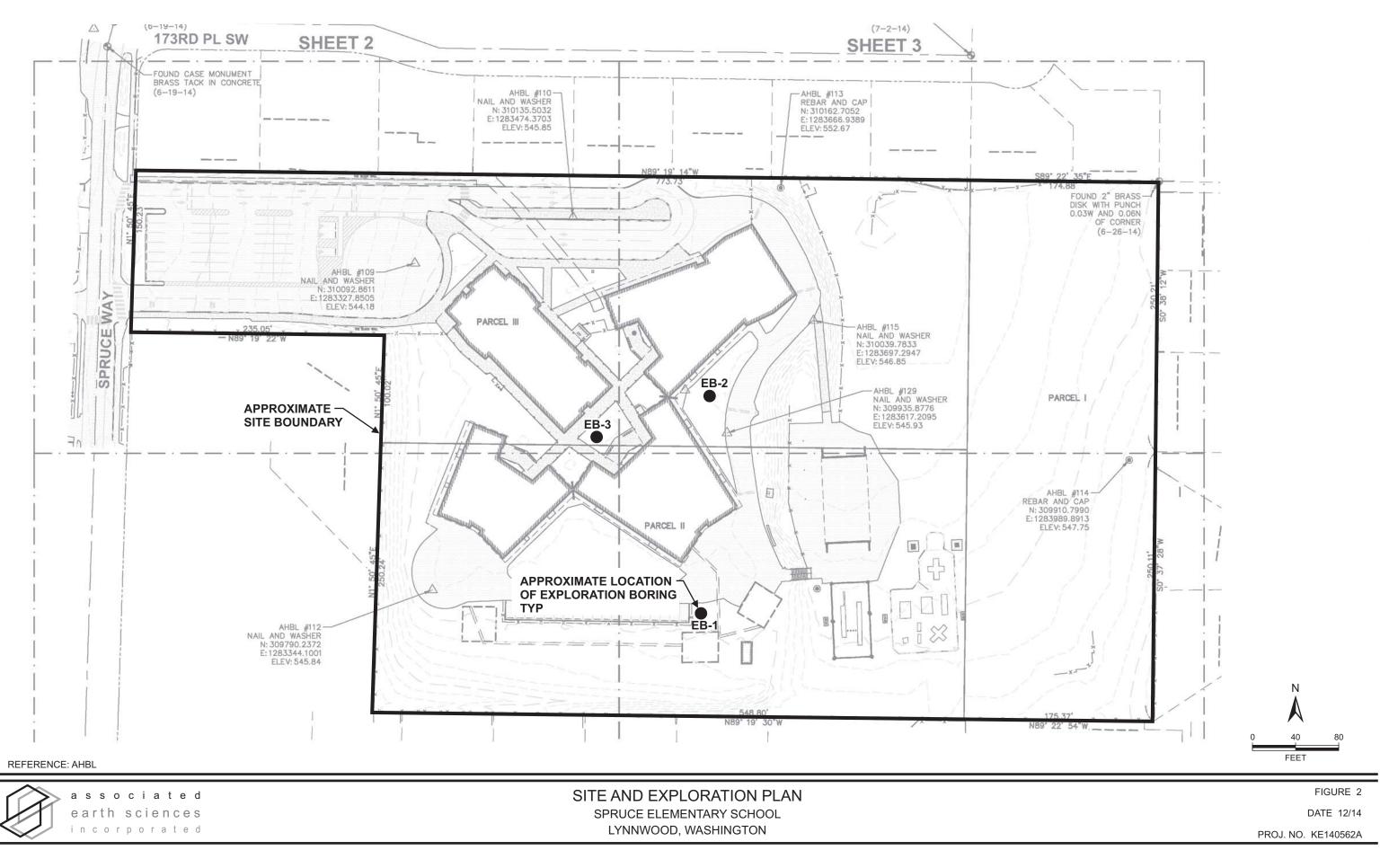
Our report is preliminary since project plans had not been developed at the time this report was written. We recommend that AESI perform a geotechnical review of the plans prior to final design completion. In this way, we can confirm that our earthwork and foundation recommendations have been properly interpreted and implemented in the design.

We are also available to provide geotechnical engineering services during construction. The integrity of the foundation system depends on proper site preparation and construction procedures. In addition, engineering decisions may have to be made in the field in the event that variations in subsurface conditions become apparent. Construction monitoring services are not part of this current scope of work. If these services are desired, please let us know, and we will prepare a cost proposal.

We have enjoyed working with you on this study and are confident that these recommendations will aid in the successful completion of your project. If you should have any questions or require further assistance, please do not hesitate to call.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington


Bruce W. Guenzler, L.E.G. Senior Project Geologist



Kurt D. Merriman, P.E. Senior Principal Engineer

Attachments:

Figure 1: Vicinity MapFigure 2: Site and Exploration PlanAppendix: Exploration LogsLaboratory Testing Results

140562 Lynnwood Elementary School \ 140562 Site and Exploration Plar

APPENDIX

	16	es ⁽⁵⁾	GW	Well-graded gravel and gravel with sand, little to	Terms Describing Relative Density and Consistency Density SPT ⁽²⁾ blows/foot
200 Sieve	- More than 50% ⁽¹⁾ of Coarse I Retained on No. 4 Sieve	≤5% Fines	GP	no fines Poorly-graded gravel and gravel with sand, little to no fines	Coarse- Grained SoilsVery Loose0 to 4 Loose4 to 10 Medium Dense10 to 30 DenseTest SymbolsDense30 to 50 Very DenseG = Grain Size M = Mojsture Content
Coarse-Grained Soils - More than 50% ⁽¹⁾ Retained on No. 200 Sieve		6 Fines ⁽⁵⁾	GM	Silty gravel and silty gravel with sand	Consistency $SPT^{(2)}$ blows/footA = Atterberg LimitsFine- Grained SoilsSoft2 to 4DD = Dry DensityMedium Stiff4 to 8K = PermeabilityStiff8 to 155
)% ⁽¹⁾ Re	Gravels - I		GC	Clayey gravel and clayey gravel with sand	Very Stiff 15 to 30 Hard >30
More than 50	Fraction	Fines ⁽⁵⁾	Well-graded sand and SW sand with gravel, little to no fines		Descriptive Term Size Range and Sieve Number Boulders Larger than 12" Cobbles 3" to 12"
ained Soils -	ore of Coarse o. 4 Sieve	S5% F	SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel 3" to No. 4 (4.75 mm) Coarse Gravel 3" to 3/4" Fine Gravel 3/4" to No. 4 (4.75 mm) Sand No. 4 (4.75 mm) to No. 200 (0.075 mm) Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm)
Coarse-Gr	50% ⁽¹⁾ or More Passes No.	Fines ⁽⁵⁾	SM	Silty sand and silty sand with gravel	Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand No. 40 (0.425 mm) to No. 200 (0.075 mm) Silt and Clay Smaller than No. 200 (0.075 mm)
	Sands - 5	≥12%	SC	Clayey sand and clayey sand with gravel	(3) Estimated Percentage Moisture Content Component Percentage by Weight Dry - Absence of moisture, dusty, dry to the touch Trace <5
Sieve	s Sun 50		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	Nace Sightly Moist - Perceptible Some 5 to <12
Passes No. 200 Sieve	Silts and Clays		CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	(silty, sandy, gravelly) Very Moist - Water visible but not free draining Very modifier 30 to <50
e	Sill Sill Iourid I		OL	Organic clay or silt of low plasticity	Symbols Blows/6" or Sampler portion of 6" Type /
ls - 50% ⁽¹⁾ ol	ys - More		МН	Elastic silt, clayey silt, silt with micaceous or diatomaceous fine sand or silt	2.0" OD Split-Spoon Sampler (SPT) Som OD Split-Spoon Sampler (SPT) Som OD Split-Spoon Sampler Sampler
Fine-Grained Soils - 50% ⁽¹⁾ or Mo	Silts and Clays		СН	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	(SP1) 3.25" OD Split-Spoon Ring Sampler (a) blank casing Bulk sample 3.0" OD Thin-Wall Tube Sampler Screened casing Grab Sample (including Shelby tube) Screened casing
Fine			он	Organic clay or silt of medium to high plasticity	O Portion not recovered (1) Percentage by dry weight (2) (SPT) Standard Penetration Test (4) Depth of ground water (4) Depth of ground water (4) Depth of ground water (2) (SPT) Standard Penetration Test
Highly	Organic Soils		РТ	Peat, muck and other highly organic soils	 (ASTM D-1586) ⁽³⁾ In General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488) ⁽⁵⁾ Combined USCS symbols used for fines between 5% and 12%

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

EXPLORATION LOG KEY

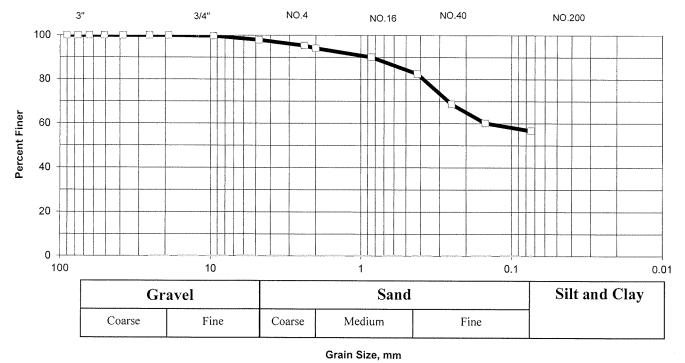
FIGURE A1

earth sciences incorporated

associated

	$\overline{2}$	1 4		ciated		Exploration Exploration Nut	n Log				
🐇				sciences porated	Project Number KE140562A	Exploration Nu EB-1	mber			Sheet 1 of 1	
Projec Locatio Driller/ Hamm	on /Eq	uipme	nt nt/Drop	Spruce Elem Lynnwood, W Geologic Drill 140# / 30"	/Α		Ground Datum Date Sta Hole Dia	nt/Finis	sh <u>12/2</u>	3L July 2 22/14,12/	45 2014 /22/14
Depth (ft)	ST	Samples	Graphic Symbol				Well Completion Water Level	Blows/6"	Blow	s/Foot	Other Tests
			12. <u>st 12</u>		DESCRIPTION Grass / Topsoil				10 20	30 40	
			11 . 511		Glass / Topson						
					Lodgement Till						
		S-1		Very dense, very nonstratified (SM	moist, gray, silty fine gravelly fin).	e to coarse SAND;		15 25 50/5"			▲ 50/5"
- 5		S-2		Gradation as abo	ove.			17 39 50/5"			◆50/5"
10		S-3		Gradation as abo	ove.			30 50/3"			5 0/3"
14U002. GFJ Uecember 20, 2014				Bottom of exploratic Ground water not er	on boring at 11 feet ncountered.						
Ъ .	iam	2" OI 3" OI		Spoon Sampler (S I Spoon Sampler (D	& M) Ring Sample	M - Moisture ♀ Water Level () • ♥ Water Level at time o	of drilling ((ATD)		.ogged by: Approved b	

	\geq	> a		ciated		Exploratio	n Log		
$ \langle \langle \rangle$	2			sciences rporaled	Project Number KE140562A	Exploration Nu EB-2	mber	Sheet 1 of 1	
Projec Locatio		ame		Spruce Elem			Ground Surf	ace Elevation (ft) _54 AHBL_July 2	46
Driller/ Hamm	Eqι	uipmei Meigh	nt t/Drop	Lynnwood, W Geologic Drill 140# / 30"	- HSA SPT		Date Start/Fi Hole Diameter	nish <u>12/22/14,12</u>	/22/14
		Veign		_140#7.30					
Depth (ft)	S	Samples	Graphic Symbol				Well Completion Water Level Blows/6"	Blows/Foot	Other Tests
	1	S			DESCRIPTION		ŏ≥≞	10 20 30 40	, ō
			$\frac{\sqrt{L_2}}{L_2} = \frac{\sqrt{L_2}}{\sqrt{L_2}}$		Grass / Topsoil				
					Lodgement Till				
-									
		-		Verv dense verv i	noist, gray, silty fine gravelly fine	e to coarse SAND			
-		S-1		nonstratified (SM)		, to obtailed 0, 112,	19 41		▲ 50/4''
		0-1					41 50/4"		-50/4
-									
- 5	F	-		Gradation as abov	/e.				
		S-2					29 36 37		▲ 73
-							30		75
	-	-							
-									
F									
- 10									
				Gradation as abo	/e.		27		
		S-3					27 40 50/4"		▲ 50/4"
		_							
				Bottom of exploration Ground water not en	n boring at 11.5 feet countered.				
-									
, 2014									
nber 26									
140562.GPJ_December 26, 2014									
S S	amı		/pe (S					 	
				Spoon Sampler (SP Spoon Sampler (D &		M - Moisture $\overline{\mathcal{V}}$ Water Level ()		Logged by: Approved b	
	0.04		Samp		Shelby Tube Sample	 Water Level () Water Level at time 	of drilling (ATE		-


Į	Ì	T e	arth	sciences poraled	Project Number KE140562A	Exploration Exploration Nu EB-3	n Log ^{mber}		Sheet 1 of 1	
Projec Locati Drillen Hamm	on /Equ	ipme	nt t/Drop	Spruce Elem Lynnwood, W/ Geologic Drill - 140# / 30"	A HSA SPT		Ground Su Datum Date Start/I Hole Diame	Finish 12	on (ft) <u>544</u> HBL July 20 2/22/14,12/2 inches	014
Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION		VVell Completion Water Level Blows/6"		ws/Foot	Other Tests
			<u>718</u> .71		Grass / Topsoil			10 2	0 30 40	
			<u>1/ 1/</u>							
-				Loose, very moist,	Fill gray, silty SAND (SM).					
-				Hand dug to 2 1/2	feet.					
-		S-1		Very dense, very n nonstratified (SM).	Lodgement Till noist, gray, silty fine gravelly fir	ne to coarse SAND;		11		▲ 50/5"
- 5		S-2		Gradation as abov	e.		18 35 50/5	at .		▲ 50/5"
- 10		S-3		Gradation general sand, trace silt.	y as above, but with a thin sea	ım (~ 1/2 inch) of fine	20 38 45	3		▲83
sommer zo, zuit				Bottom of exploration Ground water not end	boring at 11.5 feet countered.					
0K 14056		2" OI 3" OI		Spoon Sampler (SP Spoon Sampler (D 8	M) Ring Sample	M - Moisture ☑ Water Level () e ⊻ Water Level at time (of drilling (AT)	Logged by: Approved by	BWG :

GRAIN SIZE ANALYSIS - MECHANICAL

Date Sampled Project			Project No.		Soil Description	
12/22/2014 Spruce Elementary			KE140562A		Sandy silt trace gravel	
Tested By Location			EB/EP No Depth		Intended Use / Specification	
MS Onsite			EB-3	5'		
Wt. of moisture v	wet sample + Tare	331.5	Total Sample Tare		467.72	
Wt. of moisture of	dry Sample + Tare	309.94	Total Sample wt + tare		1137.57	
Wt. of Tare		100	Total Sample Wt		669.9	
Wt. of moisture I	Dry Sample	209.94	Total Sample	Dry Wt	607.5	
Moisture %		10%				

					Specification Requirements		
Sieve No.	Diam. (mm)	Wt. Retained (g)	% Retained	% Passing	Minimum	Maximum	
3.5	90		-	100.00	-	-	
3	76.1		-	100.00	-	-	
2.5	64		-	100.00		-	
2	50.8		-	100.00	-	-	
1.5	38.1		-	100.00	-	-	
1	25.4		-	100.00			
3/4	19		-	100.00			
3/8	9.51	1.64	0.27	99.73			
#4	4.76	12.66	2.08	97.92			
#8	2.38	28.22	4.65	95.35			
#10	2	35.84	5.90	94.10			
#20	0.85	59.99	9.88	90.12			
#40	0.42	106.07	17.46	82.54			
#60	0.25	189.97	31.27	68.73			
#100	0.149	242.13	39.86	60.14			
#200	0.074	263.19	43.33	56.67			

ASSOCIATED EARTH SCIENCES, INC.

911 5th Ave., Suite 100 Kirkland, WA 98033 425-827-7701 FAX 425-827-5424

December 4, 2019 Project No. 20140562E002

Edmonds School District No. 15 20420 68th Avenue West Lynnwood, Washington 98124

Attention: Ms. Taine Wilton

- Subject: Geotechnical Report Addendum Spruce Elementary School 17405 Spruce Way Lynnwood, Washington
- References: "Subsurface Exploration, and Geotechnical Engineering Report, New Spruce Elementary School," prepared by Associated Earth Sciences, Inc. (AESI), dated April 18, 2017 (Project No. KE140562A).

Dear Ms. Wilton:

This letter-report addendum presents the results of supplemental subsurface exploration and analysis completed for the Spruce Elementary School Campus located at 17405 Spruce Way in Lynnwood, Washington. This addendum was prepared to provide supplemental recommendations for design and construction of the Spruce Elementary School Project -Phase 2. Specific items addressed in this addendum include subsurface conditions in our recent explorations, recommendations for drainage mitigation of existing pavement, and recommendations for stormwater pond construction. The subsurface data provided in this addendum supplements exploration data previously presented in our referenced geotechnical report. This addendum was prepared for the exclusive use of the Edmonds School District, and their authorized agents, for specific application to this project. No other warranty, express or implied, is made.

INTRODUCTION

Phase 1 of the new Spruce Elementary School Project began construction in the summer of 2018. Phase 1 construction was focused on the east half of the project site and included the new school building and surrounding improvements. AESI provided observation and testing services during Phase 1 construction of the new Spruce Elementary School from July 18, 2018 to April 10, 2019. Phase 2 construction will be focused mainly on the west half of the project site and will include new stormwater ponds, utilities, paved drive lanes and parking areas, and sidewalks. The site location is shown on Figure 1, "Vicinity Map." The approximate locations of the explorations completed for this study, as well as previous explorations completed are shown on the "Existing Site and Exploration Plan," Figure 2.

The Edmonds School District has recently acquired two adjacent residential lots which make up the southwest portion of the project site, see Figure 2. The larger residential lot currently consists of a single-family residence, detached garage, accessory dwelling unit, gravel driveway, and utilities. The smaller lot consists of maintained grass area and other landscaping. We understand that a new paved entrance and stormwater pond will be located in the vicinity of these recently acquired lots.

SUBSURFACE CONDITIONS

Exploration Borings

Four exploration borings (EB-11 through EB-14) were completed for this study with a track-mounted hollow-stem auger drill rig on April 2, 2019. The explorations were completed in locations requested by the design team. During the drilling process, samples were obtained at generally 2.5- to 5-foot-depth intervals. The exploration borings were continuously observed and logged by a representative from our firm. The exploration logs presented in Appendix A are based on the field logs, drilling action, and inspection of the samples secured.

Disturbed but representative samples were obtained by using the Standard Penetration Test (SPT) procedure in accordance with *American Society for Testing and Materials* (ASTM) D-1586. This test and sampling method consists of driving a standard, 2-inch outside-diameter, split-barrel sampler a distance of 18 inches into the soil with a 140-pound hammer free-falling a distance of 30 inches. The number of blows for each 6-inch interval is recorded, and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance ("N") or blow count. If a total of 50 is recorded within one 6-inch interval, the blow count is recorded as the number of blows for the corresponding number of inches of penetration. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils; these values are plotted on the attached exploration boring logs.

The samples obtained from the split-barrel sampler were classified in the field and representative portions placed in watertight containers. The samples were then transported to our laboratory for further visual classification and laboratory testing.

Exploration Pits

Three exploration pits (EP-1 through EP-3) were completed on the residential lots recently acquired by the Edmonds School District on November 7, 2019. The pits permitted direct, visual observation of subsurface conditions. Materials encountered in the pits were studied and classified in the field by a geologist from AESI. After logging the exposed soils, the exploration pits were backfilled with the excavated soil and lightly tamped with the excavator bucket. The various types of materials and sediments encountered in the explorations, as well as the depths where characteristics of these materials changed, are indicated on the exploration logs included in Appendix A. The depths indicated on the logs where conditions changed may represent gradational variations between sediment types in the field.

Stratigraphy

Our explorations generally encountered native lodgement till near the surface or overlain by existing fill soils. The explorations completed for this study were generally consistent with previously completed explorations at the site as well as our observations during construction of Phase 1. The following section presents more detailed subsurface information organized from the shallowest (youngest) to the deepest (oldest) sediment types. Copies of the exploration logs are included in Appendix A.

<u>Topsoil</u>

Exploration borings EB-11 and EB-12 encountered 4 inches and 3 inches of sod and topsoil at the surface, respectively. The exploration pits EP-1 through EP-3 encountered approximately 12 inches of sod and topsoil. Observed topsoil thickness are shown on the attached subsurface exploration logs. Due to their high organic content, these materials are not considered suitable for pavement support, or support of other hardscapes.

<u>Asphalt</u>

Explorations EB-13 and EB-14 encountered 3 inches and 4 inches of asphalt at the surface, respectively. In EB-13, the asphalt was directly over existing fill soils and in EB-14, the asphalt was underlain by 4 inches of a gravel base.

<u>Fill</u>

Fill soils were encountered directly below the ground surface in explorations EB-11 through EB-14. The fill generally consisted of loose to medium dense, silty, sand with trace to some gravel, and contained scattered organic debris in areas. The fill extended to depths ranging from 4.5 to 8 feet below the surface.

Vashon Lodgement Till

Underlying the fill or encountered near the surface in the explorations completed for this study, we encountered sediments generally consisting of unsorted, dense, silty sand with gravel. We interpret these sediments to be representative of Vashon lodgement till. The Vashon lodgement till was deposited directly from basal, debris-laden, glacial ice during Vashon time. The high relative density characteristic of the Vashon lodgement till is due to its consolidation by the massive weight of the glacial ice from which it was deposited. Where encountered, the lodgement till extended beyond the maximum depths explored of approximately 10 to 21.5 feet.

Geologic Map Review

Review of the regional geologic map titled, *Geologic Map of the Edmonds East and Part of the Edmonds West Quadrangles, Washington,* U.S. Geological Survey (USGS), Miscellaneous Field Studies Map MF-1541, by J.P. Minard (1983) indicates that the subject site is underlain by Vashon lodgement till. Our interpretation of the sediments encountered in our explorations is in general agreement with the geologic map. The explorations completed for this study encountered Vashon lodgement till underlying existing fill soils.

Groundwater

Groundwater seepage was not encountered in any of the explorations completed for this study. Groundwater is expected to occur seasonally at this site "perched" above the underlying lodgement till sediments, and possibly above existing fills. Perched groundwater occurs when vertical infiltration is impeded by less-permeable soil layers, resulting in horizontal flow. The quantity and duration of perched groundwater flow from an excavation will vary, depending on season, soil gradation, and adjacent topography. Groundwater conditions should be expected to vary in response to changes in precipitation, on- and off-site land usage, and other factors.

RECOMMENDATIONS

Existing Pavement Drainage

Exploration EB-14 was completed in the western parking lot area near an area where groundwater is known to seep through the pavement. This exploration encountered approximately 4 inches of asphalt overlying 4 inches of gravel base placed on top of existing fill. No groundwater seepage was observed in this exploration. Exploration boring EB-10, completed for our previous study, was drilled approximately 50 feet northwest of EB-14 within existing pavement and encountered 4 inches of pavement placed directly on existing fill soils. Perched groundwater was encountered in EB-10 at 4 feet below the surface.

Our explorations within the existing parking lot indicate that the crushed rock base is not continuous under the asphalt. With no continuous rock subbase, there is no continuous drainage pathway under the existing pavement which can cause perched groundwater to become trapped under the pavement and daylight through voids in the pavement. This can result in faster deterioration and softening of the subgrade during traffic loading as well as damage from freeze-thaw action.

We understand most of the northwest parking lot area will become landscaped areas or bioretention facilities, including the location where groundwater seepage through the asphalt has been observed. Entry and exit lanes comprised of the existing asphalt will be located to the north and south of the landscaped bioretention areas. For drainage mitigation of the paved drive lanes, we have provided options below that range from a "Do Nothing" approach to demolishing the asphalt and constructing a new pavement section.

Do Nothing Approach

The "Do Nothing" approach would provide no drainage mitigation for the existing pavement. The existing pavement would have similar performance and condition as currently exhibited. Risks associated with pavement deterioration due to perched water and wet subgrades would remain.

<u>Overlay</u>

A new asphalt overlay could be laid over the existing asphalt for the drive lane areas. A new overlay would improve the existing asphalt surface conditions, would marginally extend the life of the drive lanes, and is a cheaper option than constructing a new pavement section. However, this option does not mitigate poor asphalt drainage and risks associated with pavement deterioration due to perched water and wet subgrades would remain.

New Pavement Section

For this approach the existing asphalt is demolished and a new pavement section is constructed for the drive lanes. The new pavement section should follow our recommendations provided in our referenced report which provides a gravel subbase under the asphalt allowing for improved and more continuous drainage.

Stormwater Pond

Exploration pits in the proposed location of the southwest stormwater pond, generally encountered sod/topsoil overlying native lodgement till. We understand that the pond will partially be cut into native lodgement till sediments with fills up to 5 feet thick needed to achieve top of berm elevation.

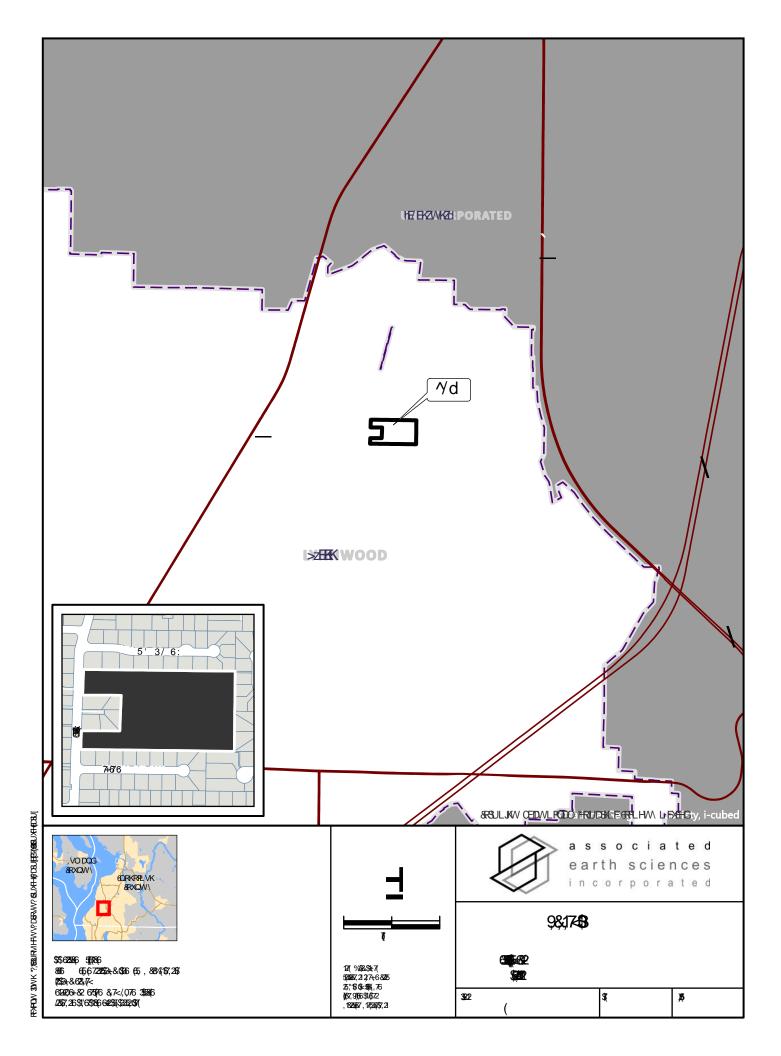
- 1. Pond berm embankments must be constructed on native lodgement till free of loose surface soil materials, roots, and other organic debris.
- 2. Pond berm embankments greater than 4 feet in height must be constructed by excavating a key equal to 50 percent of the berm embankment cross-sectional height.
- 3. The berm embankment shall be constructed of soil placed in 6-inch lifts compacted to at least 95 percent of maximum dry density, within 2 percentage points of the optimum moisture content, modified Proctor method ASTM D-1557. Density tests shall be performed for each lift to confirm compliance with this specification.
- 4. Compacted lodgement till or existing fill soils may be used for construction of the pond berm if they are free of organics and other deleterious materials and are placed as described in number 3 above.
- 5. An impermeable liner will be needed to prevent infiltration of water through the pond berms. Lodgement till generally works well as an impermeable pond liner. If lodgement till will be used as an impermeable pond liner it should have the following characteristics: a minimum of 20 percent silt and clay (passing the #200 sieve), a minimum of 70 percent and maximum of 100 percent sand (passing the #4 sieve), and a maximum particle size of 6 inches. Compacted till liners should have a minimum thickness of 18 inches and should be placed as described in number 3 above.

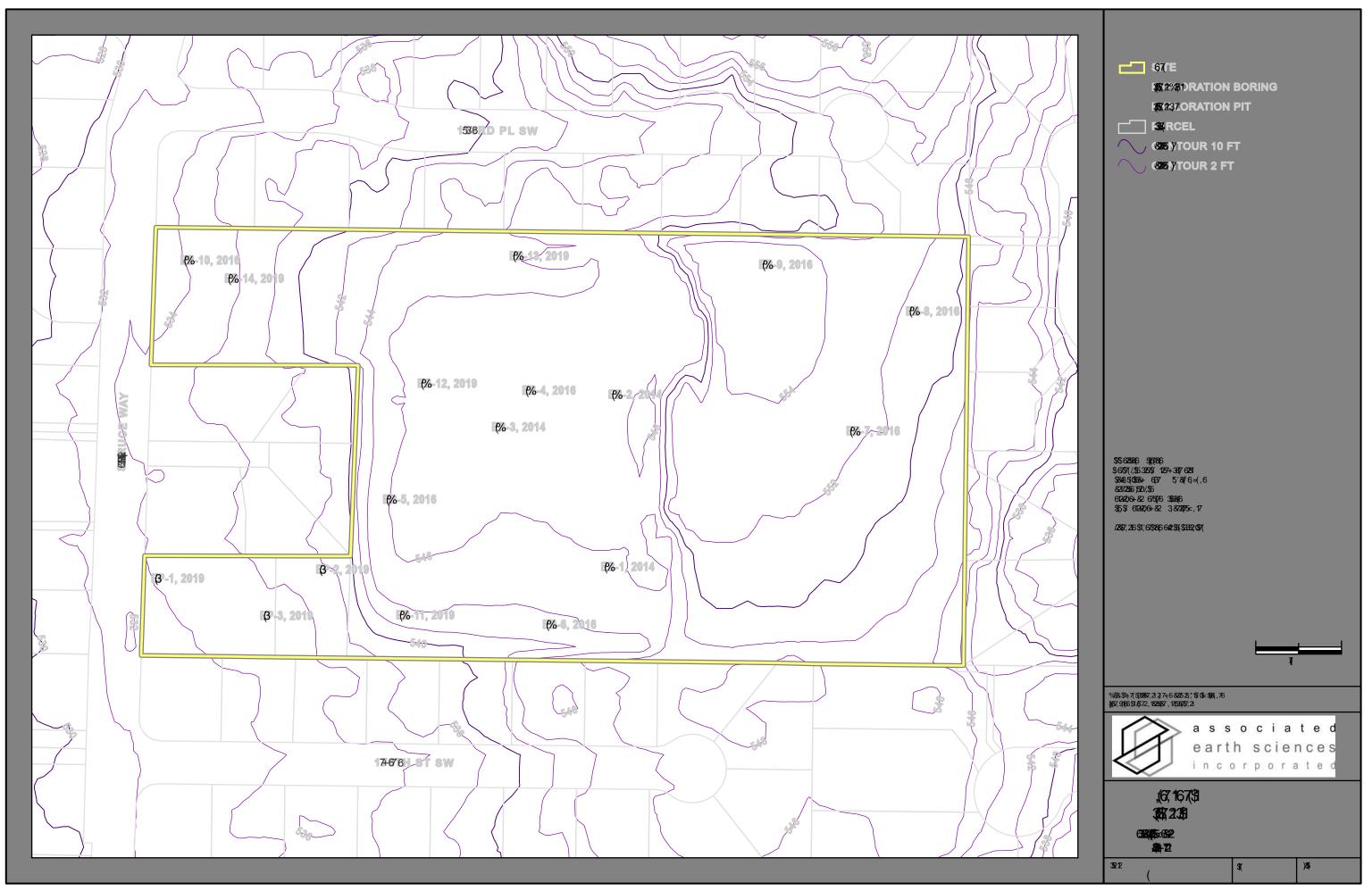
The result of a Proctor test completed on a sample of lodgement till collected from EP-2 is included in Appendix B.

CONCLUSION

We appreciate this opportunity to have been of service to you with your project. Should you have any questions, or require additional information, please do not hesitate to call.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington


Chur 1 ann


Anthony W. Romanick, P.E. Senior Project Engineer

Kurt D. Merriman, P.E. Senior Principal Engineer

Attachments:Figure 1.Vicinity MapFigure 2.Existing Site and Exploration PlanAppendix A.Exploration LogsAppendix B.Laboratory Analysis

DWK ?? IBURNIHWV? DBRWV? BUXH (B'DBURER) (BBUXH (DBU)

APPENDIX A

Exploration Logs

	16	es ⁽⁵⁾	GW	Well-graded gravel and gravel with sand, little to	Density SPT ⁽²⁾ blows/foot
200 Sieve	of Coarse 4 Sieve	≤5% Fines	GP	no fines Poorly-graded gravel and gravel with sand, little to no fines	Coarse- Grained SoilsVery Loose0 to 4 Loose4 to 10 Medium DenseTest SymbolsDense30 to 50 Very DenseG = Grain Size M = Moisture Content
Coarse-Grained Soils - More than 50% ⁽¹⁾ Retained on No. 200 Sieve	- More than 50% ⁽¹⁾ Retained on No.	% Fines ⁽⁵⁾ % Fines ⁽⁵⁾ の の の の の の の の の の の の の	GM	Silty gravel and silty gravel with sand	Consistency Fine- Grained SoilsConsistency Very SoftSPT ⁽²⁾ blows/foot 0 to 2A = Atterberg Limits C = Chemical DD = Dry Density K = PermeabilityFine- Grained SoilsSoft Medium Stiff Stiff4 to 8 8 to 15C = Chemical DD = Dry Density K = Permeability
)% ⁽¹⁾ Re	Gravels - I		GC	Clayey gravel and clayey gravel with sand	Very Stiff 15 to 30 Hard >30
More than 50	Fraction	Fines ⁽⁵⁾	sw	Well-graded sand and sand with gravel, little to no fines	Descriptive Term Size Range and Sieve Number Boulders Larger than 12" Cobbles 3" to 12"
ained Soils -	ore of Coarse Io. 4 Sieve	S5% F	SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel 3" to No. 4 (4.75 mm) Coarse Gravel 3" to 3/4" Fine Gravel 3/4" to No. 4 (4.75 mm) Sand No. 4 (4.75 mm) to No. 200 (0.075 mm) Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm)
Coarse-Gr	50% ⁽¹⁾ or More Passes No.	Fines ⁽⁵⁾	SM	Silty sand and silty sand with gravel	Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand No. 40 (0.425 mm) to No. 200 (0.075 mm) Silt and Clay Smaller than No. 200 (0.075 mm)
	Sands - 5	≥12%	SC	Clayey sand and clayey sand with gravel	(3) Estimated Percentage Moisture Content Component Percentage by Weight Dry - Absence of moisture, dusty, dry to the touch Trace <5
Sieve	s Sun 50		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	Note Some Sto <12 Slightly Moist - Perceptible Some 5 to <12
Passes No. 200 Sieve	Silts and Clays		CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	(silty, sandy, gravelly) Very Moist - Water visible but not free draining Very modifier 30 to <50
မ	Sill Sill Iourid I		OL	Organic clay or silt of low plasticity	Symbols Blows/6" or Sampler portion of 6" Type /
ls - 50% ⁽¹⁾ ol	ys - More		мн	Elastic silt, clayey silt, silt with micaceous or diatomaceous fine sand or silt	2.0" OD Split-Spoon Sampler (A) Sampler (SPT) Sampler (SPT) Sampler Sa
Fine-Grained Soils - 50% ⁽¹⁾ or Mo	Silts and Clays		СН	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	(SP1) 3.25" OD Split-Spoon Ring Sampler (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
Fine			он	Organic clay or silt of medium to high plasticity	O Portion not recovered (1) Percentage by dry weight (2) (SPT) Standard Penetration Test (4) Depth of ground water (2) (SPT) Standard Penetration Test
Highly	Organic Soils		РТ	Peat, muck and other highly organic soils	 (ASTM D-1586) ⁽³⁾ In General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488) ⁽⁵⁾ Combined USCS symbols used for fines between 5% and 12%

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

EXPLORATION LOG KEY

FIGURE A1

earth sciences incorporated

associated

	2	> a		o ciate d			Exploration Exploration	on Log				
	2			sciences rporated	Project Nu KE14056	mber 62A	Exploration N EB-1	Number 1			Sheet 1 of 1	
Project Locatio		ne		Spruce Eler	NA		· 	Ground Su Datum	Irface E) _ <u>54</u> _ July 2	
Driller/ Hamm				<u>Geologic Dr</u> 140# / 30"	ill - HSA SPT			Date Start/ Hole Diam		_12/2	2/14,12/2	22/14
									1			
Depth (ft)	c	Samples	Graphic Symbol					Well Completion Water Level	D is m	Blows	/Foot	Other Tests
Dep	S T	San	9 S		DESCI	RIPTION		Com V Wate	1	0 20	30 40	Othe
			<u>zi y</u> . <u>zi</u>		Grass	/ Topsoil						
-					Lodge	ment Till						
-	Ι	S-1		Very dense, ver nonstratified (SI	/ moist, gray, silty fine (/).	gravelly fine to	coarse SAND;	1 2 50	5 5 '5"			▲ 50/5"
- 5	Н	S-2		Gradation as ab	ove.			1	7			4 50/5"
	Н							3 50	'5"			-50/5
-												
- 10		0.0		Gradation as ab	0.40			3	D			
-	Н	S-3						50	'3"			▲ 50/3"
-				Bottom of explora Ground water no	ation boring at 11 feet encountered.							
-												
- 15												
-												
-												
- 20												
-												
-												
-												
- 25												
-												
-												
- 30												
-												
-												
9 ¹⁰												
ber 22,												
Septem												
GPJ 6		or Tr-										
AESIBOR 140562.GPJ September 22, 2016	-		oe (ST) Split S	: Spoon Sampler (Sl	PT) No Reco	very N	M - Moisture				gged by:	BWG
al BOR	~			Spoon Sampler (D			✓ Water Level ()	of drilling (AT		Ар	proved by	/: JHS
AES	n Z	Grab	Sample	9	Shelby T	ube Sample	Water Level at time	or uniting (ATL	<i>י</i>)			

		and the set is a set of the set o			~y				
\ll		n sciences rporated	Project Number KE140562A	Exploration Exploration Num EB-2	mber		She 1 C	et of 1	
Project Na Location Driller/Equ Hammer V		Spruce Eler Lynnwood, Geologic Dr 140# / 30"	n WA ill - HSA SPT		Ground Surf Datum Date Start/Fi Hole Diamet	nish	vation (ft) AHBL J 12/22/14 7 inches	1,12/22/ [,]	1 14
Depth (ft) L S	Samples Graphic Symbol		DESCRIPTION		Well Completion Water Level Blows/6"		Blows/Fo		Other Tests
	<u>x¹ 1</u> x. <u>x</u>		Grass / Topsoil			10	20 30	40	
-			Lodgement Till						
	S-1	Very dense, ver nonstratified (Si	y moist, gray, silty fine gravelly fine to c N).	oarse SAND;	19 41 50/4	,			5 0/4"
- 5 -	S-2	Gradation as ab	ove.		29 36 37				₹73
- - 10 -	S-3	Gradation as ab			27 40 50/4	,			▲ 50/4"
- - - 15		Bottom of explora Ground water no	ation boring at 11.5 feet t encountered.						
- - 20 -									
- - 25 -									
- 30									
BOR 14056		Spoon Sampler (SF Spoon Sampler (D	& M) Ring Sample	I - Moisture ⁷ Water Level () 2 Water Level at time of	drilling (ATD)		Logged		WG HS

1	$\tilde{\boldsymbol{\lambda}}$	> a		o c i a t e d		Exploratio Exploration Nu	n Lo	g				
	J			sciences rporated	Project Number KE140562A	Exploration Nu EB-3	mber				Sheet 1 of 1	
Project Locatio Driller/I Hamme	n Equi	omen		Spruce Eler Lynnwood, V Geologic Dr 140# / 30"	n WA ill - HSA SPT		Groun Datum Date S Hole D	start/F	inish	AHBL 12/22 7 inch	July /14,12	44 2014 /22/14
Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION	l	Well Completion	Water Level Blows/6"	10	Blows/	Foot 30 4	Other Tests
	+		<u> </u>		Grass / Topsoil					20	50 4	,
-		S-1		Loose, very mois Hand dug to 2 1				12				
- 5 - 5 -		S-2		Very dense, ver nonstratified (Si Gradation as ab	Lodgement Till y moist, gray, silty fine gravelly fine nove.	e to coarse SAND;		12 23 50/5 18 35 50/5				▲50/5" ▲50/5"
- - 10		S-3		Gradation gener trace silt.	ally as above, but with a thin sear	n (~ 1/2 inch) of fine sand,		20 38 45				▲83
- - - 15 - -				Bottom of explora Ground water not	ation boring at 11.5 feet t encountered.							
- - 20 - -												
- 25 - - -												
- 30 - - -												
AESIBOR 140562 GPJ September 22, 2016												
AESIBOR 140562.(2 3	2" OD 5" OD		Spoon Sampler (SF Spoon Sampler (D		M - Moisture ♀ Water Level () ▼ Water Level at time of	drilling (ATD)			ged by: roved k	BWG y: JHS

¥.	J		arth	ociated sciences rporated	Project Number KE140562A	Exploration Exploration Num EB-4	n Lo mber	g			Sheet 1 of 1		
Project Locatio Driller/I Hamme	n Equi	pmer		Spruce Eler Lynnwood, GDI / SPT 140# / 30"	mentary School		Ground Datum Date S Hole D	tart/F	inish	vation (ft)	16,8/30)/16	
Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION		Well Completion	Water Level Blows/6"		Blows	/Foot		Other Tests
			1. 8 12		Grass / Topsoil				10	20	30 4	0	
-					Vashon Lodgement Til	l							
-	Ι	S-1		Dense, moist, ta gravel in sample	annish brown, gravelly, fine to mediu er; contains organics; blow counts ov	m SAND, some silt; broken rerstated due to gravel (SP).		17 13 27				40	
- 5 - -	Ι	S-2		Very dense, mo contains interbe	ist, grayish tan, silty, fine to medium d of fine to medium SAND, trace silt	SAND, some gravel; (SM-SP).		24 50/6					
- - 10 - -	Ţ	S-3		Very dense, mo unsorted (SM).	ist, tannish gray, silty, fine to mediun	n SAND, some gravel;		26 50/6					
- - 15 - -	T	S-4		As above.				50/5	"				\$ 50/5"
- - 20 -	T	S-5		As above. Bottom of explora No ground water	ation boring at 20.5 feet			50/5					50/5"
- 25													
- - 30 -													
AESIBOR 140562 (2016).GFJ September 20, 2016													
AESIBOR 140562 (20		2" OD 3" OD		Spoon Sampler (Sl Spoon Sampler (D		M - Moisture ☑ Water Level () ☑ Water Level at time of	drilling (ATD)			iged by: proved b		VR IK

	$\hat{\lambda}$	> a		ociated		Exploratio	n Log						
	Z			sciences rporated	Project Number KE140562A	Exploration Nu EB-5	mber				heet		
Project Locatio		ne		Spruce Eler	mentary School		Ground S Datum	urfa		ion (ft) N/A			
Driller/	Equij			GDI / SPT			Date Star		ish _{	3/30/1	6,8/30	/16	
Hamm	er W	eight	/Drop	140# / 30"			Hole Dian	neter	(in) <u></u>	1.25 ir	nches		
Depth (ft)	S	Samples	Graphic Symbol				Well Completion Water Level	Blows/6"	В	lows/f	=oot		Other Tests
	'	0)			DESCRIPTION		ŏ≥		10	20 3	30 40)	đ
			<u>1, x, y, y</u>	~	Grass / Topsoil Fill								
-													
-	Π	S-1		Medium dense, SAND, some gr	moist, gray, silty, fine SAND, grades avel; contains organics; unsorted (SN	to silty, fine to medium Λ).		11 10 9		19			
- 5		S-2		Medium dense,	very moist, tannish gray, silty, fine S	AND, trace gravel (SM).		4 6 8	▲ 1	4			
-								8					
- 10		• •		Medium dense,	very moist, gray, silty, fine SAND, tra	ace gravel (SM).		4					
-	Н	S-3						4 7 9		·16			
-				_ Driller notes har	der drilling at 13 feet Vashon Lodgement Till								
- 15 -	Т	S-4		Very dense, mo	ist, tan, silty, fine to medium SAND; ι	unsorted (SM).		32)/5"					
-				Bottom of explora No ground water	ation boring at 16 feet encountered.								
- 20													
-													
-													
- 25													
-													
- 30													
50' 5019 - 35													
ptember 2(
).GPJ Se													
AESIBOR 140562 (2016) GPJ September 20, 2016	-		pe (ST)										
BOR 140] з			Spoon Sampler (Sl Spoon Sampler (D	& M) Ring Sample	M - Moisture ∇ Water Level ()					ged by: roved b	AV y: CJI	
AESI	<u>س</u> ر	Grab S	Sample	9	Shelby Tube Sample	▲ Water Level at time of	drilling (AT	D)					

Ţ	Â		arth	ociated sciences	Project Number	Exploratio Exploration Nu	n Log mber	g			Sheet		
Projec			nco	rporated Spruce Eler	KE140562A mentary School	EB-6	Cround	l Curf		evation (ft)	1 of 1		
Locati	on			<u>Lynnwood, </u> <u>GDI / SPT</u>	WA		Datum			N/A			
Driller/ Hamm				<u>GDI / SPT</u> 140# / 30"			Date St Hole Di			_8/30/ [·] _4.25 i	16,8/30)/16	
		roigin						_	51 (11)	<u>4.201</u>	licites		
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	/ater Level Blows/6"		Blows/	Foot		Other Tests
	'	0)			DESCRIPTION		Ŭ Š	S m	10	20	30 40	D	đ
			<u>, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>	~	Grass / Topsoil		7						
Ĩ					Vashon Lodgement Till								
-	Ι	S-1		Very dense, mo	ist, tan, silty, fine SAND, some gravel;	unsorted (SM).		15 25 46				6 1	1
- 5		S-2		As above.				26 35 49				A 84	1
-								49					
-													
- 10 -	T	S-3		As above.				50/6"				▲ 50	0/6"
- 15			- - - 	Pottom of ovelor	ation boring at 15.5 feet		_						
-				No ground water	encountered.								
- 20													
- 20													
-													
- 25													
-													
-													
- 30													
-													
o o													
- 35 - 35													
Septembe													
6).GPJ (
AESIBOR 140562 (2016) GPJ September 20, 2016	_		be (ST)										
OR 140				Spoon Sampler (Sl Spoon Sampler (D		M - Moisture					ged by: proved b	AWR Y: CJK	R
AESIE	000		Sample			Water Level at time of	drilling (A	ATD)					

Ĺ				ciated sciences	Project Number	Exploratio Exploration Nu	n Lo	bg			Sheet	
\leq	Z		сог	porated	KE140562A	EB-7					1 of 1	
Project Locatio		е		<u>Spruce Eler</u> Lynnwood.	<u>mentary School</u> WA		Grour Datun		urface	Elevation (ft) N/A		
Driller/I Hamm	Equip		ron	<u>Lynnwood, V</u> <u>GDI / SPT</u> 140# / 30"					'Finish eter (in	8/30/	16,8/30)/16
				140#7 30) 4.25	ncnes	
Depth (ft)	S	Samples Graphic	Symbol				Well Completion	Water Level	0/80/0	Blows	/Foot	Other Tests
					DESCRIPTION		0	\$		10 20	30 4	<u>כ</u> ו כ
-		¹ z	1(l	<u>\</u>	Grass / Topsoil Vashon Lodgement 1	Fill	_					
-		S-1		Medium dense, unsorted (SM).	moist, tan, silty, fine to medium S	AND, some gravel; oxidized;		(1 1	6 4 3		27	
- 5 - -		S-2		Medium dense,	moist, tan, silty, fine SAND, some	gravel; unsorted (SM).		1	0 0 9	19		
- - 10 - -		S-3		As above.				6 1 1	6 4 8		▲ ₃₂	
- - 15 - -		5-4		Very dense, ver unsorted (SM).	y moist, gray, silty, fine to medium	SAND, some gravel;		1 2 50	5 3 /5"			
- - 20 -		S-5		As above.				3 4 50	6 5 /3"			
- - 25 -				Bottom of explora No ground water	ation boring at 21.5 feet encountered.							
- - - 30 -												
AESIBOR 140562 (2016).GPJ September 20, 2016												
16).G												
AESIBOR 140562 (20	2" 3"		plit S plit S	poon Sampler (SF poon Sampler (D		M - Moisture Ӯ Water Level () ♥ Water Level at time of	drilling	(ATE))		ged by: proved b	AWR I y: CJK

	2	> a		ociated				Explorat Exploration	ion	Lc	bg							
	2			n sciences rporated	Pro KE	oject Number E140562A		Exploration EB-	Num -8	ber					Sheet 1 of	1		
Project Locatio		ne		Spruce Eler	nentary Sch	1001				Grour Datun		urfac	e Ele	vation (f _N/A	t) _			_
Driller/	Equi			Lynnwood, GDI / SPT 140# / 30"					_ I	Date \$	Start			8/30	/16,8/	30/16		_
Hamm		eigni		140#/30					_ 1	Hole [Jan		(in)	4.25	inche	S		
Depth (ft)	S T	Samples	Graphic Symbol							Well Completion	Water Level	Blows/6"		Blow	s/Foot			Other Tests
	1.1	0)			I	DESCRIPT	TION			Ŭ	3		10	20	30	40		Ð
-			<u>x' x x</u>		Vas	Grass / Tops shon Lodgem	soil nent Till			-								
-	T	S-1		Medium dense, gravel in sample	moist, tan, silty er; blow counts	r, fine to mediu may be oversi	um SAND, tated due t	some gravel; broken o rock (SM).				7 16 12			▲ 28			
- 5 - -	T	S-2		Medium dense, (SM).	moist, tan, silty	r, fine to mediu	um SAND,	some gravel; unsort	ed		· ·	21 1 6			▲ 27			
- - 10 - -		S-3		Dense, moist, g	ray, silty, fine to) medium SAN	ND, some (gravel; unsorted (SM)).			11 21 32					5 3	
- - 15 -	T	S-4			stics baring at 10					_	2 50	29)/4"						
- 20				Bottom of explora No ground water	encountered.	Teel												
-																		
- 25																		
- - 30 -																		
AESIBOR 140562 (2016) GPJ September 20, 2016																		
AESIBOR 140562 (2016)		2" OD 3" OD		Spoon Sampler (Sl Spoon Sampler (D	& M)	No Recovery Ring Sample Shelby Tube S	Ţ	- Moisture Water Level () Water Level at time	e of di	rilling	(ATI) D)			ogged b oproved		WR JK	

L	F		arth	ociated sciences rporated	Project Number	Exploratio Exploration Nu EB-9	n Lo mber	bg				Sheet		
Project				Spruce Eler	KE140562A mentary School	EB-9	Grour	nd S	Surfa	ace Ele	evation (f	1 of 1		
Locatio Driller/I		pmen	ıt	<u>Lynnwood,</u> <u>GDI / SPT</u> <u>140# / 30"</u>	WA		Datum Date S		t/Fir	nish	_N/A 8/30	/16 8/3	0/16	
Hamm	er W	eight/	/Drop	140# / 30"			Hole [4.25	/16,8/3 inches	5	
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	Water Level	Blows/6"		Blow	s/Foot		Other Tests
	1.1	0)			DESCRIPTION		Ŭ	≥		10	20	30 4	10	ō
_			<i>11 × 11</i>	·	Grass / Topsoil Vashon Lodgement 1									
-		S-1		Medium dense,	moist, tan, silty, fine SAND, some				9 12 16			▲ 28		
- 5				Deserves deserves										
-		S-2		Becomes dense					12 23 30					53
- 10		S-3		As above.			_		12 36 50					86
-				Bottom of explora No ground water	ation boring at 10.5 feet encountered.				50					
- - 15 -														
-														
- 20														
- - - 25														
-														
- - 30 -														
016														
56 - 30 - 20, 20														
2016).GPJ Se														
OR 1405	2 3	2" OD): Spoon Sampler (Sl Spoon Sampler (D	& M) Ring Sample	M - Moisture Ӯ Water Level ()						ogged by oproved		VR IK
AES	^m / ₂ (Grab	Sample	e	Shelby Tube Sample	e	drilling	(AT	D)					

	\sim			ociated		Exploration	n Log				
\triangleleft				n sciences rporated	Project Number KE140562A	Exploration Nur EB-10	mber			_{eet} of 2	
Project Locatio		me		Spruce Eler	nentary School		Ground Sur Datum	face Ele	vation (ft) _N/A	~53	3.5
Driller/ Hamm	'Equ			<u>GDI / Truck</u>	Mounted / SPT		Date Start/F Hole Diame		12/21/1	6,12/2	2/16
		veigi						er (III)	8 inche	S	
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion Water Level Blows/6"		Blows/Fo	oot	Other Tests
					DESCRIPTION		0 S	10	20 30) 40	Ó
-				·	Asphalt - 4 inches Vashon Lodgement Till						
- - - 5 -		S-1		Dense, moist, ta	d water at 4 feet. Innish gray, silty, fine SAND, some grav asure on 12/22/16 at 8 am with boring a d at 5.38 feet.	-	¥ 9 13 19			▲ 32	
- - 10 -	Ī			▲85							
-				Driller added wa	ter to help lift cuttings.						
- 15 - -	Ι	S-3		As above.			18 44 50/4	"			▲ 94/10"
- - - 20 -	T	S-4		Contains trace t	o some medium sand.		50/6				▲ 50/6"
- - 25 -	T	S-5					50/6	"			▲ 50/6"
- - - 30 -	T	S-6					50/4				▲50/4"
), GPJ January 5, 2017 55 50	T	S-7		Blow count over	stated due to rock.		26 50/2				▲50/2"
30R 14056		2" OI 3" OI		Spoon Sampler (SF Spoon Sampler (D	& M) 🔲 Ring Sample 🛛	- Moisture Water Level () Water Level at time of	drilling (ATD)		Logge Appro	ed by: oved by:	AWR CJK / JHS

R	a s		iated				Exploratio Exploration Nu	n Log	J			
\triangleleft			ciences orated	Pr KE	oject Number E140562A		Exploration Nu EB-10	mber			Sheet 2 of 2	
Project N Location		ې	Spruce Elen	nentary Scł	hool			Ground Datum	Surface E	Elevation (ft N/A) _~5	33.5
Driller/Ec	quipment		Spruce Elen _ynnwood, V GDI / Truck 140# / 30"	Mounted / S	SPT			Date Sta	art/Finish	_12/2	1/16,12/2	22/16
Hammer	Weight/Dr	rop	140# / 30						ameter (in) <u>8</u> inc	nes	
Depth (ft)	L S Samples Graphic	Symbol						Well Completion Water Level	Blows/6"	Blows	/Foot	Other Tests
	- S-8	· · · N	la racovan <i>i</i> : bla		DESCRIPTIC tated due to rock					10 20	30 40	4 50/2"
- - - - 45 =	⊥ S-9						e gravel; unsorted		50/2" 50/3"			− 50/2 − 50/3"
- - - 50 -	⊥ S-10	(\$	SM).		n, gray, siny, inte	SOUL, SOUL	grave, unsorted		50/6"			▲ 50/6"
- - - 55 -												
- - 60 <u>-</u> -	⊥ S-11	B B	Bottom of explora Refusal at 61 feet	tion boring at 6	1 feet			1	100/4"			▲ 100/4"
- - 65 - -												
- - 70 - -												
AESIBOR 140562 (2016).GPJ January 5, 2017	npler Type	(61).										
AESIBOR 140562	2" OD Sj 3" OD Sj	plit Spoo plit Spoo	on Sampler (SP on Sampler (D ∂	& M)	No Recovery Ring Sample Shelby Tube San	_	isture Iter Level () ter Level at time of	drilling (A	TD)		gged by: proved by	AWR : CJK / JHS

	$\hat{\boldsymbol{z}}$	1		ciated		Exploratio	n Log				
	2	0.00		sciences porated	Project Number 140562E002	Exploration Nu EB-11	mber			neet of 1	
Projec Locatio		me		Spruce Eler Lynwood, V	mentary School		Ground Su	face E			
Driller/	Equ			Geologic D	rill Partners / Mini Track		Datum Date Start/F		NAVD 4/2/19,	88 4/2/19	
Hamm	ier V	Veight	/Drop	140# / 30			Hole Diame	eter (in)	_6		
(#)		es					tion evel /6"		Diama (E		ests
Depth (ft)	S	Samples	Graphic Symbol				Well Completion Water Level Blows/6"		Blows/F	001	Other Tests
	1	S	• • •		DESCRIPTION		B K	10	20 3	0 40	Ō
	Π		<u></u>	~	Sod / Topsoil - 4 inches Fill		<u> </u>	•			
		S-1		Slightly moist, I some gravel; so	brown to dark brown, silty, fine to me cattered organics (rootlets) (SM).	dium SAND, trace to	12	▲ 3			
-		S-2		Dry to slightly r organics (rootle	noist, brown, silty, fine SAND, trace g ets) (SM).	ravel; scattered	2 3 3	▲ 6			
- 5		S-3		Slightly moist to silty, fine to me unsorted (SM).	o moist, brown with some oxidation s dium SAND, some gravel; minor orga	taining to orange red, anics (rootlets);	6 8 9		▲ 17		
	Τ	S-4		Moist, brown, s (SM).	ilty, fine to medium SAND, trace grav	vel; scattered organics	5		▲25	;	
-	Щ			Moist. brown w	Vashon Lodgement Till ith oxidation staining to red, silty, fine	tom medium SAND.	17				
- 10				trace to some g	gravel; unsorted (SM).						
-		S-5		(SM).	gray, silty, fine to medium SAND, so	nie gravei, unsoneu	10 20 32				▲52
- - 15 -		S-6		As above (SM)			44 42 50/5	"			▲ 50/5"
3PJ April 16, 2019	T	S-7		unsorted; broke	o moist, gray, silt, fine to medium SA en gravel in spoon (SM). 	ND, some gravel;	20 50/5 	n			\$50/5"
OR 14056	Sampler Type (ST): □ 2" OD Split Spoon Sampler (SPT) □ No Recovery M - Moisture Logged by: BCY □ 3" OD Split Spoon Sampler (D & M) I Ring Sample ✓ Water Level () Approved by: JHS I Grab Sample I Shelby Tube Sample ✓ Water Level at time of drilling (ATD)										

	$\hat{\boldsymbol{\lambda}}$	> a		ociated		Exploration	n Log	-		
	2			sciences rporated	Project Number 140562E002	Exploration Nu EB-12	mber		Sheet 1 of 1	
Projec		me		Spruce Eler	mentary School		Ground Su		ation (ft) 5	44
Location Driller/		ipme	nt	Lynwood, V Geologic Dr	VA rill Partners / Mini Track		Datum Date Start/I	- -	NAVD 88 4/2/19,4/2/1	<u></u>
Hamm	ner V	Veigh	nt/Drop	140# / 30			Hole Diame		6 6	
Depth (ft)	ST	Samples	Graphic Symbol				Well Completion Water Level Blows/6"	E	Blows/Foot	Other Tests
	'	0			DESCRIPTION		U S S M	10	20 30 40) j
	\square		<u>, 17</u>	<	Sod / Topsoil - 3 inches		4			
-		S-1		Dry to slightly n silty, fine to me	Fill noist, brown to dark brown with mine dium SAND, some gravel; scattered	or oxidation staining, l organics (SM).	66	▲ 1:	2	
-		S-2		Dry to slightly n scattered orgar	noist, brown to dark brown, silty, SA nics (rootlets) (SM).	ND, some gravel;	5 7 6	▲1	3	
- 5		S-3		Moist, brown to SILT, some gra	o dark brown with minor oxidation sta avel; scattered organics (SM).	aining to red, sandy,	4444	▲8		
-		S-4		_gravel; minor se Slightly moist, o	ny with oxidation staining, silty, fine to cattered organics (SM). Vashon Lodgement Till gray with oxidation staining in upper , some gravel; beds (1/8 inch thick)	foot, silty, fine to	/ 6 11 22		▲ 33	
- 10 -		S-5			tion boring at 11.5 feet.		19 38 50/5	'n		▲ 50/5"
- - - -				No groundwater e	encountered.					
2.GPJ April 16, 2019										
I 14056		2" OC 3" OC		Spoon Sampler (Spoon Sampler (I	D & M) Ring Sample	M - Moisture ☑ Water Level () ☑ Water Level at time o	f drilling (AT	D)	Logged by: Approved b	BCY y: JHS

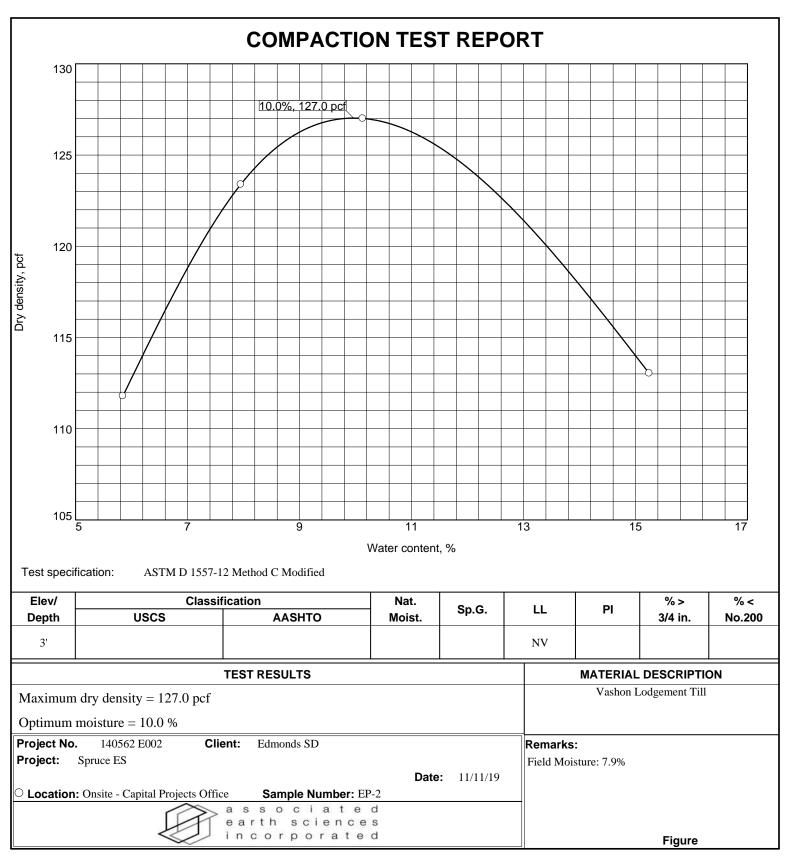
	1	\geq	> a		ociated		Exploration	ו Lo	g				
	\mathbf{k}	2			sciences rporated	Project Number 140562E002	Exploration Nur EB-13	nber	-			Sheet 1 of 1	
	oject		me		Spruce Ele	mentary School		Groun	d Su	rface E	levation (f	t) <u>5</u> 4	44
	catio iller/E		ipme	nt	<u>Lynwood, V</u> Geoloaic D	VA rill Partners / Mini Track		Datum Date S		Finish	_NAVE _4/2/19		9
На	imme	er V	/eigł	nt/Drop	140# / 30			Hole D			_6		
	Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION		Well Completion	Water Level Blows/6"		Blows/		Other Tests
		$\left \right $							_	10) 20	30 40	·
			S-1			Asphalt - 3 inches Fill			12 7		▲ 18		
-					Moist, brown, r Slightly moist, some gravel (S	nedium to coarse SAND, some grave gray with some dark brown, silty, fine M).	el, trace silt (SP). to medium SAND,		11		10		
-			S-2		As above; scat	tered organics.			3 2 3	▲5			
_	5		• •		Moist to very m	oist, gray and brown, silty, fine to me d organics present (SM).	edium SAND, trace		1				
-			S-3			Vashon Lodgement Till		_	1 3	▲4			
-		T	S-4		Driller notes ha Slightly moist, minor broken g	rder drilling. prownish gray, silty, fine to medium s ravel present in spoon (SM).	SAND, some gravel;		17 33 50/4				▲ 50/4"
- /	10		S-5		As above.				18 36 50/5				5 0/5
-					Bottom of explora No groundwater e	tion boring at 11.5 feet. encountered.							
- '	15												
-													
- 2	20												
19													
- J April 16, 2(
AESIBOR 140562E002.GPJ April 16, 2019	Sa ∏	-		/pe (S ⁻) Split	T): Spoon Sampler (SPT) No Recovery M	1 - Moisture				Log	ged by:	BCY
AESIBOR 1.] 3	8" OE		Spoon Sampler (D & M) 🗍 Ring Sample	Z Water Level () Water Level at time o	f drilling	(AT	D)		proved b	

	2	> a		ociated		Exploration	Lo	g					
\triangleleft	2			sciences rporated	Project Number 140562E002	Exploration Num EB-14	nber				heet		
Projec Locati		ime		Spruce Eler	mentary School		Ground Datum	d Sur	face El	evation (ft _NAVD		35	
Driller/	/Equ	ipme	nt	Geologic Dr	rill Partners / Mini Track		Date S			4/2/19		9	
Hamm	ner V	Veigh	t/Drop	140#/30			Hole D	iame	ter (in)	_6	·		
(H)		S	일				ion	evel 6"			_		sts
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	Water Level Blows/6"		Blows/	Foot		Other Tests
Ď		ů			DESCRIPTION		Ö	B	10	20	30 4	0	ġ
		0.4	·o: : : ::		Asphalt - 4 inches Gravel - 4 inches			7	•				
ł		S-1		Moist orango a	Fill and brown, silty, fine to medium SAN	D. traco gravel (SM)		3 3	▲6				
-				moist, orange a	and brown, silly, line to medium SAN	D, liace graver (Sivi).							
	Н			Moist, grayish t	brown with oxidation staining to orang	ge, silty, fine to medium							
		S-2		SAND, trace to	some gravel; unsorted (SM).			4	▲ 8				
-	Н							4					
- 5				Drilling stiffens.	Vashon Lodgement Till								
		S-3		Slightly moist, g gravel; unsorte	arav to brownish arav, silty, fine to me	edium SAND, some		12 20				▲ 44	
ſ	Щ			0 /				24					
ŀ													
	$\left \right $			Slightly moist, g	gray, silty, fine to medium SAND, sor	ne gravel; unsorted							
Ī		S-4		(SM).				21 44 50/5	.				50 /5"
- 10	Н			Bottom of explora	tion boring at 10 feet.		-	30/3					
-				No groundwater e	encountered.								
ſ													
+													
-													
- 15													
+													
ſ													
+													
- 20													
F													
10													
- 16, 20													
April													
AESIBOR 140562E002.GPJ April 16, 2019													
52E003 Sa	 amp	ler Tv	pe (ST	-):									
] [14056	_			Spoon Sampler (SPT) 🗌 No Recovery M	I - Moisture					ged by:		
BOR [3" OD	Split S	Spoon Sampler (I	D & M) 🔲 Ring Sample 🛛 🖓	Water Level ()				Арр	roved l	y: JH	S
AESI	() (Grab	Sampl	e	Shelby Tube Sample 🚽	Water Level at time of	drilling	(ATE	(נ				

EXPLORATION PIT NO. EP-1

	DESCRIPTION
	Sod / Topsoil - ~12 inches
1 –	Vashon Lodgement Till
2 -	Medium dense, moist, brownish gray to brown minor to moderate oxidation, very silty, fine to medium SAND, some gravel; minor rootlets; unsorted (SM).
3 —	
4 —	Color turns more gray with less oxidation and no rootlets at 4 feet.
5 —	Minimal to no oxidation at 4.5 feet.
6 -	
7 –	Bottom of exploration pit at depth 7 feet
8 -	No seepage. No caving.
9 —	
10	
	Spruce Elementary Lynnwood, WA

EXPLORATION PIT NO. EP-2

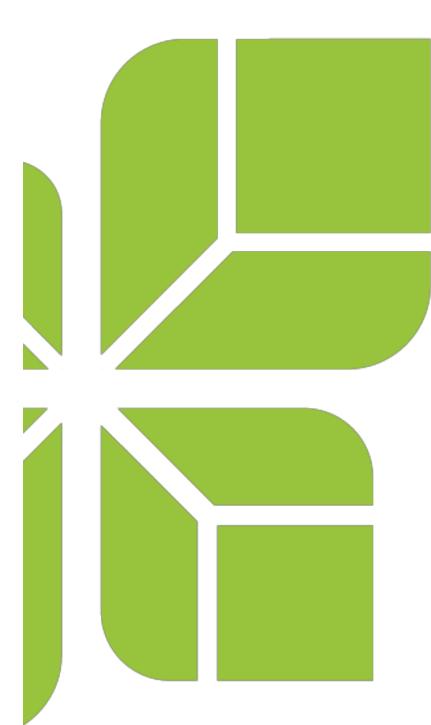

	DESCRIPTION
	Sod / Topsoil - ~12 inches
1 –	Vashon Lodgement Till
2 —	Medium dense, moist, brownish gray with minor to moderate oxidation, very silty, fine to medium SAND, trace gravel; minor rootlets; unsorted (SM). Digging becomes more difficult at 2.5 feet.
3 —	Color turns more light gray to light brownish gray, ranges to some gravel, and no rootlets.
4 —	-
5 —	-
6 —	
7 —	
8 -	
9 —	Bottom of exploration pit at depth 9 feet
10	No seepage. No caving.
10	Spruce Elementary Lynnwood, WA

EXPLORATION PIT NO. EP-3

Depth (ft)	This log is part of the report prepared by Associated Earth Sciences, Inc. (AESI) for the named project and should be read together with that report for complete interpretation. This summary applies only to the location of this trench at the time of excavation. Subsurface conditions may change at this location with the passage of time. The data presented are a simplification of actual conditions encountered.
	DESCRIPTION
	Sod / Topsoil - ~12 inches
1	
	Vashon Lodgement Till
2	Medium dense, moist, light brownish gray to brownish gray with moderate oxidation, very silty, fine SAND, trace gravel; minor rootlets; unsorted (SM).
3	
4	Digging becomes more difficult at 4 feet.
	Less oxidation, more medium sand, and ranges to some gravel.
5	
	Minimal to no oxidation and ranges to gravelly.
6	-
7	Bottom of exploration pit at depth 6.5 feet No seepage. No caving.
8	+
9 -	
10-	
	Spruce Elementary Lynnwood, WA
2	ed by: TG oved by: JHS a ssociated incorporated Project No. 20140562E002 11/7/19

APPENDIX B

Laboratory Analysis



Tested By: ALM

Checked By: AWR

Appendix C Storm Drainage Report <u>and Stormwater</u> <u>Site Plan Report</u>

Stormwater Site Plan Report

PREPARED FOR:

Bassetti Architects 71 Columbia Street, Suite 500 Seattle, WA 98104

PROJECT:

Spruce Elementary School 17405 Spruce Way Lynnwood, WA 98037 2140275.10

PREPARED BY:

Jared McDonald, EIT Project Engineer

REVIEWED BY:

Douglas G. Tapp, PE Principal

Bethany P. Steadman, PE Senior Engineer

DATE:

September 2017

Stormwater Site Plan Report

PREPARED FOR:

Bassetti Architects 71 Columbia Street, Suite 500 Seattle, WA 98104

PROJECT:

Spruce Elementary School 17405 Spruce Way Lynnwood, WA 98037 2140275.10

PREPARED BY:

Jared McDonald, EIT Project Engineer

REVIEWED BY:

Douglas G. Tapp, PE Principal

Bethany P. Steadman, PE Senior Engineer

DATE:

September 2017

I hereby state that this Stormwater Site Plan Report for Spruce Elementary School has been prepared by me or under my supervision, and meets the standard of care and expertise that is usual and customary in this community for professional engineers. I understand that City of Lynnwood does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me.

Table of Contents

Secti	on		Page					
1.0	Proje	ect Overview	1					
	1.1	General Description of Project	1					
	1.2	Existing Conditions	1					
	1.3	Developed Conditions	2					
	1.4	Project Classification	3					
2.0	Minir	num Requirements	3					
3.0	Offsite Analysis							
	3.1	Task 1 – Define and Map the Study Area	5					
	3.2	Task 2 – Resource Review	6					
	3.3	Task 3 – Field Inspection	7					
	3.4	Task 4 – Drainage System Description and Existing/Predicted Problems						
4.0	Permanent Stormwater Control Plan							
	4.1	Site Hydrology						
	4.2	Onsite Stormwater Management	11					
	4.3	Flow Control	13					
	4.4	Water Quality Treatment	14					
	4.5	Stormwater Conveyance Analysis and Design	15					
5.0	Storr	nwater Pollution Prevention	15					
	5.1	Construction Stormwater Pollution Prevention Plan Narrative						
	5.2	Source Control of Pollution BMPs	17					
6.0	Spec	ial Reports and Studies	17					
7.0	Othe	r Permits	17					
8.0	Oper	ation and Maintenance Manual	17					
9.0	Declaration of Covenant for Privately Maintained Stormwater Facilities							
10.0	Bonc	Bond Quantities Worksheet						
11.0	Conclusion18							

Appendices

Appendix A

Maps

A-1 Site Vicinity Map
A-2a Existing Conditions Map – Phase 1
A-2b Existing Conditions Map – Phase 2
A-3a Developed Conditions Map – Phase 1
A-3b Developed Conditions Map – Phase 2
A-4a Downstream Study Map TDA A
A-4b Downstream Study Map TDA B
A-4c Downstream Study Map TDA C
A-5Basin Map
A-6a Drainage Inventory Map TDA A
A-6b Drainage Inventory Map TDA B
A-6c Drainage Inventory Map TDA C
A-7a SnoScape Map
A-7b Lynnwood Sensitive Areas Map
A-8 WDFW Priority Habitats and Species Map
A-9 303(d) Listed Water Bodies Map
A-10 Flood Insurance Rate Map (FIRM)
A-11 Web Soil Survey Map

Appendix B

Offsite Analysis Drainage System Tables

B-1	TDA A – Northwest TDA Drainage Table
B-2	TDA B – Southwest TDA Drainage Table
B-3	TDA C – East TDA Drainage Table

Appendix C

Field Inspection Photos

Appendix D

Subsurface Exploration and Preliminary Geotechnical Engineering Report By Associated Earth Sciences, Inc., dated January 14, 2015

Geotechnical Addendum – Additional Explorations By Associated Earth Sciences, Inc., dated September 26, 2016

Appendix E

Permanent Stormwater Control Calculations

E-1..... Phase 1 TDA C Flow Control Calculations E-2..... Phase 2 TDA A Flow Control Calculations E-3..... Phase 2 TDA B Flow Control Calculations

E-4..... Phase 2 TDA C Flow Control Calculations E-5..... Phase 1 TDA C Silva Cell Water Quality Calculations E-6..... Phase 1 TDA C CAVFS Water Quality Calculations

Appendix F

Conveyance Calculations and Exhibit

To be provided with final report submission.

Appendix G

TESC Exhibits and Calculations

G-1a TESC Basin Map – Phase 1 G-1b TESC Basin Map – Phase 2 G-2 TESC Hand Calculations G-3a TDA A – Phase 1 – WWHM TESC G-3b TDA A – Phase 2 – WWHM TESC G-4a TDA B – Phase 1 – WWHM TESC G-4b TDA B – Phase 2 – WWHM TESC G-5a TDA C – Phase 1 – WWHM TESC G-5b TDA C – Phase 2 – WWHM TESC

Appendix H

Operation and Maintenance Manual Source Controls

1.0 Project Overview

1.1 General Description of Project

The project site is located on the existing Spruce Elementary School site (17405 Spruce Way, Lynnwood, Washington) and encompasses one tax parcel (00372700301502). The parcel is bounded by residential developments to the south, east, and north; to the west, the project is bounded by a few homes and Spruce Way. Due to budget and constraints the project site work is to be split into two phases, Phase 1 and Phase 2. During Phase 1, the project site is 4.29 acres and, during Phase 2, the project site is 8.58 acres. See Exhibit A-1 for the Site Vicinity Map.

During Phase 1, the project proposes the demolition of play areas and play structures east of the existing elementary school and the construction of admin, commons, and gymnasium. Site improvement elements include a building, outdoor play areas, play field, fire lane, and temporary parking, as well as utility infrastructure supporting the improvements and future expansion. The existing school to the west of Phase 1 construction will be retained, along with the parking to the south and northwest.

In Phase 2, the project proposes the demolition of the existing elementary school and construction of the library and classroom wing that will be attached to the structure constructed during Phase 1, as well as tenant improvements to the Phase 1 structure. Site elements include preserving the majority of elements constructed during Phase 1, demolishing the temporary parking, a building, a play field, parking to the west, and a drop-off area, as well as utility infrastructure supporting the new improvements. During Phase 2, the portables constructed prior to Phase 1 will be either removed or relocated to the designated "future" portable location.

The project site is located in the City of Lynnwood and is subject to the 2012 Washington State Department of Ecology *Stormwater Management Manual for Western Washington amended in 2014 (Drainage Manual)*, City of Lynnwood Standard Plans, and Lynnwood Municipal Code (LMC) Chapter 13.40, Stormwater Management. This report has been prepared to document how the project meets Minimum Requirements 1 through 9, as outlined in the *Drainage Manual*.

1.2 Existing Conditions

A. Phase 1 / Phase 2

The project site is the eastern upper plateau of the property and is partially developed in the current condition. It includes an existing covered play area and two uncovered existing play areas. The majority of the project site is lawn with trees.

The existing site is topographically separated into an upper and lower plateau, with a 6 to 8 foot tall slope running through the center of the site. The northwest portion of the site (Threshold Discharge Area (TDA) A) drains to the northwest via sheet flow and existing conveyance prior to discharging to an existing ditch located within Spruce Way. The southwest portion of the site (TDA B) collects into a swale located along the southern edge of the site and discharges to a catch basin located at the southwest corner of the site, which flows west to Spruce Way, discharging to the existing ditch that flows to the south. The third TDA (TDA C) sheet flows to the eastern and southern borders of the site.

Existing stormwater conveyance serves the existing elementary school and surrounding pedestrian areas. No conveyance is located to the east on the upper portion of the site, except for downspouts that serve the covered play area. All storm conveyance is collected in TDA A and discharges to a swale along Spruce Way. Currently, there are no water quality or flow control systems located onsite.

There are no known critical areas or wetlands located onsite. The geotechnical report titled, "Subsurface Exploration and Preliminary Geotechnical Engineering Report" by Associated Earth Sciences, Inc., dated January 14, 2015 (see Appendix D), is supplemented with additional information titled, "Geotechnical Addendum – Additional Explorations" by Associated Earth Sciences, Inc., dated September 26, 2016. The geotechnical report found fill primarily in the southwest portion of the site, approximately 13 feet of fill. Vashon Lodgement Till was found throughout the site.

See Exhibits A-2a and A-2b for the Phase 1 and Phase 2 Existing Conditions Maps.

1.3 Developed Conditions

A. Phase 1

During Phase 1, the project proposes to demolish the existing play areas east of the elementary school and develop the upper field to the east. The existing fire lane, elementary school, and parking are to be retained. A new building, play areas, and temporary parking will be constructed east of the existing school. A fire lane will be constructed around the new building. The frontage along Spruce Way will be reconstructed to meet City of Lynnwood Standards. New utility infrastructure will be provided to serve the proposed improvements. Future portables have been identified and included in stormwater calculations.

The existing stormwater infrastructure to the west (serves TDA A) will be retained. During Phase 1, stormwater improvements will be provided for TDA C only. Stormwater improvements for TDA A and TDA B will be provided in Phase 2 due to site constraints. Improvements for storm in TDA C include onsite stormwater management, flow control, and water quality systems, and mitigation will be provided for new and replaced surface. Onsite stormwater management will include post-construction soil quality, Silva Cells (underground bioretention), and dispersion. Flow control will be provided with below grade 6-foot diameter pipes interconnected to a pond that is to be located in the southeast corner of the site. Water quality will be provided for the temporary parking to the north using a compost amended vegetated filter strip (CAVFS) and for the service with a Silva Cell bioretention cell. See Section 4.0 for more details on the Permanent Stormwater Control Plan.

See Exhibit A-3a for the Phase 1 Developed Conditions Map.

B. Phase 2

During Phase 2, the project proposes to demolish the existing Spruce Elementary School, portables to the south, temporary and permanent parking, and existing fire lane. Portions of the existing drive entrance to the west will be retained and expanded to serve the new school building. A new building wing will be constructed, connecting to the newly constructed Phase 1 building. New parking will be provided to the west, with parent drop-off and bus drop. A new play field will be constructed south of the new parking lot. The majority of Phase 1 elements constructed will be retained, excluding the temporary parking to the north. New utility infrastructure will be provided to serve the proposed Phase 2 improvements.

The existing stormwater flow control facility constructed in Phase 1 will be preserved to serve Phase 2, TDA C. The existing stormwater conveyance within TDA A will be demolished and upgraded. New stormwater improvements will include onsite stormwater management, flow control, and water quality systems, and will provide mitigation for new and replaced surfaces. Onsite stormwater management will include post-construction soil quality, bioretention cells, and Silva Cell bioretention. Flow control for TDA A will be provided with below-grade 6-foot diameter pipe. Flow control for TDA B will be provided with a pond. Water quality will be provided for the pollution generating impervious surface (PGIS) in TDA A using a bioretention cell. Water quality

will be provided for the PGIS in TDA B using Silva Cells. See Section 4.0 for more details on the Permanent Stormwater Control Plan.

See Exhibit A-3b for the Phase 2 Developed Conditions Map.

1.4 Project Classification

A. Phase 1

Per LMC Section 13.40.050, the project is classified as a Large Project since it disturbs more than 1 acre of land and is required to provide a Detailed Drainage Plan. Per the *Drainage Manual*, the project is classified as a Redevelopment Project and all Minimum Requirements apply to the new and replaced hard surfaces and converted vegetation areas.

B. Phase 2

Per LMC Section 13.40.050, the project is classified as a Large Project since it disturbs more than 1 acre of land and is required to provide a Detailed Drainage Plan. Per the *Drainage Manual*, the project is classified as a Redevelopment Project and all Minimum Requirements apply to the new and replaced hard surfaces and converted vegetation areas.

2.0 Minimum Requirements

A. Phase 1

Phase 1 is considered a Redevelopment project. Because the project will be broken into two phases, we are requesting that the Minimum Requirements for TDA A and TDA B be addressed during Phase 2. In Phase 1, TDA C is subject to Minimum Requirements (MRs) 1 through 9 for all new and replaced hard surfaces and converted vegetation areas. See Exhibit A-3a, Phase 1 Developed Conditions Map, for areas.

Below is a summary of how the project will meet MRs 1 through 9 for TDA C.

- MR 1 Preparation of Stormwater Site Plans: This Stormwater Site Plan Report provides the narrative and analysis for the stormwater site plan and accompanies engineered drawings. Both have been developed by a licensed civil engineer and per Volume I, Chapter 3 of the *Drainage Manual*.
- MR 2 Construction Stormwater Pollution Prevention: A Construction Stormwater Pollution Prevention Plan (CSWPPP) will be prepared in conformance to Volume II from the *Drainage Manual*. The CSWPPP will be submitted separately. A narrative has been provided in Section 5.1, outlining how the project meets the 13 Elements. The contractor will be responsible for maintaining the CSWPPP during construction and conforming to the National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit (CSWGP) requirements.
- MR 3 Source Control of Pollution: Source Control of Pollution Best Management Practices (BMPs) have been selected for use post construction and are discussed in Section 5.2. Source Control BMPs are included in the Operation and Maintenance Manual for the owner's reference.
- MR 4 Preservation of Natural Drainage Systems and Outfalls: The existing drainage patterns will be preserved to the maximum extent feasible. The developed threshold discharge basins have been divided to match the existing threshold discharge basins as closely as possible. The developed areas in Phase 1 do not match the existing areas due to site constraints. The developed conditions in Phase 2 will address this issue and the

basin area will match the existing areas. TDA C will be collected and conveyed to the southeast natural discharge point.

- MR 5 Onsite Stormwater Management: The project has provided Onsite Stormwater Management to the maximum extent feasible, as required by List 2, found in Section 2.5.5 of the *Drainage Manual* for TDA C.
- MR 6 Runoff Treatment: Phase 1 provides water quality treatment for the new temporary parking lot and service yard that satisfies basic enhanced treatment due to the project draining to a fish-bearing water body. The project does not meet the requirements of a high-use site, and therefore does not need to provide treatment per the oil control treatment menu. The project does not drain to a phosphorus sensitive lake and does not need to provide treatment per the phosphorus treatment menu. See Section 4.4 for analysis of how the project will meet these performance standards.
- MR 7 Flow Control: Phase 1 of the project provides flow control for TDA C. Because Phase 2 TDA C requires additional flow control volume, the project will construct in Phase 1 a flow control system to satisfy the requirements of both Phase 1 and Phase 2. Flow control will match durations of the fully forested, pre-developed condition for 50 percent of the 2-year peak flow up to the full 50-year peak flow for all new and replaced surfaces. Flow control calculations and BMPs can be reviewed in Section 4.0.
- MR 8 Wetlands Protection: This project does not directly or indirectly discharge to a wetland, and therefore MR 8 does not apply to this project.
- MR 9 Operation and Maintenance: An Operations and Maintenance Manual is provided in Appendix H.

B. Phase 2

Phase 2 is considered a Redevelopment project. In Phase 2, the MRs will be applied to all three TDAs to satisfy the *Drainage Manual* requirements. Phase 2 has three TDAs, all of which are subject to MRs 1 through 9 for all new and replaced hard surfaces and converted vegetation areas.

Below is a summary of how the project will meet MRs 1 through 9 for TDAs A, B, and C.

- MR 1 Preparation of Stormwater Site Plans: This Stormwater Site Plan Report provides the narrative and analysis for the stormwater site plan and accompanies engineered drawings. Both have been developed by a licensed civil engineer and per Volume I, Chapter 3, of the *Drainage Manual*.
- MR 2 Construction Stormwater Pollution Prevention: A Construction Stormwater Pollution Prevention Plan (CSWPPP) will be prepared in conformance to Volume II from the *Drainage Manual*. The CSWPPP will be submitted separately. A narrative has been provided in Section 5.1, outlining how the project meets the 13 Elements. The contractor will be responsible for maintaining the CSWPPP during construction and conforming to the National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit (CSWGP) requirements.
- MR 3 Source Control of Pollution: Source Control of Pollution BMPs have been selected for use post construction and are discussed in Section 5.2. Source Control BMPs are included in the Operation and Maintenance Manual for the owner's reference.
- MR 4 Preservation of Natural Drainage Systems and Outfalls: The existing drainage patterns will be preserved to the maximum extent feasible. The developed threshold discharge basin areas have been divided to match the existing threshold discharge basin areas and to discharge to the existing discharge locations. TDA A will be collected to the flow control system and discharged to the public storm system that runs along Spruce Way.

TDA B will be collected in a pond and then discharged to the existing catch basin located at the southwest corner of the site. TDA C will be collected in a combination flow control system, including a pond and 6-foot diameter pipe, and then conveyed to 176th Street SW to the existing public storm system.

- MR 5 Onsite Stormwater Management: The project has provided Onsite Stormwater Management to the maximum extent feasible, as required by List 2, found in Section 2.5.5 of the *Drainage Manual* for TDAs A, B, and C.
- MR 6 Runoff Treatment: Phase 2 provides water quality treatment per the basic enhanced treatment menu based on the project draining to a fish-bearing water body. The project does not meet the requirements of a high-use site, and therefore does not need to provide treatment per the oil control treatment menu. The project does not drain to a phosphorus sensitive lake and does not need to provide treatment per the phosphorus treatment menu. See Section 4.4 for analysis of how the project will meet these performance standards.
- MR 7 Flow Control: Phase 2 of the project provides flow control for TDAs A and B. TDA C will have had its required flow control volume constructed in Phase 1; the flow restrictor will be replaced to match revised durations in Phase 2. Flow control will match durations of the fully forested, pre-developed condition for 50 percent of the 2-year peak flow up to the full 50-year peak flow for all new and replaced surfaces. Flow control calculations and BMPs can be reviewed in Section 4.0.
- MR 8 Wetlands Protection: This project does not directly or indirectly discharge to a wetland, and therefore MR 8 does not apply to this project.
- MR 9 Operation and Maintenance: An Operations and Maintenance Manual will be provided in Appendix H.

3.0 Offsite Analysis

3.1 Task 1 – Define and Map the Study Area

The project site for the Spruce Elementary School Modernization is located at 17405 Spruce Way, Lynnwood, Washington (Parcel No. 00372700301502). See Exhibit A-1 for the Site Vicinity Map. Three separate TDAs have been observed onsite (TDAs A, B, and C). These observations coincide with the topographic and existing condition represented in the survey. See Exhibits A-2a and A-2b for the Existing Conditions Maps.

TDA A includes the northwest portion of the site. The existing condition of this area includes the existing buildings, parking lot, drop-off area, sidewalks, and covered play area. TDA A slopes toward the northwest, causing the runoff to sheet flow toward the west until reaching a ditch on the east side of Spruce Way. This drainage ditch is where the downstream analysis begins.

Surface runoff from the southwest portion of the school's site is tributary to TDA B. A swale adjacent to the southern property line intercepts sheet flow. Discharge from the swale is tight lined west through a neighboring property within a drainage easement. The conveyance pipe daylights into a drainage ditch along Spruce Way. This is the beginning of the downstream analysis for TDA B.

TDA C includes the grass field in the east portion of the property. TDA C slopes to the east. Runoff leaving the east property line sheet flows toward neighboring parcels, where the stormwater either is collected or continues to sheet flow to the public right-of-way. Stormwater enters the public conveyance system tributary to Tunnel Creek. Although the stormwater enters the public conveyance system at different locations, all systems drain to Tunnel Creek within

0.25 mile, and are therefore considered to be in the same TDA. For analysis purposes, the northwest corner of the site will be considered the discharge point to TDA C.

The field inspection (Task 3) of the qualitative downstream analysis was performed on January 16, 2017, starting at the three existing points of discharge from the project site.

- The discharge point of TDA A is located adjacent to the west property line at Spruce Way.
- The discharge point for TDA B is located at the southwest property corner, two parcels south along Spruce Way.
- The discharge point of TDA C begins at the southeast corner of the property, but the east property line was analyzed and found to drain to the conveyance along 38th Avenue West and/or 175th Street SW, both of which discharge to Tunnel Creek within 0.25 mile.

The three downstream systems were walked for approximately 1 mile to document the existing conditions (see Task 4 for drainage system documentation) and to perform the below tasks. See Exhibits A-4a, A-4b, and A-4c for maps of the three downstream drainage systems.

Below are summaries of the offsite analysis tasks and the results of these tasks.

See Exhibit A-4 for the Downstream Study Maps, which include topography, the project site, existing discharge point(s), the study area, and the downstream flow path(s).

3.2 Task 2 – Resource Review

The following resources were reviewed prior to the field inspection to discover any existing or potential problems in the study area:

- Basin Plans: The project is located in the Swamp Creek Basin located in the Lake Washington Watershed (see Exhibit A-5 for the Basin Map). No known City of Lynnwood adopted basin plans are in effect.
- *Groundwater Management Area Plans:* No known adopted groundwater management area plans are in effect at this time.
- Drainage Inventory Maps: Drainage inventory maps from the City of Lynnwood website were consulted to help map the downstream flow path. See Exhibits A-6a, A-6b, and A-6c for the Drainage Inventory Maps applicable to the project.
- SnoScape or *iMap* or other GIS data: SnoScape was consulted to review critical areas located at or near the project site or the downstream. SnoScape did not indicate any critical areas. The City of Lynnwood Environmentally Sensitive Areas Map was consulted and indicated that there were two critical areas, labeled "Fish and Wildlife Conservation Area," downstream from the project site. See Exhibits A-7a and A-7b for the two maps that were consulted.
- *WDFW PHS Maps:* The Washington Department of Fish and Wildlife (WDFW) Priority Habitat and Species (PHS) Map identified no wetland or other sensitive area located within the downstream of the project. See Exhibit A-8 for a copy of the WDFW PHS Map.
- *303(d) Listed Water Bodies:* The 303(d) Listed Water Bodies Map was consulted to identify any water quality concerns downstream of the project site. There are no impaired waterbodies located within 1 mile of the project site. According to the map, there is a

Category 5 waterbody beyond 1 mile from the site. The Category 5 waterbody is Scriber Creek, Listing ID 70236. See Exhibit A-9 for a copy of the 303(d) Listed Water Bodies Map.

- Flood Insurance Rate Maps (FIRM): The project site is located outside of the 500-year floodplain per FIRM No. 53061C1310 E, included as Exhibit A-10.
- Soils: Per the geotechnical report, soils for the project site are typically Vashon lodgment till (see Appendix D for a copy of the report). The Web Soil Survey was consulted for a soil map of the downstream. See Exhibit A-11 for a copy of the map. The downstream is typically classified as Alderwood-Urban land complex with slopes typically between 2 to 8 percent.

Research of drainage complaints provided the following drainage complaints that relate to the project site's downstream; field inspection observations are made in brackets [].

• Tenant Complaint – Plaza 44 Apartments (08-04-2016): Lower apartments flooded due to a high volume of runoff from the culvert that overflowed and entered the building. This event occurred roughly two years ago in the winter. [Catch basin located outside the apartments look to be undersized, but could not be inspected due to the catch basin being locked.]

3.3 Task 3 – Field Inspection

3.3.1 Upstream Field Inspection

Because the project site is located at the top of a ridge, little to no upstream drainage is expected. The north boundary for TDA C does have a slight potential run-on drainage from the backyards of the surround residences. These areas can continue to run-on and will not impact improvements.

3.3.2 Downstream Field Inspection

A qualitative field inspection was performed starting at the existing points of discharge from the project site. The downstream systems were walked for approximately 1 mile to document the systems and to perform the below tasks. See Task 4 for drainage system documentation. See Exhibit A-4 for maps of the downstream drainage system.

Below are summaries of the field inspection tasks and the results of these tasks:

- Investigate problems reported or observed during the resource review
 - No problems were identified during the resource review for the downstream analysis.
- Locate existing/potential constrictions or capacity deficiencies in the drainage system
 - TDA A: Pipes consistently increase from 12-inch to 36-inch until reaching the conveyance system along Highway 99. A possible constriction is located in the ditch two parcels north of the site along Spruce Way. The channel is laden with heavy silt and gravel at the inlet.
 - TDA B: Pipes consistently increase from 12-inch to 24-inch until reaching the conveyance system along Highway 99. A possible constriction is located in the ditch on the east side of Spruce Way at its intersection with 178th Place SW. Trees have been trimmed and the branches have been placed in the open channel.

- TDA C: Pipe constrictions were not observed up to 1 mile downstream of the project site.
- Identify existing/potential flooding problems
 - No existing or potential flooding problems were identified during the field inspection.
- Identify significant destruction of aquatic habitat (e.g., siltation, stream incision)
 - No problems were identified during the field inspection in TDA A or TDA B.
 - Downstream of TDA C, an orange color was observed in Tunnel Creek.
- Collect qualitative data on features such as land use, impervious surface, topography, soils, presence of streams, wetlands
 - Area surrounding the project site is typically developed residential properties.
 Topography ranged from 1 to 15 percent along the downstream. Soils are typically Alderwood-Urban land complex per USDA.
- Collect information on pipe sizes, channel characteristics, drainage structure:
 - See Task 4 below for a narrative of the system. See Appendix B for the drainage system table collating this data.
- Verify tributary drainage areas identified in task 1:
 - The field investigation confirmed the TDAs identified in Task 1 and the existing points of discharge for these areas.
- Contact the local government office with drainage review authority, neighboring property owners, and residents about drainage problems:
 - No drainage reports were recorded by the City.
 - Tenant Complaint Plaza 44 Apartments (2014±): We spoke to a tenant on the day of our inspection, who mentioned that the lower apartments flooded due to a high volume of runoff from the culvert that overflowed and entered the building. This event occurred roughly two years ago in the winter.
- Note date and weather at time of inspection
 - Field inspection was completed on January 16, 2016. The weather was clear and sunny, with temperatures around 48°F. The study area was wet, with some standing water

3.4 Task 4 – Drainage System Description and Existing/Predicted Problems

See Exhibits A-4a, A-4b, and A-4c for the Downstream Study Maps. See Appendix B for tables collating the qualitative data collected during the field investigation. Tables assign symbols to each drainage component and are referenced below and on the system map, and photos of particular areas are included in Appendix C. See below for a description of the downstream and existing or predicted problems.

3.4.1 TDA A (Northwest Basin)

Stormwater from TDA A discharges via sheet flow from the Spruce Elementary School parking lot (A-1 through A-3) into the ditch (A-4) located on the east side of Spruce Way. This is where the downstream analysis begins.

Stormwater flows north roughly 300 feet through a series of culverts and ditches until reaching a catch basin at 173rd Place SW and Spruce Way. From the catch basin at 173rd Place SW, the drainage crosses Spruce Way and 173rd Street SW. The discharge from the catch basin at 173rd and Spruce Way daylights into a heavily vegetated ravine. The drainage weaves its way through properties until it is diverted across 172rd Street SW via a culvert. After crossing 172rd Street, the drainage daylights into a ravine and weaves its way through heavy vegetation toward the northwest. The drainage then crosses 44th Avenue West at its intersection with Cobblestone Drive. From the west side of 44th Avenue West, the stormwater daylights into a vegetated stream/ditch until intersecting with the conveyance system along Highway 99.

3.4.2 TDA B (Southwest Basin)

Stormwater from TDA B discharges to a catch basin located in the southwest corner of the site. From that catch basin, the stormwater is routed west in an easement and daylights into a ditch located on the east side of Spruce Way. This ditch is where the downstream analysis begins.

The drainage continues to flow south through a series of ditches and culvert for approximately 1,500 feet until reaching an eastbound culvert just north of Spruce Way's intersection with Maple Road. The stormwater crosses Maple Road in a culvert that then daylights into a drainage swale. From the swale, the stormwater crosses Maple Road and enters a tight lined conveyance system on the south side of Maple Road. The stormwater continues down Maple Road, which changes its name to 181st Place SW, for approximately 2,370 linear feet. A water quality facility was observed on the west side of the 181st Place SW intersection with 48th Avenue West. 181st Place SW dead ends, but the stormwater continues west through the dead end, and daylights into a heavily vegetated stream/ditch. After approximately 750 linear feet, the stormwater enters the conveyance system along Highway 99.

3.4.3 TDA C (East Basin)

Stormwater from TDA C sheet flows to the parcels adjacent to the east property line, where it either is picked up by the parcel's onsite conveyance or continues to sheet flow to the conveyance system along 174th Place SW, 175th Street SW, and 176th Street SW. Because these discharge points are within 0.25 mile of each other, they are considered the same point of discharge. All three streets discharge their stormwater to Tunnel Creek.

Tunnel Creek flows south, crossing 175th Street SW, 176th Street SW, and 176th Place SW. After crossing 36th Avenue West, Tunnel Creek weaves its way through the backyards of properties toward the southeast. The creek crosses 179th Street SW and 33rd Place West, and then heads east where it is picked up by the drainage system on the north side of 33rd Avenue West. This portion of 33rd Avenue West is tributary to Swamp Creek.

4.0 Permanent Stormwater Control Plan

The project meets MRs 5 through 7 by providing a permanent stormwater control plan, including Onsite Stormwater Management BMPs, flow control facilities, and water quality facilities. During Phase 1 of the project, MRs 5 through 7 for TDA C will be met and, by the end of Phase 2, MRs 5 through 7 will be met for TDA A and TDA B.

4.1 Site Hydrology

The site hydrology is determined by the type of land coverage, soil type, and slope. Onsite soils are Vashon Lodgement till, which is categorized as a Class C soil for modeling purposes. Landscape areas will meet BMP T5.12 post-construction soil quality and depth. Per the *Drainage Manual*, page 5-10 from Volume V, these areas shall be modeled as pasture. See Exhibit A-2a and A-2b for the Existing Conditions Maps and Exhibit A-3a and A-3b for the Developed Conditions Maps.

A. Phase 1

TDA C will be provided with flow control and water quality to meet the minimum requirements. The minimum requirements for TDA A and TDA B will be addressed during Phase 2 of the project. The threshold discharge area boundaries between existing and developed conditions do not match for Phase 1; however, the flow control requirements in the Western Washington Hydrology Model (WWHM) take this into account for Phase 1 TDA C calculations. This will be corrected in Phase 2.

The areas shown below were used in WWHM2012 for sizing of stormwater flow control facilities for TDA C. The mitigated areas are areas tributary to the flow control system, whereas the bypass area does not drain to the flow control system.

	C, Forest (mod)	C, Pasture (flat)	C, Pasture (mod)	Impervious (flat)	Impervious (mod)	Bypass	Total
Pre- Developed	3.11 ac	-	-	-	-	-	3.11 ac
Total Developed Areas	-	0.94 ac	0.31 ac	1.47 ac	0.49 ac	0.2 ac	3.41 ac

 Table 1 – Land Cover Summary for Target Areas in TDA C Phase 1 for Flow Control

B. Phase 2

TDAs A, B, and C require flow control and water quality in Phase 2 of the project. The threshold discharge area boundaries in the developed conditions have been adjusted to match existing conditions. The areas shown below were used in WWHM2012 for sizing of stormwater flow control facilities for TDA A. The mitigated areas are areas tributary to the flow control system, whereas the bypass area does not drain to the flow control system. TDA C flow control volume will be constructed in Phase 1. The control structure will be revised in Phase 2.

	C, Forest	C, Pasture (flat)	C, Pasture (mod)	C, Pasture (steep)	Impervious (flat)	Impervious (mod)	Bypass	Total
Pre- Developed	3.78 ac	-	-	-	-	-	-	3.78 ac
Total Developed Areas	-	0.57 ac	0.42 ac	0.05 ac	1.74 ac	0.44 ac	0.56 ac	3.78 ac

	C, Forest	C, Pasture (flat)	C, Pasture (mod)	C, Pasture (steep)	Impervious (flat)	Impervious (mod)	Bypass	Total
Pre- Developed	1.80 ac	-	-	-	-	-	-	1.80 ac
Total Developed Areas	-	0.28 ac	0.14 ac	0.05 ac	0.94 ac	0.23 ac	0.16 ac	1.80 ac

Table 3 – Land Cover Summary for Target Areas in TDA B Phase 2 for Flow Control

Table 4 – Land Cover Summary for Target Areas in TDA C Phase 2 for Flow Control

	C, Forest	C, Pasture (flat)	C, Pasture (mod)	C, Pasture (steep)	Impervious (flat)	Impervious (mod)	Bypass	Total
Pre- Developed	3.00 ac	-	-	-	-	-	-	3.00 ac
Total Developed Areas	-	0.51 ac	0.09 ac	-	1.95 ac	0.22 ac	0.23 ac	3.00 ac

4.2 Onsite Stormwater Management

A. Phase 1

MR 5 was evaluated using the "Flow Chart for Determining LID MR #5 Requirements" from Section 2.5.5, Volume I, of the *Drainage Manual*. Projects that trigger MRs 1 through 5 are required to use List 1 to fulfill MR 5. Projects that trigger MRs 1 through 9 are required to use List 2.

TDA A will implement Onsite Stormwater Management during Phase 2 of the project.

TDA B will implement Onsite Stormwater Management during Phase 2 of the project.

TDA C is required to fulfill List 2 in Section 2.5.5, Volume 1, of the *Drainage Manual*. During Phase 1 of the project, we plan to implement the required BMPs to the maximum extent feasible. In Phase 2, further implementation of Onsite Stormwater Management will be applied. Based on the requirements from List 2, Table 5 summarizes the BMP consideration for each surface and the feasibility determination for the work in this subbasin.

Table 5 – Onsite Stormwater Management BMP Feasibility (TDA C)	
--	--

Surface Type	Area (acres)	List #2 Feasibility Review (Bold Determined Feasible and Provided)		Justification
Landscaping	0.97	1. Post Construction Soil (BMP T5.13)	1.	BMP T5.13 is proposed for all proposed landscaped areas.
Roof	0.54	 Full Dispersion or Downspout Full Infiltration Systems Bioretention Downspout Dispersion Perforated Stub-out Connections 		Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. There is a lack of usable space for a rain garden/bioretention facility to treat the roof during Phase 1. A vegetated flow path of 50 feet cannot be provided between the

			 structure and a slope steeper than 15% or other impervious surfaces. 4. Do not have adequate space to provide perforated stubout connections and many locations of perforated stubouts would be above slopes that are greater than 15%.
North East Temporary Parking	0.43	 Full Dispersion Permeable Pavement Bioretention Sheet Flow Dispersion 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non- infiltrating soils and thus permeable pavement is infeasible. A 315 linear foot Compost- Amended Vegetated Filter Strip is provided (see Appendix E-6).
Service Yard	0.12	 Full Dispersion Permeable Pavement Bioretention Sheet Flow Dispersion 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non- infiltrating soils and thus permeable pavement is infeasible. An 11-foot by 11-foot Silva Cell is provided (see Appendix E-5).
Other Hard Surfaces	1.04	1. Full Dispersion 2. Permeable Pavement 3. Bioretention 4. Sheet Flow Dispersion	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non- infiltrating soils and thus permeable pavement is infeasible. There is a lack of usable space for a rain garden/bioretention facility to treat the roof during Phase 1. Sheet Flow Dispersion is not feasible, as there is not a 50-foot vegetated path available.

B. Phase 2

Onsite Stormwater Management BMPs include post-construction soil amendments per BMP T5.13, Silva Cells bioretention, and bioretention cells. Final Onsite Stormwater Management BMP calculations will be provided during the Phase 2 permitting process.

4.3 Flow Control

A. Phase 1

In Phase 1, design flow control for TDA C will be provided. Due to site constraints, the flow control for TDA A and TDA B will be constructed during Phase 2. In addition, because flow control volumes required in TDA C Phase 1 are slightly more than Phase 2, there will be adequate detention volume for Phase 2 of the project. The flow control restrictor will be adjusted in Phase 2, such that durations are met for both Phase 1 and Phase 2.

Flow control in TDA C will be provided using a pond that is interconnected with a 6-foot diameter pipe. We are also evaluating the use of a 2GH Vortex Flow Regulator to make the detention system for TDA C more efficient. Those calculations and sizing will be provided prior to final approval. Current calculations are based on a conventional flow control riser. Calculations and WWHM modeling can be found in Appendix E. Below is a summary of the required flow control system.

Facility Type	Pond connected to 6-foot Diameter Pipe
Required Total Volume – Phase 1	35,364 cf
Provided Total Volume in Pond	14,706.7 cf
Provided Total Volume in Pipe	21,365 cf
Live Storage Depth	5 ft
Provided Total Volume in Pipe + Pond	36,072 cf

Table 6 – Phase 1 TDA C - Flow Control Facility Summary

B. Phase 2

TDA A requires flow control to be provided per MR 7. Flow control will be provided using 6-foot diameter pipe that will be located under the parking lot located to the west. Below is a summary of the required and provided flow control system. See Appendix E for the WWHM 2012 Report.

Table 7 – Phase 2 TDA A - Flow Control Facility Summary

Facility Type	Pond connected to 6-foot Diameter Pipe
Required Total Volume	55,951 cf
Provided Total Volume in Pipe	55,951 cf
Live Storage Depth	5 ft

TDA B requires flow control to be provided per MR 7. Flow control will be provided using a pond located in the southeast corner of the site. Below is a summary of the required and provided flow control system. See Appendix E for the WWHM 2012 Report.

Table 8 – Phase 2 TDA B - Flow Control Facility Summary

Facility Type	Pond connected to 6-foot Diameter Pipe
Required Total Volume	16,653 cf
Available Total Volume in Pond	40,722 cf
Live Storage Depth	6 ft

TDA C requires flow control to be provided per MR 7. Flow control volume for TDA C will have been constructed during Phase 1 and consists of a pond and interconnected pipe. Phase 2 will adjust the flow control restrictor such that durations are matched for both Phase 1 and Phase 2. Stage storage calculations will be provided with the final building permit submittal. Below is a

summary of the required and provided flow control system. See Appendix E for the WWHM 2012 Report.

5 ft

36,072 cf

1		
	Facility Type	Pond connected to 6-foot
		Diameter Pipe
	Required Total Volume	33,985 cf
	Provided Total Volume in Pond	14,706.7 cf
	Provided Total Volume in Pipe	21,365 cf

Table 9 – Phase 2 TDA C - Flow Control Facility Summary

4.4 Water Quality Treatment

Live Storage Depth

Provided Total Volume in Pipe + Pond

A. Phase 1

TDA A will implement water quality during Phase 2 of the project.

TDA B will implement water quality during Phase 2 of the project.

TDA C: In Phase 1 of the project, pollution generating surfaces in TDA C include the temporary parking to the north and the service yard to the south. A compost amended vegetated filter strip (CAVFS) will provide treatment for the temporary parking lot. A Silva Cell bioretention system will be provided for the service yard.

See Appendix E, E-5 and E-6, for WWHM2012 modeling reports as well as a letter from DeepRoot Partners confirming that the Silva Cell is acceptable as BMP T7.30. See the table below for a summary of the water quality facility sizes.

	Facility Type	Silva Cell
TDA C – Silva Cell	Required Infiltration %	91%
	Provided Infiltration %	91.83%
	Required Bottom Area	121 SF
	Provided Bottom Area	121 SF
TDA C – CAVFS	Facility Type	CAVFS
	Required Infiltration %	91%
	Provided Infiltration %	91.22%
	Required Length	315 LF
	Provided Length	315 LF

Table 10 – Water Quality Facilities Summary

B. Phase 2

TDA A: In Phase 2 of the project, the north half of the parking and parent drop-off area in TDA A will require water quality treatment. TDA A will be treated through the use of bioretention cells that are located at the western entrance of the site and in the center island of the parent drop-off zone. If additional water quality features are required, additional Silva Cells and BayFilters will be provided. Water quality treatment calculations for Phase 2 TDA A will be provided during the Phase 2 permitting process.

TDA B: In Phase 2 of the project, the south half of the parking area will require water quality treatment. TDA B will be treated through the use of Silva Cells located throughout the parking lot. Water quality treatment calculations for Phase 2 TDA B will be provided during the Phase 2 permitting process.

TDA C: In Phase 2, the temporary parking will be replaced with non-pollution generation surfaces. The Silva Cell for the service yard will remain.

4.5 Stormwater Conveyance Analysis and Design

A. Phase 1

Conveyance analysis and design will be performed using King County Backwater Analysis (KCBW) and the outputs from the WWHM2012 model. Results will be provided in the final Phase 1 report.

B. Phase 2

Conveyance analysis and design will be performed using KCBW and the outputs from the WWHM2012 model. Results will be provided in the final Phase 2 report.

5.0 Stormwater Pollution Prevention

The project will provide temporary and permanent BMPs per the Construction Stormwater Pollution Prevention Plan (CSWPPP) outlined in Section 5.1 to meet MR 2. The CSWPPP narrative provided below will be further developed in a separate report and maintained by the contractor during Phase 1 and Phase 2 construction. An Erosion and Sediment Control Plan will be provided with the permit drawings. In addition, the project will provide Source Control of Pollution BMPs, both during construction and post construction, as outlined in Section 5.2 and to meet MR 3.

5.1 Construction Stormwater Pollution Prevention Plan Narrative

The project will provide both temporary and permanent BMPs during construction to meet MR 2 per the *Drainage Manual*, Volume II. The narrative and plan will be provided to the contractor, who will be responsible for meeting the requirements of the NPDES CSWGP, including maintaining and managing the CSWPPP for both Phase 1 and Phase 2 construction.

Thirteen Required Elements

- 1. Preserve Vegetation/Mark Clearing Limits The contractor shall mark clearing limits as delineated on the Temporary Erosion and Sedimentation Control (TESC) plan prior to construction. The contractor shall use the following BMPS:
 - BMP C101: Preserving Natural Vegetation
 - BMP C102: Buffer Zones
 - BMP C103: High Visibility Plastic or Metal Fence
 - BMP C104: Stake and Wire Fence
- 2. Establish Construction Access Construction entrances and road/parking areas shall comply with the following BMPs:
 - BMP C105: Stabilized Construction Entrance
 - BMP C106: Wheel Wash
 - BMP C107: Construction Road/Parking Area Stabilization
- Control Flow Rates Flow rates will be controlled by use of temporary facilities, including temporary sediment ponds per BMP C241 and/or portable sedimentation tanks. Calculations for sizing the temporary facilities are provided in Appendix G for Phase 1 and

Phase 2. The outlets from the facilities will be monitored and/or plugged to prevent downstream discharge of pollution.

- 4. Install Sediment Controls The contractor shall install a combination of the following BMPs for controlling sediment:
 - BMP C233: Silt Fence
 - BMP C234: Vegetated Strip
 - BMP C235: Straw Wattles
 - BMP C241: Temporary Sediment Pond
 - BMP 250: Construction Stormwater Chemical Treatment
 - BMP 251: Construction Stormwater Filtration
- 5. Stabilize Soils The contractor shall provide temporary and permanent soil stabilization BMPs per the following:
 - BMP C120: Temporary and Permanent Seeding
 - BMP C121: Mulching
 - BMP C123: Plastic Covering
 - BMP C124: Sodding
 - BMP C125: Topsoiling
 - BMP C140: Dust Control
- 6. Protect Slopes Slopes shall be protected per the following BMPs:
 - BMP C120: Temporary and Permanent Seeding
 - BMP C200: Interceptor Dike and Swale
 - BMP C204: Pipe Slope Drains
 - BMP C206: Level Spreader
 - BMP C207: Check Dams
- 7. Protect Drain Inlets Inlet protection per BMP C220 shall be provided at all proposed and existing catch basins within the project limits and immediately downstream.
- 8. Stabilize Channels and Outlets All temporary and permanent channels shall be stabilized and protected per BMP C202: Channel Lining and BMP C209: Outlet Protection.
- 9. Control Pollutants The contractor shall provide BMPs to control pollutants at the source, including BMP C151: Concrete handling and C152: Sawcutting and Surfacing Pollution Prevention. Contractor shall also provide source controls, as outlined in Section 5.2.
- 10. Control Dewatering All sediment-laden water from excavation dewatering will be directed to sediment controls per Element 4 above.
- 11. Maintain BMPs The contractor shall be responsible for implementing, inspecting, and maintaining all BMPs. BMPs shall be inspected on a regular basis and within 24 hours of a storm event, and maintained as necessary. Inspection and maintenance records shall be kept onsite. All temporary BMPs shall be removed within 30 days after achieving final site stabilization or when BMPs are no longer necessary.
- 12. Manage the Project The contractor shall be responsible for managing the project, including phasing work to limit areas of disturbance, inspecting and monitoring BMPs as outlined in Element 11, and maintaining an updated TESC plan. The TESC plan and

inspection/maintenance reports shall be kept onsite. The TESC plan shall be updated to reflect changing site conditions.

 Protect Low Impact Development BMPs – The contractor shall be responsible for implementing, inspecting, and maintaining all BMPs. BMPs shall be inspected on a regular basis and maintained as necessary. Inspection and maintenance records shall be kept onsite.

5.2 Source Control of Pollution BMPs

In addition to the above construction BMPs, the project will provide the following permanent Source Control of Pollution BMPs per Volume IV of the *Drainage Manual*.

Source Control BMPs:

- BMPs for Landscaping and Lawn/Vegetation Management
- BMPs for Maintenance of Stormwater Drainage and Treatment Systems
- BMPs for Parking and Storage of Vehicles and Equipment
- BMPs for Roof/Building Drains at Manufacturing and Commercial Buildings

A full copy of each of these sections will be provided in Appendix H and to the owner as part of the Operation and Maintenance Manual.

6.0 Special Reports and Studies

See Appendix D for the following information:

- Subsurface Exploration and Preliminary Geotechnical Engineering Report by Associated Earth Sciences, Inc., dated January 14, 2015.
- Geotechnical Addendum Additional Explorations by Associated Earth Sciences, Inc., dated September 26, 2016.

7.0 Other Permits

A Construction Stormwater General Permit (CSWGP) permit through the Washington State Department of Ecology will be required for the project. SEPA is required and will be submitted through a separate permit.

8.0 Operation and Maintenance Manual

Onsite stormwater management, flow control, water quality, and conveyance systems are maintained and operated by the owner. An Operation and Maintenance Manual was developed for the permanent stormwater controls and is provided in Appendix H. The Operation and Maintenance Manual includes the following items: description of facilities, identification and description of maintenance tasks, frequency of each task, and maintenance activity logs. In addition, copies of Source Controls are included in the Operation and Maintenance Manual, which is provided.

9.0 Declaration of Covenant for Privately Maintained Stormwater Facilities

A declaration of covenant can be provided, if required.

10.0 Bond Quantities Worksheet

A Bond Quantities Worksheet for this project has not been included. Per the Revised Code of Washington (RCW), schools cannot use capital funds to post bonds. The necessary bonds for construction will be posted by the contractor, if required.

11.0 Conclusion

This project will be broken into two phases and, after completion of Phase 2, the project will meet the requirements of the 2012 Washington State Department of Ecology *Stormwater Management Manual for Western Washington amended in 2014 (Drainage Manual)*, City of Lynnwood Standard Plans, and Lynnwood Municipal Code (LMC) Chapter 13.40, Stormwater Management. This report documents how the project site will meet Minimum Requirements (MRs) 1 through 9.

This analysis is based on data and records either supplied to or obtained by AHBL. These documents are referenced within the text of the analysis. The analysis has been prepared using procedures and practices within the standard accepted practices of the industry.

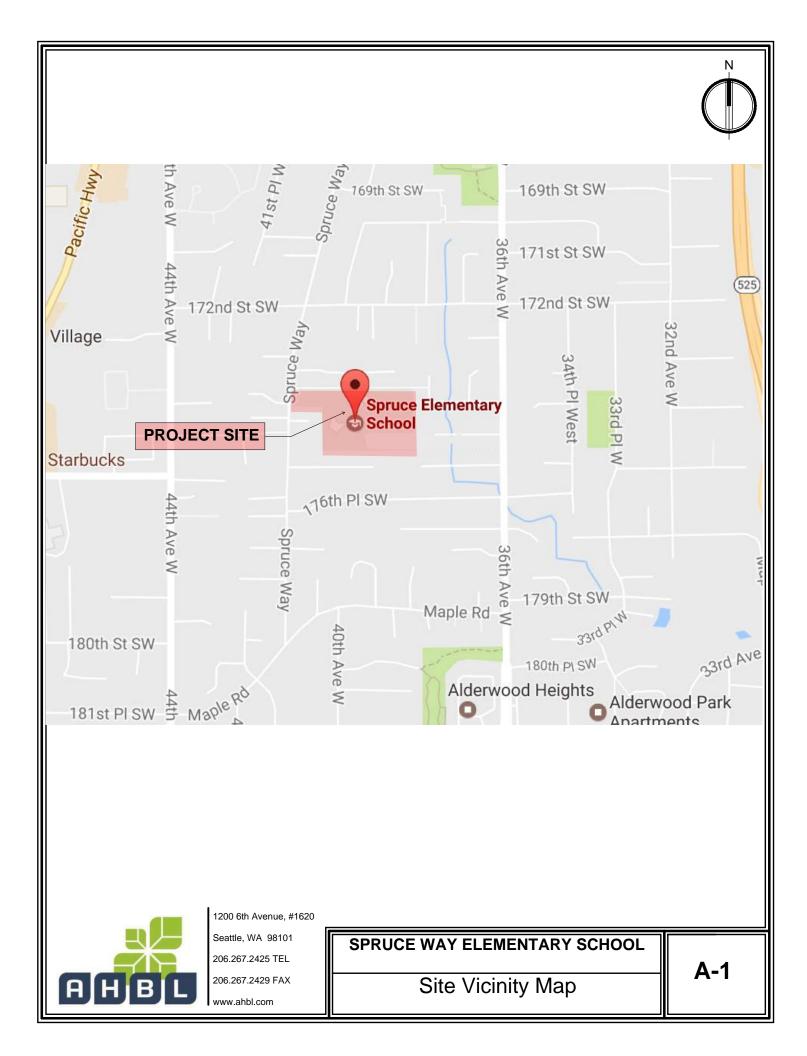
AHBL, Inc.

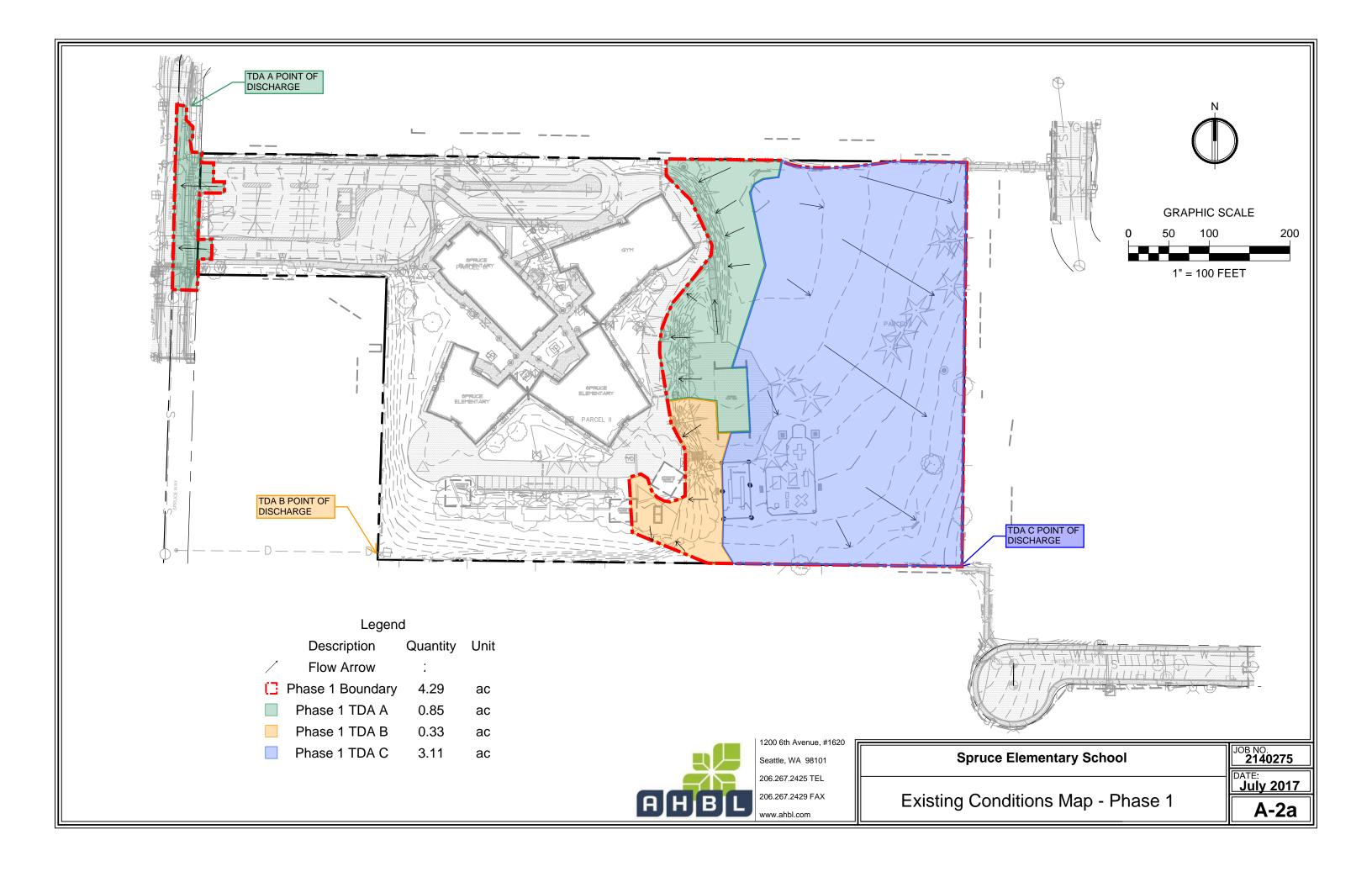
Jared McDonald, EIT Project Engineer

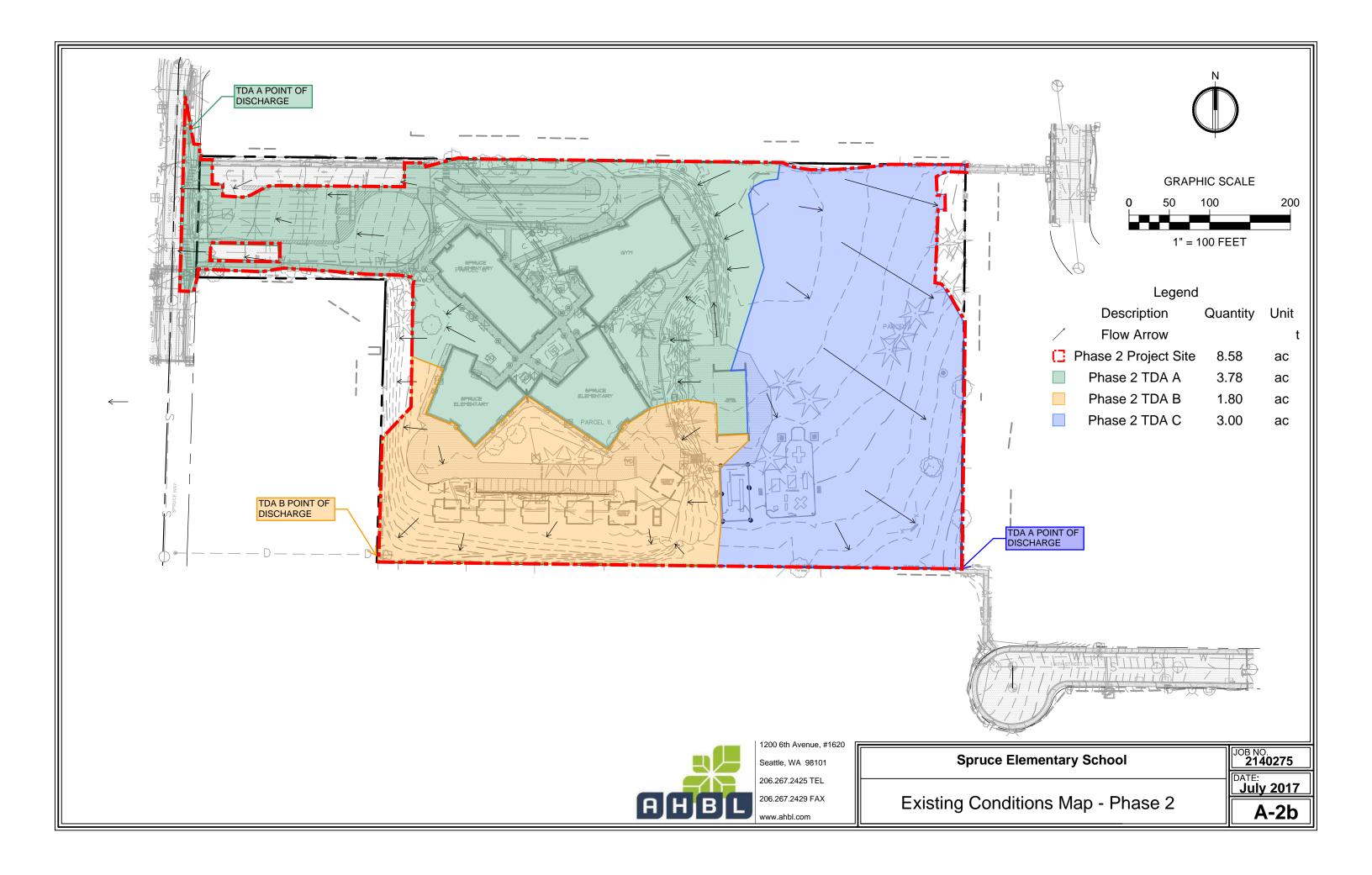
JMM/lsk

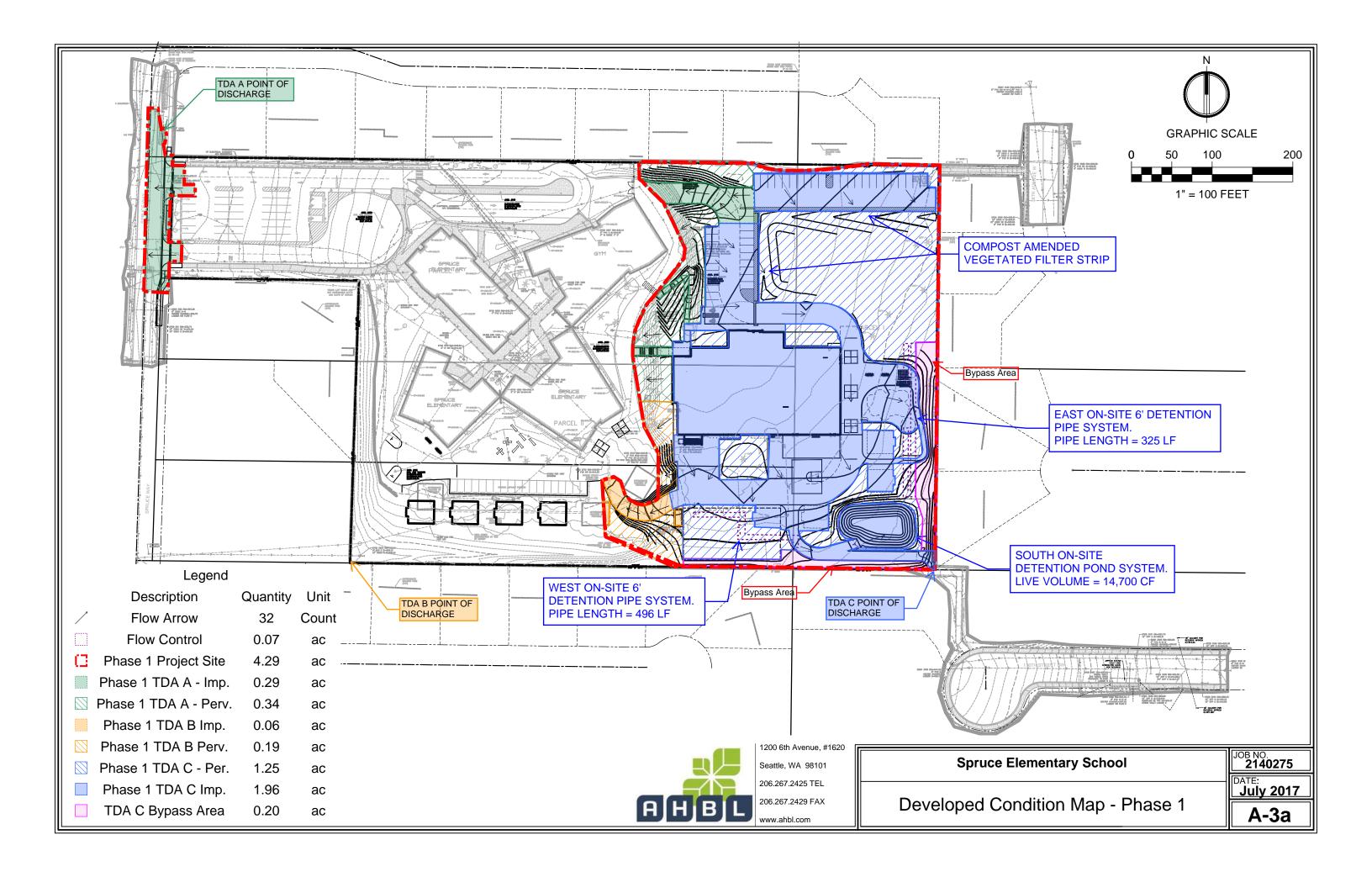
September 2017

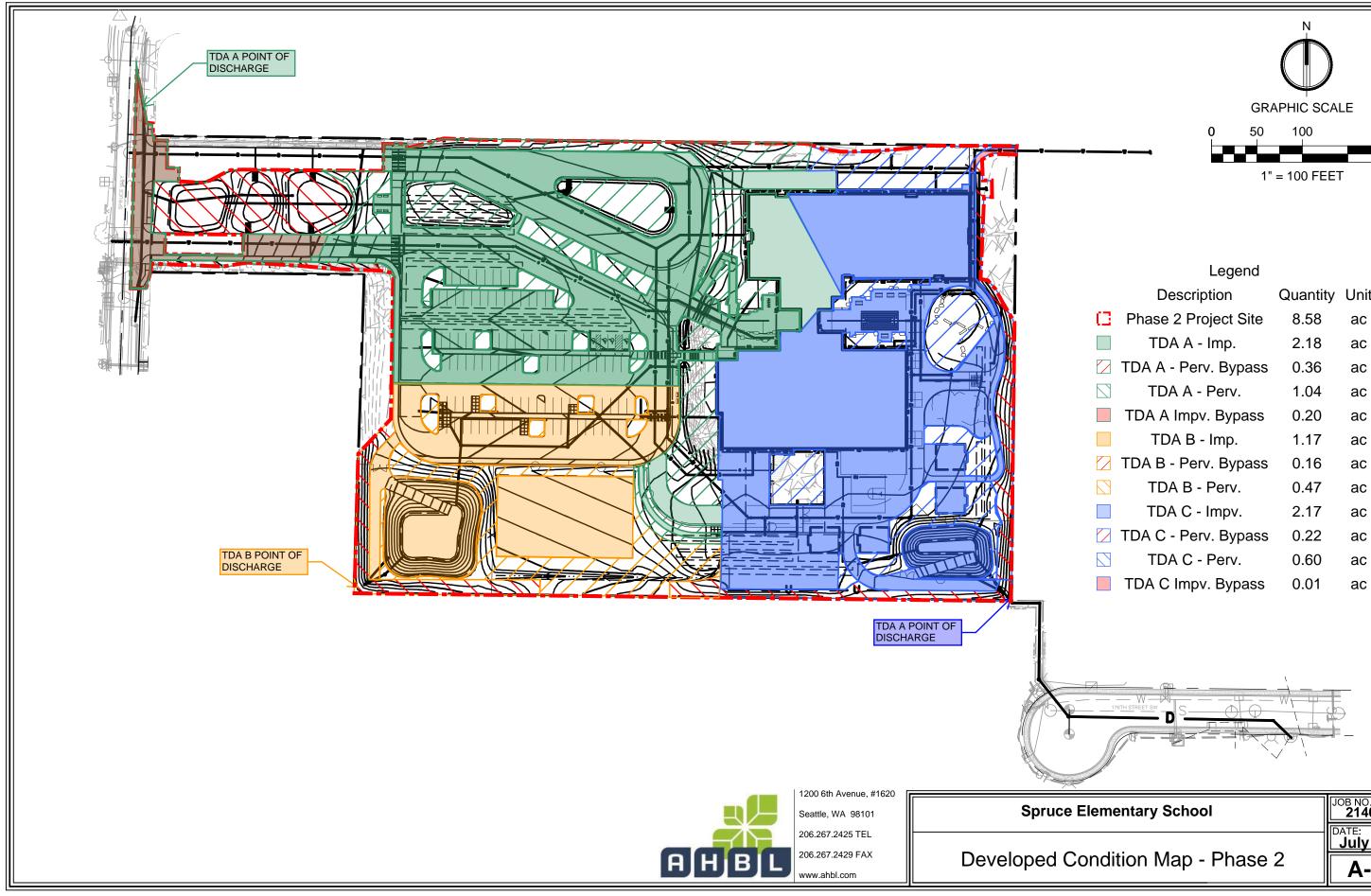
Q:\2014\2140275\WORDPROC\Reports\Drafts\20170908 Rpt (SSP) 2140275.10 (wp draft).docx

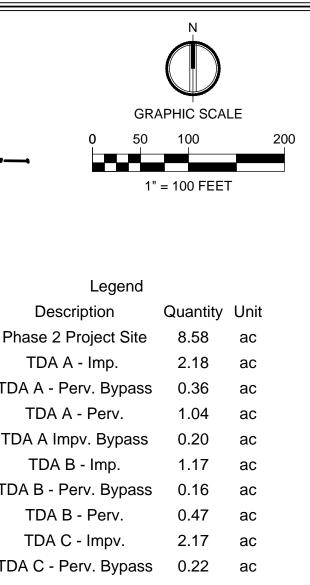


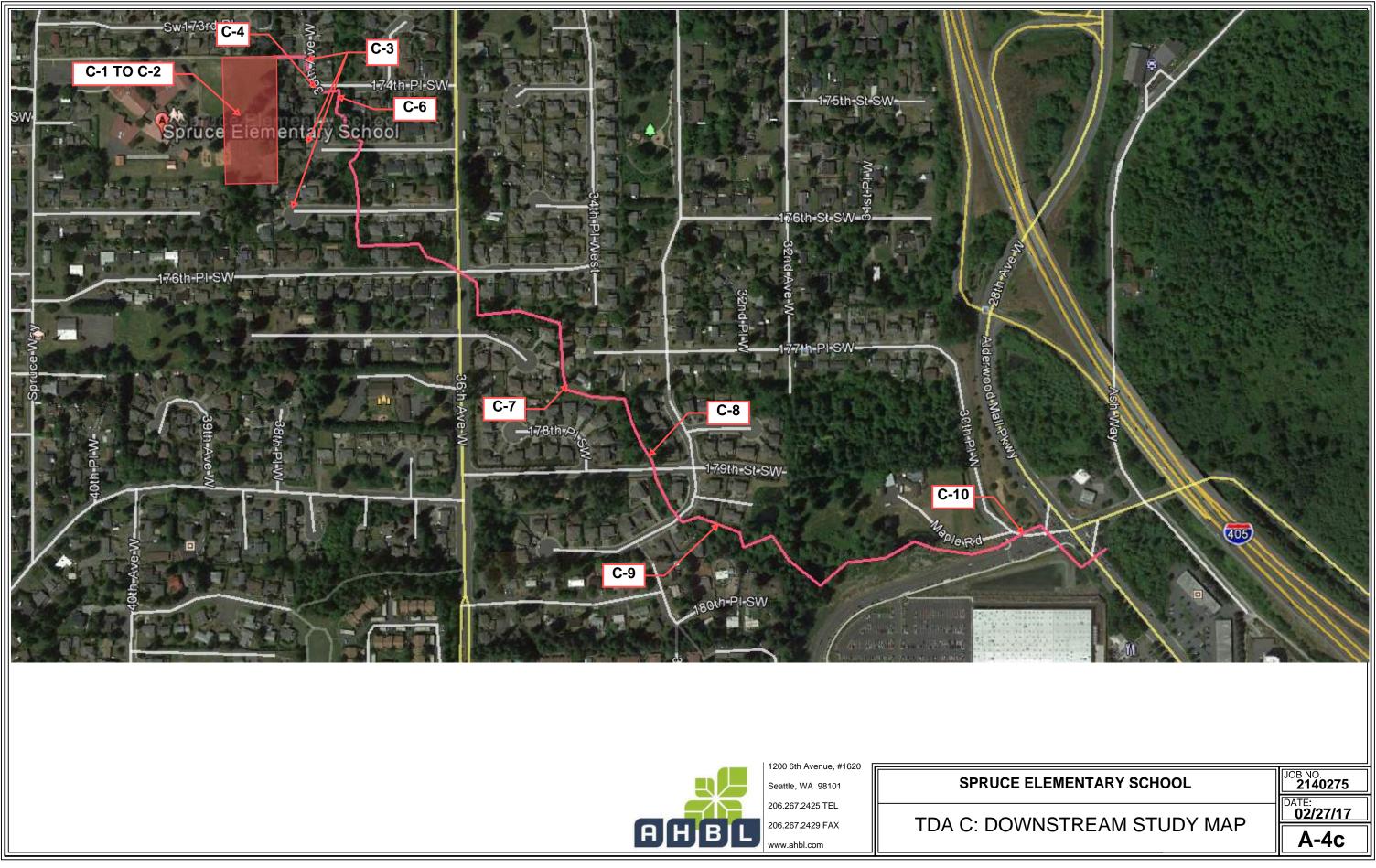

Appendix A


Maps

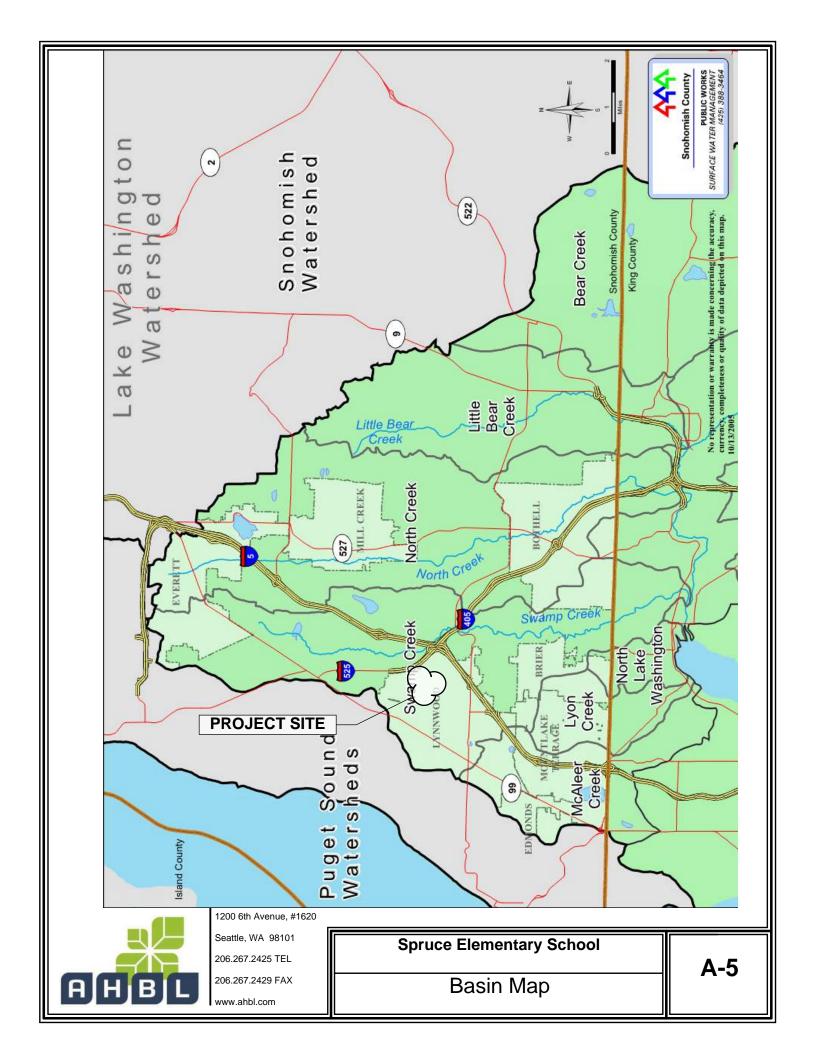

A-1	Site Vicinity Map
A-2a	Existing Conditions Map – Phase 1
A-2b	. Existing Conditions Map – Phase 2
A-3a	. Developed Conditions Map – Phase 1
A-3b	. Developed Conditions Map – Phase 2
A-4a	. Downstream Study Map TDA A
A-4b	Downstream Study Map TDA B
A-4c	Downstream Study Map TDA C
A-5	Basin Map
A-6a	Drainage Inventory Map TDA A
A-6b	Drainage Inventory Map TDA B
A-6c	Drainage Inventory Map TDA C
A-7a	SnoScape Map
A-7b	Lynnwood Sensitive Areas Map
A-8	WDFW Priority Habitats and Species Map
A-9	303(d) Listed Water Bodies Map
A-10	Flood Insurance Rate Map (FIRM)
A-11	Web Soil Survey Map

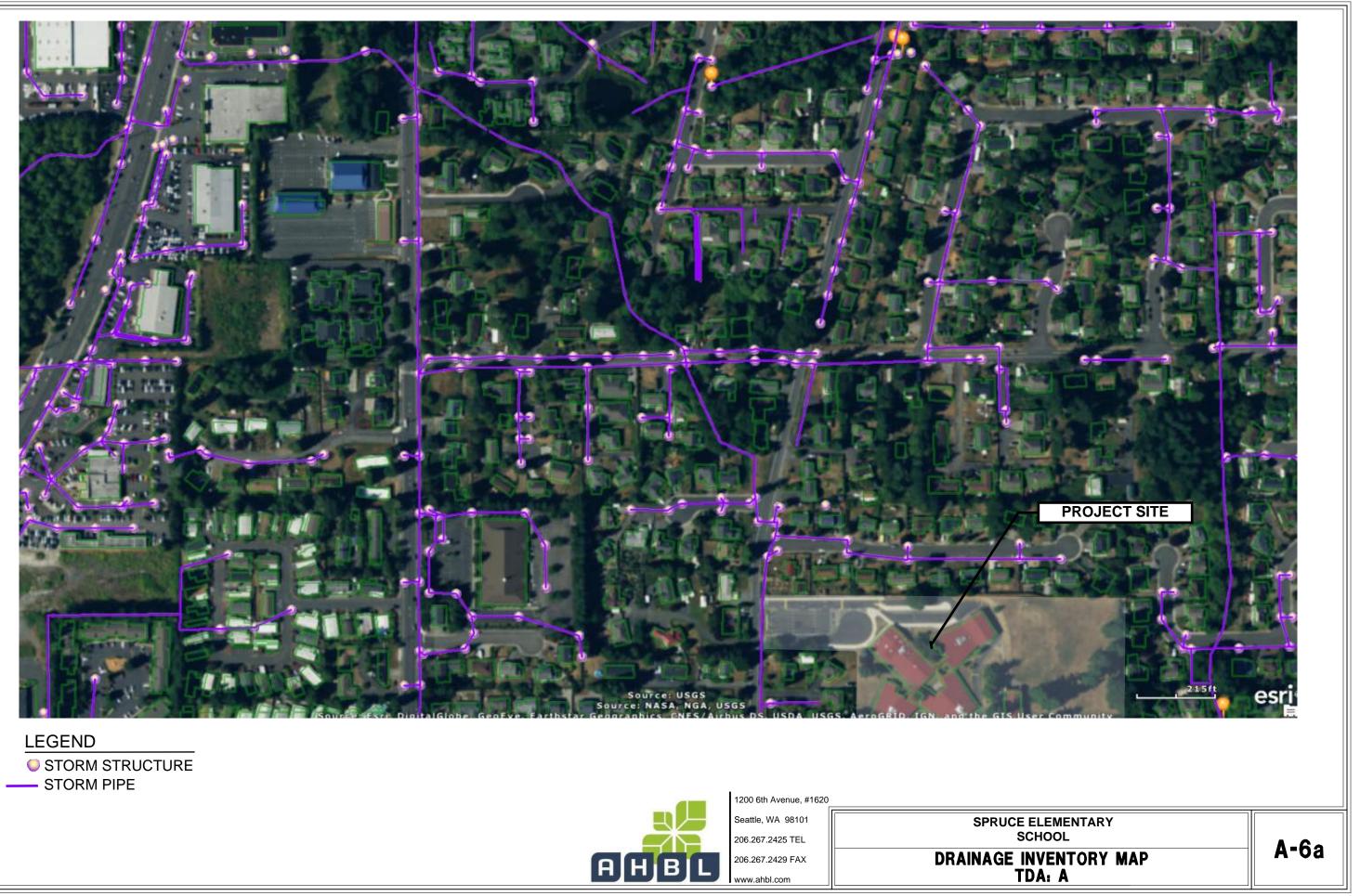


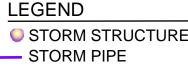


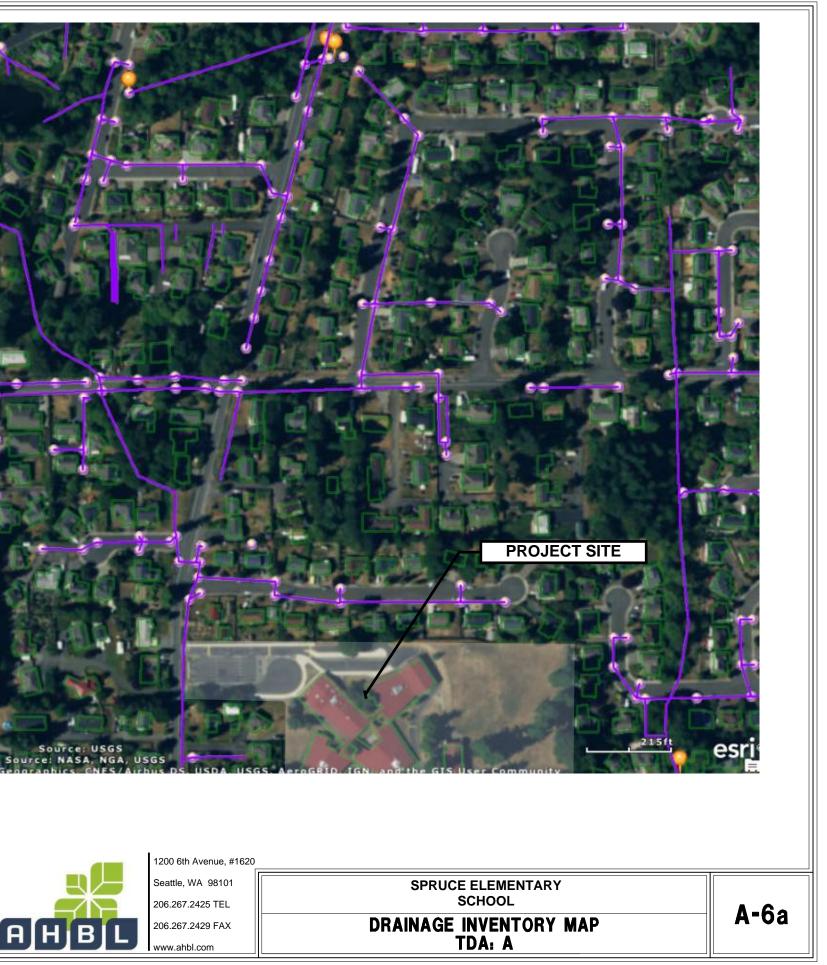


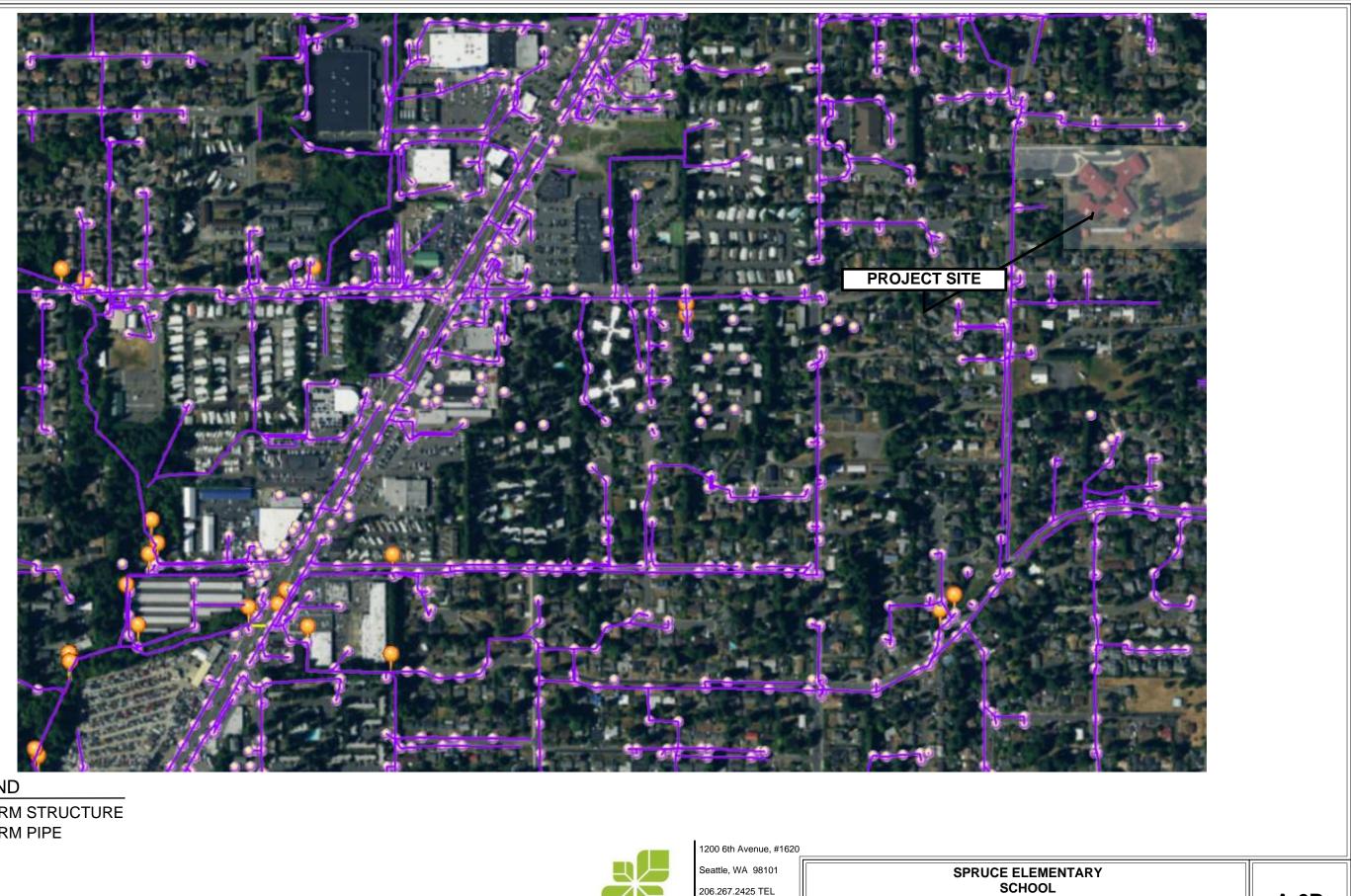
JOB NO. 2140275 DATE: July 2017 A-3b

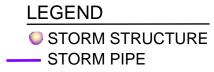


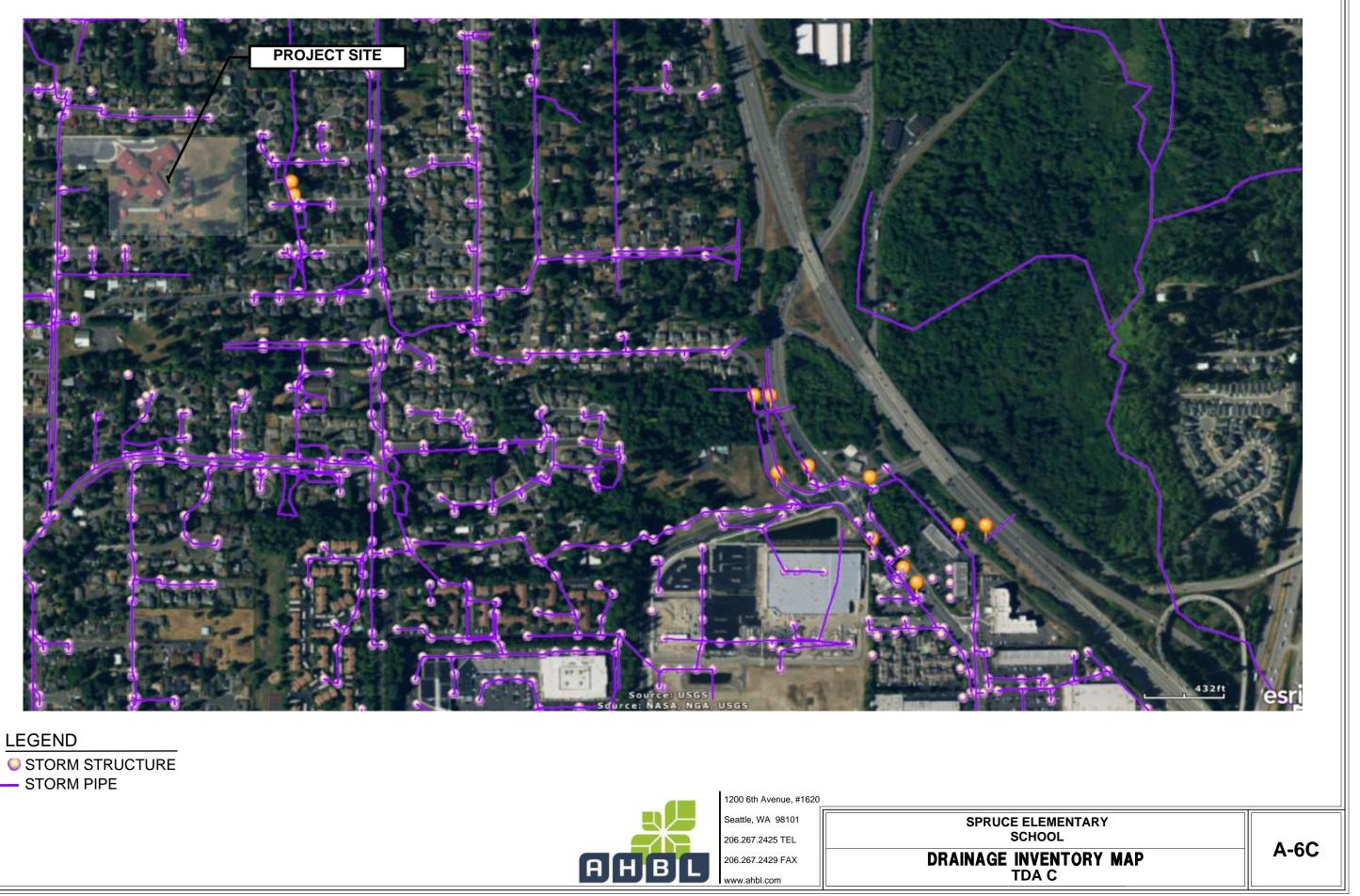


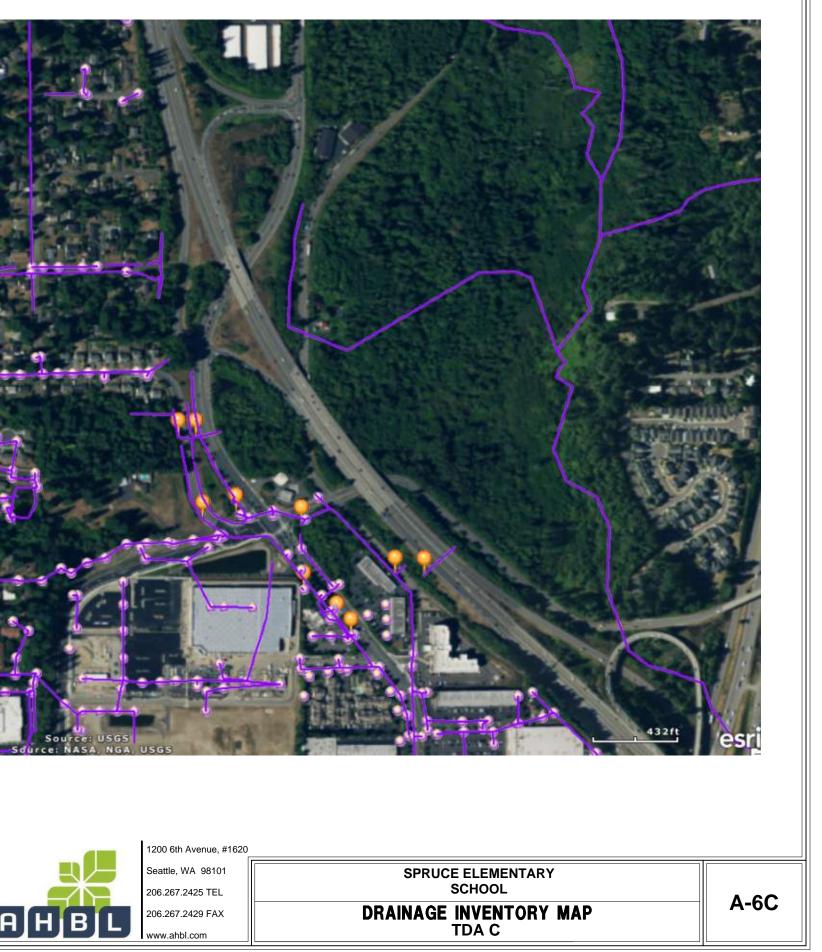


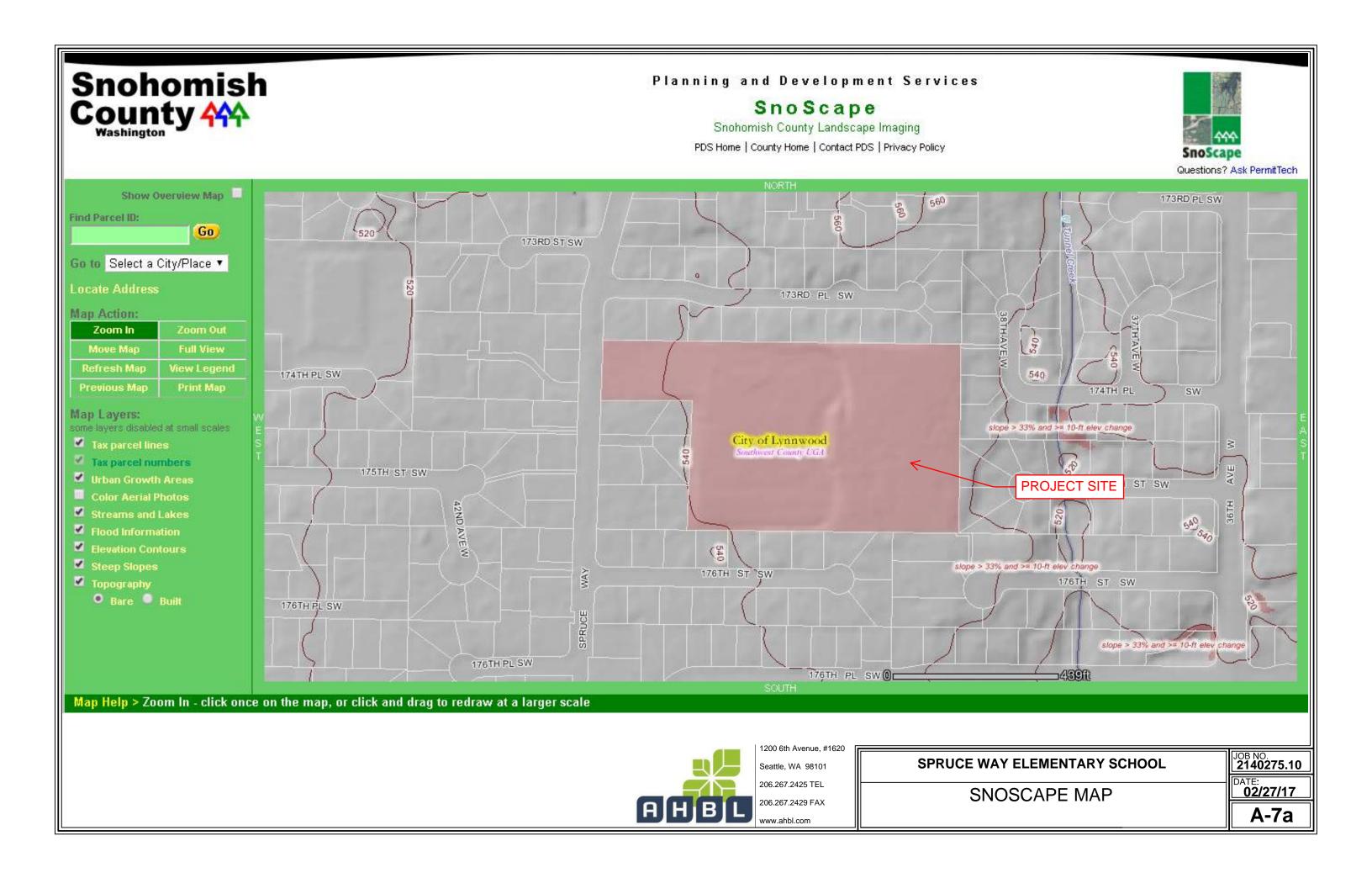


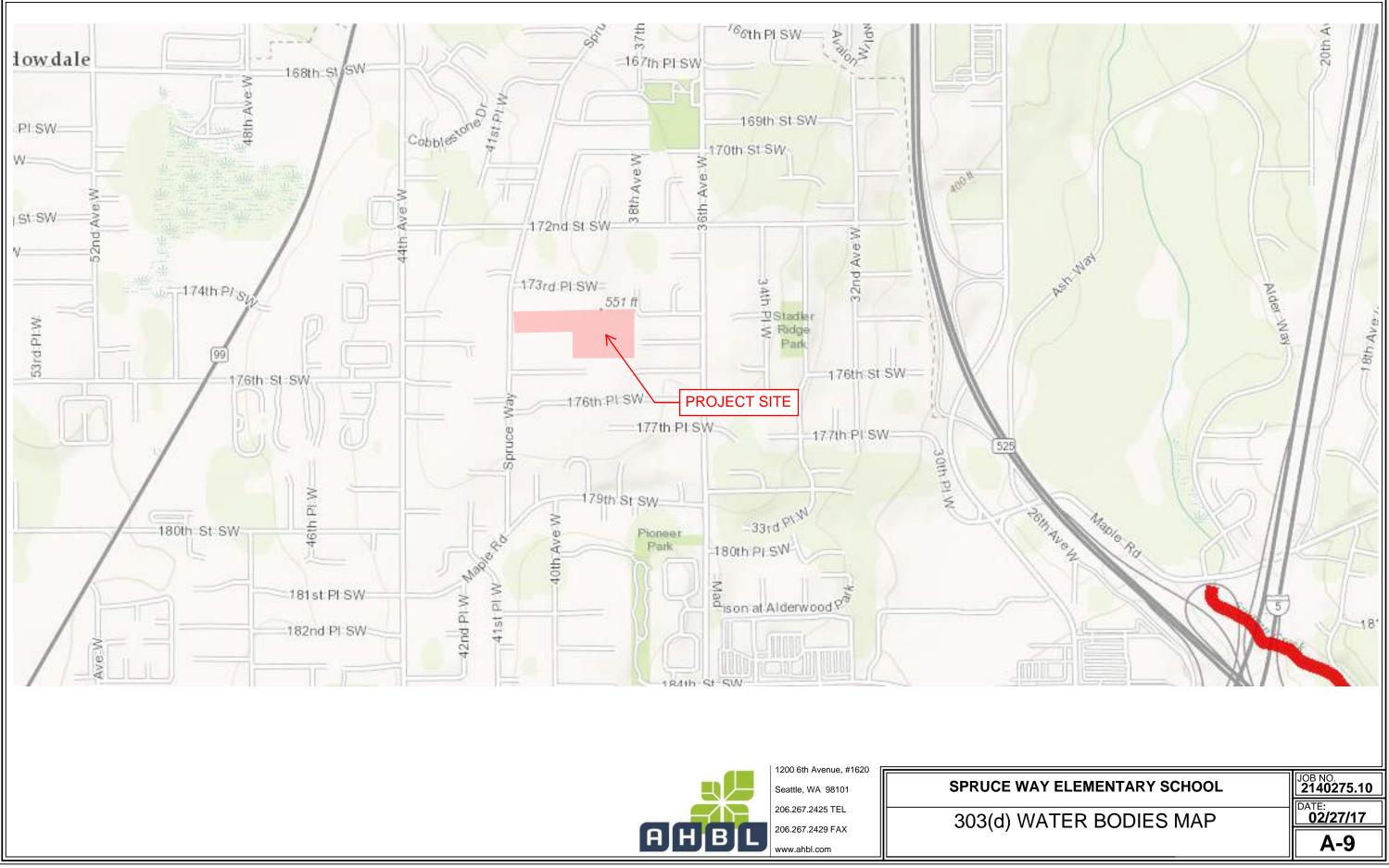


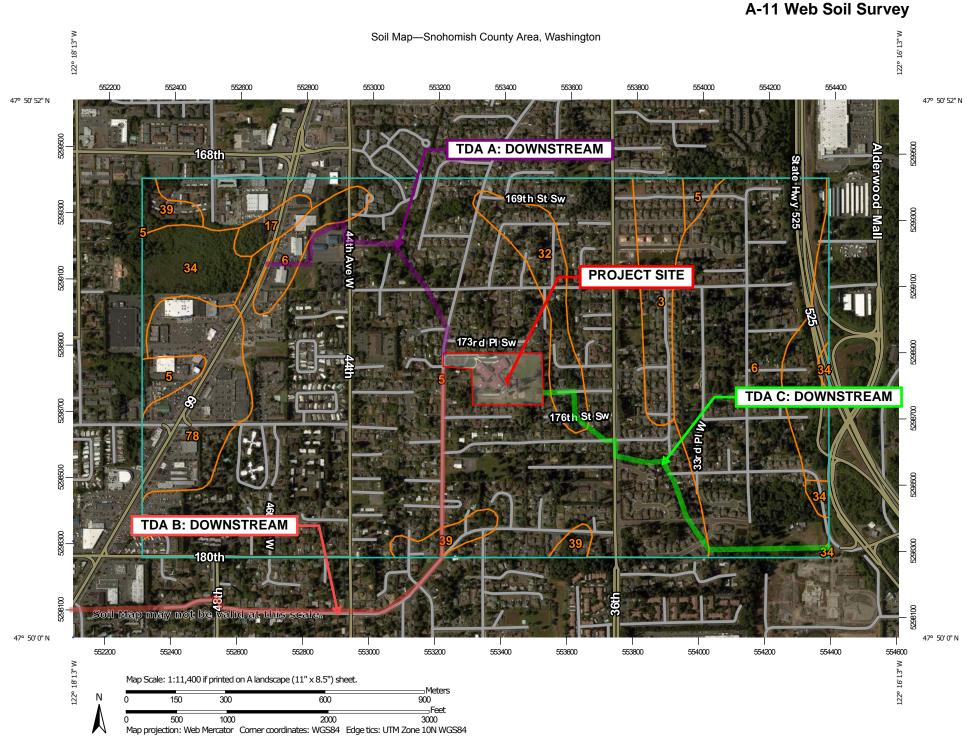


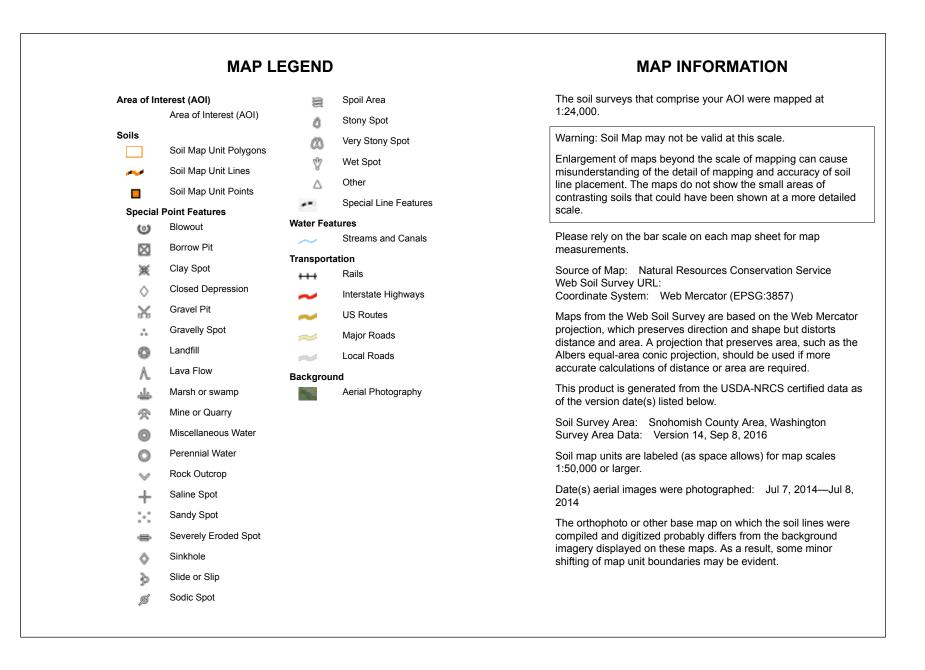





DRAINAGE INVENTORY MAP TDA B


STORM STRUCTURE ----- STORM PIPE





USDA Natural Resources

Conservation Service

USDA

Map Unit Legend

Snohomish County Area, Washington (WA661)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
3	Alderwood gravelly sandy loam, 15 to 30 percent slopes	20.0	3.4%	
5	Alderwood-Urban land complex, 2 to 8 percent slopes	367.6	62.1%	
6	Alderwood-Urban land complex, 8 to 15 percent slopes	113.8	19.2%	
17	Everett very gravelly sandy loam, 0 to 8 percent slopes	5.0	0.8%	
32	McKenna gravelly silt loam, 0 to 8 percent slopes	18.6	3.1%	
34	Mukilteo muck	19.9	3.4%	
39	Norma loam	12.0	2.0%	
78	Urban land	35.3	6.0%	
Totals for Area of Interest		592.1	100.0%	

Offsite Analysis Drainage System Tables

B-1	TDA A – Northwest TDA Drainage Table
B-2	TDA B – Southwest TDA Drainage Table
B-3	TDA C – East TDA Drainage Table

Figure B-1: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA A - Northwest Drainage Basin

Symbol	Drainage	Drainage Component	Slopa	Distance	Evicting	Potential	Observations of field inspector
Symbol	Drainage Component Type,	Drainage Component Description	Slope	from site	Existing Problems	Potential Problems	resource reviewer, or resident
	Name, and Size	Description		discharge	FIODIeIIIS	Froblems	resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floo destruction, sc	nder capacity, ponding, ding, habitat or organism ouring, bank sloughing, incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts
A-1	Sheet Flow	Runoff Sheet Flows west from SES to Spruce Way	4%	0			
A-2	Ditch	Stormwater is conveyed north through a ditch	1%	60			
A-3	12" Concrete Pipe	Stormwater is piped from ditch to ditch using a 12" concrete pipe	1%	105			
A-4	Ditch	Stormwater is conveyed north through a ditch	1%	137			
A-5	12" Concrete Pipe	Stormwater is piped from ditch to ditch using a 12" concrete pipe	1%	164			
A-6	Ditch	Stormwater is conveyed north through a ditch	1%	209			
A-7	12" Concrete Pipe	Stormwater exits the ditch in a 12" concrete pipe that crosses 173rd place and empties into a type 1 catch basin	1%	278			
A-8	12" Concrete Pipe	Stormwater is conveyed north through a 12" concrete pipe to a type 2 catch basin.	1%	309			
A-9	12" CMP	Drainage is conveyed west to a catch basin in the east flowline along Spruce Way	1%	321			
A-10	12" CMP	Stromwater is conveyed west to a type 2 catch basin on the west side of the street.	1%	887			
A-11	12" CMP	Drainage is piped across 173rd Street SW and empties into a swale in the NW corner of the 173rd Street and Spruce Way intersection	20%	426			

Figure B-1: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA A - Northwest Drainage Basin

Symbol	Drainage	Drainage Component	Slope	Distance	Existing	Potential	Observations of field inspector
	Component Type, Name, and Size	Description		from site discharge	Problems	Problems	resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floc destruction, sc	under capacity, ponding, oding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts
A-12	Creek/Ditch	Drainage weaves its way northwest between properties in a creek/ditch to a catch basin on the south side of 172rd St.	20%	935			
A-13	18" CMP	Drainage is piped across 172rd Street Street to a type 1 catch basin on the north side of the street.	10%	961			
A-14	Creek/Ditch	Drainage weaves its way northwest between properties in a creek/ditch and emptlies into a catch basin at the intersection of Coblestone Driveway and 44th AVE West	5%	2017			
A-15	18" CMP	Drainage crosses to the west side of 44th AVE W into what is presumed to be a type 2 catch basin. The catch basin was not observed.	2%	2071			
A-16	36" CMP	Stormwater is piped into a creek/ditch	15%	2183			
A-17	Creek/Ditch	The runoff is convey out of the wetland into the public storm system in SR 99.	5%	3004			

Figure B-1: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA A - Northwest Drainage Basin

Symbol	Drainage Component Type, Name, and Size	Drainage Component Description	Slope	Distance from site discharge	Existing Problems	Potential Problems	Observations of field inspector resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floo destruction, sc	nder capacity, ponding, ding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts

Figure B-1: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA B - Southwest Drainage Basin

Symbol	Drainage	Drainage Component	Slope	Distance	Existing	Potential	Observations of field inspector
	Component Type, Name, and Size	Description		from site discharge	Problems	Problems	resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floo destruction, so	under capacity, ponding, oding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts
B-1	4" PVC	Runoff is conveyed west in a storm easement from SES to a ditch along Spruce Way.	4%	0			
B-2	12" Concrete Culvert	Stormwater is discharged to the south end of a culvert and connects into a catch basin	1%	286			
B-3	12" CPEP	Stormwater is piped throug the catch basin and connects into another catch basin on Spruce Way.	1%	471			
B-4 - B-6	12" CPEP pipe to ditch to 12" culverts	Stormwater is piped through the catch basin and discharges to a ditch along Spruce Way. The ditch is intermittently separated by culverts at driveway locations.	1%	1398			
B-7 - B-8	Ditches and 12" Concrete culverts	Stromwater goes through a series of ditches and culverts until Spruce Way intersects with Maple Road. A concrete culvert directs the stormwater across Spruce Way to a catch basin.	1%	1439			
B-9	12" CMP with trash grate	Stormwater connects from the catch basin to a detention facility owned by the City of Lynnwood on Maple Road.	1%	1893			
B-10	24" Concrete	Drainage flows west along the south side of Maple Road through a series of catch basins and 24" concrete pipe.	2%	4237			
B-11	24" Concrete Pipe	Drainage is directed into a Contech storm system on the corner of 181st PI SW and 48th Ave W	2%	4237			
B-12	24" Concrete Pipe	Drainage flows west along the south side of 181st PI W.	2%	2889			
B-13	Ditch/Creek	Drainage flows west until joining the conveyance system along Hwy 99.	20%	5834			

Figure B-1: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA B - Southwest Drainage Basin

Symbol	Drainage Component Type, Name, and Size	Drainage Component Description	Slope	Distance from site discharge	Existing Problems	Potential Problems	Observations of field inspector resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floo destruction, sc	inder capacity, ponding, oding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts

Figure B-3: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA C - Southeast Drainage Basin

Symbol	Drainage	Drainage Component	Slope	Distance	Existing	Potential	Observations of field inspector
Cynibol	Component Type,	Description	Ciope	from site	Problems	Problems	resource reviewer, or resident
	Name, and Size			discharge			
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floc destruction, sc	Inder capacity, ponding, oding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts
C-1	Sheet Flow	A small portion of the northeast corner of the site sheet flows east from SES towards the properties adjacent to 38th AVE West.	10%	0			
C-2	Sheet Flow	The runoff either sheet flows through the property or is picked up by the onsite conveyance. In any event, the stormwater discharges to the catch basin within the west side of 38th AVE West.	5%	60			
C-3	12" Concrete Pipe	Stormwater flows along the gutter to a catch basin on the west side of 38th AVE West.	5%	210			
C-4	12" Concrete Pipe	Drainage is tight lined east to another catch basin	5%	293			
C-5	15" Concrete Pipe	Drainage is tight lined south to tunnel creek	5%	321			
C-6	Creek	Drainage flow south within Tunnel Creek, crossing 175th Street SW, and 176th Street SW. The creek flows in a culvert from the NW corner of 176th Place SW and 36th AVE W and daylights into the southeast corner.	1%	1614			
C-7	Creek	The daylighted creek continues to weave through properties in the southeast direction crossing 179th St SW in a culvert	1%	2939			
C-8	Creek	From the culvert, the creek again weaves through properties in the southeast direction crossing 33rd PI W in a culvert.	1%	3159			
C-9	Creek	After crossing 33rd PI W, the creek flows east to its intersection with the north side of 33rd AVE West.	1%	4545			
C-10	Creek	Stormwater flows beside 33rd AVE to a culvert which conveys the creek east across Alderwood Parkway.	1%	5248			

Figure B-3: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA C - Southeast Drainage Basin

Symbol	Drainage Component Type, Name, and Size	Drainage Component Description	Slope	Distance from site discharge	Existing Problems	Potential Problems	Observations of field inspector resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floo destruction, sc	nder capacity, ponding, ding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts

Figure B-3: OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE TDA C - Southeast Drainage Basin

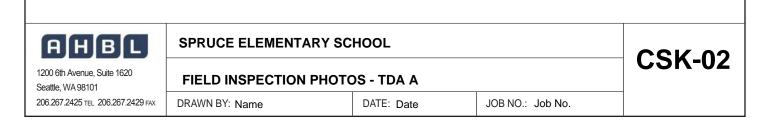
Symbol	Drainage Component Type, Name, and Size	Drainage Component Description	Slope	Distance from site discharge	Existing Problems	Potential Problems	Observations of field inspector resource reviewer, or resident
see map and photos	Type: sheet flow, swale, stream, channel pipe, pond; Size: diameter, surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1 mi = 5,280 ft	overtopping, floo destruction, sc	nder capacity, ponding, ding, habitat or organism ouring, bank sloughing, , incision, other erosion	tributary area, likelihood of problem, overflow pathways, potential impacts

Appendix C

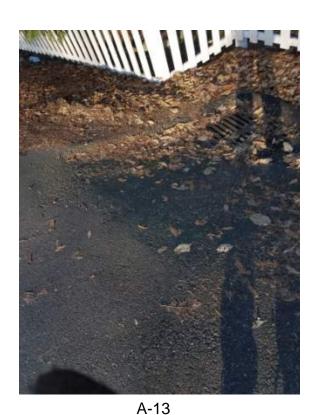
Field Inspection Photos

Stormwater Site Plan Report Spruce Elementary School 2140275.10

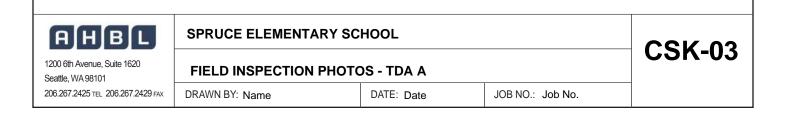
A-6


A-7

A-9

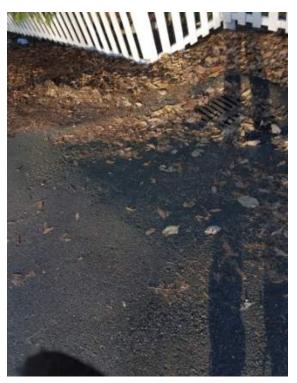


A-10

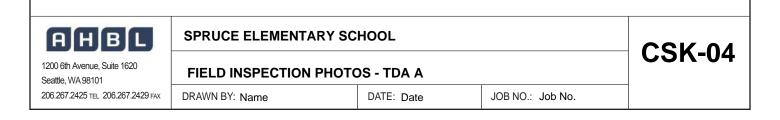


A-11

A-15

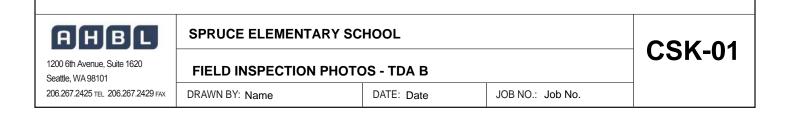


A-16


A-17

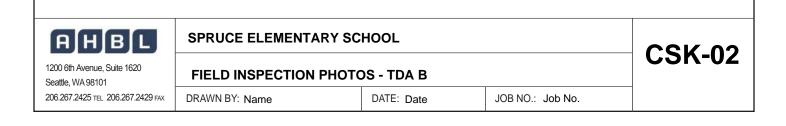
A-18

B-1

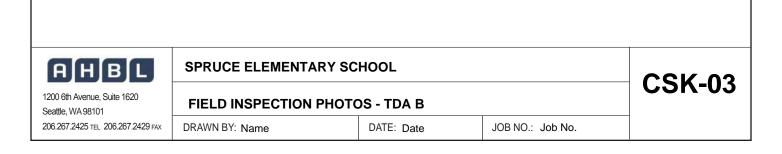


B-2

B-5

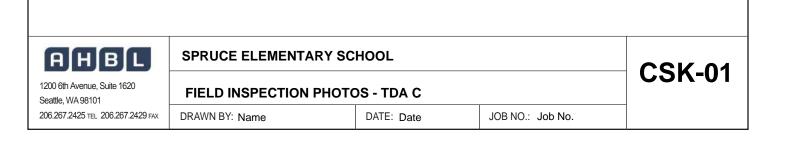

B-6

B-7



B-9

B-11



C-6

C-10

Appendix D

Subsurface Exploration and Preliminary Geotechnical Engineering Report

By Associated Earth Sciences, Inc., dated January 14, 2015

Geotechnical Addendum – Additional Explorations

By Associated Earth Sciences, Inc., dated September 26, 2016

January 14, 2015 Project No. KE140562A

Edmonds School District No. 15 20420 68th Avenue West Lynnwood, Washington 98124

Attention: Mr. Matthew Finch

Subject: Subsurface Exploration and Preliminary Geotechnical Engineering Report Proposed Renovations and Additions Spruce Elementary School Lynnwood, Washington

Dear Mr. Finch:

We are pleased to present these copies of our preliminary geotechnical engineering report for the referenced project. This report summarizes the results of our subsurface exploration, geologic hazards, and geotechnical engineering studies, and offers preliminary recommendations for the design and development of the proposed project. At the time this report was prepared, the site was in the early planning stage and no project design or detailed concept drawings had been prepared. We recommend that we be allowed to review the recommendations contained in this report and modify them, if necessary, when a project plan has been developed.

We have enjoyed working with you on this study and are confident that the recommendations presented in this report will aid in the successful completion of your project. If you should have any questions or if we can be of additional help to you, please do not hesitate to call.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington

Kurt D. Merriman, P.E. Senior Principal Engineer

KDM/pc - KE140562A2 - Projects\20140562\KE\WP

Geotechnical Engineering

Water Resources

Environmental Assessments and Remediation

Sustainable Development Services

Geologic Assessments

Associated Earth Sciences, Inc.

Serving the Pacific Northwest Since 1981

Subsurface Exploration and Preliminary Geotechnical Engineering Report

PROPOSED RENOVATIONS AND ADDITIONS SPRUCE ELEMENTARY SCHOOL

Lynnwood, Washington

Prepared for

Edmonds School District No. 15

Project No. KE140562A January 14, 2015

SUBSURFACE EXPLORATION AND PRELIMINARY GEOTECHNICAL ENGINEERING REPORT

PROPOSED RENOVATIONS AND ADDITIONS SPRUCE ELEMENTARY SCHOOL

Lynnwood, Washington

Prepared for: Edmonds School District No. 15 20420 68th Avenue West Lynnwood, Washington 98124

Prepared by: Associated Earth Sciences, Inc. 911 5th Avenue Kirkland, Washington 98033 425-827-7701 Fax: 425-827-5424

> January 14, 2015 Project No. KE140562A

I. PROJECT AND SITE CONDITIONS

1.0 INTRODUCTION

This report presents the results of our subsurface exploration, geologic hazards, and preliminary geotechnical engineering studies for the proposed renovations and additions to the Spruce Elementary School. The site location is shown on the "Vicinity Map," Figure 1. The approximate locations of exploration borings completed for this study are shown on the "Site and Exploration Plan," Figure 2. Logs of the subsurface explorations and copies of laboratory test results completed for this study are included in the Appendix.

1.1 Purpose and Scope

The purpose of this study was to provide geotechnical engineering design recommendations to be utilized in the preliminary design of the project. This study included a review of selected available geologic literature, advancing three hollow-stem auger soil borings, and performing geologic studies to assess the type, thickness, distribution, and physical properties of the subsurface sediments and shallow ground water. Geotechnical engineering studies were completed to establish recommendations for the type of suitable foundations and floors, allowable foundation soil bearing, pressure, anticipated foundation and floor settlement, pavement recommendations, and drainage considerations. At the time this report was prepared, infiltration of storm water on-site was not planned and our study was not structured to support storm water infiltration. Based on exploration data contained in this report, storm water infiltration using conventional shallow infiltration strategies is not feasible. This report summarizes our fieldwork and offers preliminary geotechnical engineering recommendations based on our present understanding of the project. We recommend that we be allowed to review the recommendations presented in this report and revise them, if needed, when a project design has been developed.

1.2 Authorization

Authorization to proceed with this study was granted by means of a District purchase order. Our work was completed in general accordance with our scope of work and cost proposal, dated October 1, 2014. This report has been prepared for the exclusive use of Edmonds School District No. 15 and their agents for specific application to this project. Within the limitations of scope, schedule, and budget, our services have been performed in accordance with generally accepted geotechnical engineering practices in effect in this area at the time our report was prepared. No other warranty, express or implied, is made.

2.0 PROJECT AND SITE DESCRIPTION

The project site is that of the existing Spruce Elementary School. The project will include renovation of portions of the existing building, and building additions. At the time this report was prepared, several design concepts were under consideration. Likely areas of new construction include the open landscaped courtyard near the center of the existing building, and existing landscape areas south and east of the existing school buildings.

The existing facility includes an existing group of school buildings near the center of the site, with paved parking areas to the west, play areas to the east, and portable classrooms to the south. Site topography in the building area slopes gently down to the south and west, and appears to have been graded to its current configuration during earlier site development. Slopes near the south property boundary are likely man-made slopes constructed during earlier site development and are approximately 5 feet tall and inclined approximately 2H:1V (Horizontal:Vertical). A slope east of the existing school buildings is inclined approximately 2H:1V and rises approximately 6 to 10 feet to the existing playfields on the east part of the site. Some of these man-made slopes appear to meet the definition for steep slope geologically critical areas in accordance with *Lynnwood Municipal Code* (LMC). Because the slopes are relatively short, relatively gently inclined, and are man-made slopes constructed during earlier site development, we anticipate that any prescriptive buffers or setbacks associated with the slopes can be exempted through provisions of LMC Section 17.10.092.

3.0 SUBSURFACE EXPLORATION

Our subsurface exploration completed for this project included advancing three hollow-stem auger soil borings. The conclusions and recommendations presented in this report are based on the explorations completed for this study. The locations and depths of the explorations were completed within site and budget constraints.

3.1 Exploration Borings

The exploration borings were completed by advancing hollow-stem auger tools with a limited-access, track-mounted drill rig. During the drilling process, samples were obtained at generally 2.5- to 5-foot-depth intervals. The exploration borings were continuously observed and logged by a representative from our firm. The exploration logs presented in the Appendix are based on the field logs, drilling action, and inspection of the samples secured.

Disturbed but representative samples were obtained by using the Standard Penetration Test (SPT) procedure in accordance with *American Society for Testing and Materials* (ASTM):D 1586. This test and sampling method consists of driving a standard, 2-inch outside-diameter, split-barrel sampler a distance of 18 inches into the soil with a 140-pound hammer free-falling a

distance of 30 inches. The number of blows for each 6-inch interval is recorded, and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance ("N") or blow count. If a total of 50 is recorded within one 6-inch interval, the blow count is recorded as the number of blows for the corresponding number of inches of penetration. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils; these values are plotted on the attached exploration boring logs.

The samples obtained from the split-barrel sampler were classified in the field and representative portions placed in watertight containers. The samples were then transported to our laboratory for further visual classification and laboratory testing.

4.0 SUBSURFACE CONDITIONS

Subsurface conditions at the project site were inferred from the field explorations accomplished for this study, visual reconnaissance of the site, and review of selected applicable geologic literature. Because of the nature of exploratory work below ground, extrapolation of subsurface conditions between field explorations is necessary. It should be noted that differing subsurface conditions may sometimes be present due to the random nature of deposition and the alteration of topography by past grading and/or filling. The nature and extent of any variations between the field explorations may not become fully evident until construction.

4.1 Stratigraphy

Surficial Topsoil

Exploration borings encountered approximately 8 to 12 inches of topsoil and grass. Topsoil is not suitable for structural support, and should be stripped from structural areas. Excavated topsoil may be suitable for reuse in landscape areas.

Fill

Existing fill was encountered in one of our exploration borings (EB-3) to a depth of approximately 3 feet below the existing ground surface. The existing fill was observed to be very loose to medium dense. The existing fill was of a similar texture to the existing undisturbed soils on-site. The existing fill is loose and will require removal or other remedial preparation below planned building areas and remedial preparation below planned paving. Excavated existing fill is suitable for reuse in structural fill applications if specifically allowed by project specifications, and if any organic or other deleterious materials are removed. Excavated existing fill material is expected to be wetter than optimum moisture content for compaction

purposes and will require drying during dry site and weather conditions prior to use in compacted fills.

Lodgement Till

Each of the exploration borings encountered native sediments consisting of very dense silty sand with gravel interpreted as Vashon lodgement till. Lodgement till was deposited at the base of an active continental glacier and was compacted by the weight of the overlying glacial ice. Lodgement till is suitable for structural support when properly prepared. Excavated lodgement till material is suitable for use in structural fill applications if suitable moisture conditions are achieved prior to compaction, and if such reuse is specifically allowed by project plans and specifications. At the time of exploration, we estimate that most or all of the lodgement till soils that we observed were above optimum moisture content for compaction in structural fill applications.

Our interpretations of subsurface conditions on-site are different from a published geologic map of the area, as represented by the J.P. Minard, 1983, *Geologic Map of the Edmonds East and part of the Edmonds West Quadrangles, Washington: U.S. Geological Survey, Miscellaneous Field Studies Map MF-1541.* The published map indicates that the site is in an area characterized by Vashon lodgement till at the ground surface.

4.2 Hydrology

No ground water was observed in our exploration borings. Ground water is expected to occur seasonally at this site "perched" above the underlying lodgement till sediments, and possibly above existing fills. Perched ground water occurs when vertical infiltration is impeded by less-permeable soil layers, resulting in horizontal flow. The quantity and duration of perched ground water flow from an excavation will vary, depending on season, soil gradation, and adjacent topography. Ground water conditions should be expected to vary in response to changes in precipitation, on- and off-site land usage, and other factors.

4.3 Laboratory Testing

As a part of our investigation, we completed one laboratory grain-size analysis. A copy of the grain-size analysis report is included in the Appendix.

4.4 Infiltration Potential

The site is underlain by existing fill in some locations that is not suitable for use as an infiltration receptor. Native sediments at shallow depth at this site consist of lodgement till. Lodgement till is not suitable for use as a storm water infiltration receptor, and therefore conventional

shallow infiltration strategies are not recommended. Deeper infiltration strategies might be feasible. Our study was not structured to investigate the feasibility of deeper infiltration strategies such as Underground Injection Control (UIC) wells and pit drains. We are available to discuss such a feasibility assessment on request.

II. GEOLOGIC HAZARDS AND MITIGATIONS

The following discussion of potential geologic hazards is based on the geologic, slope, and ground and surface water conditions, as observed and discussed herein. The discussion will be limited to slope stability, seismic, and erosion issues.

5.0 SLOPE HAZARDS AND MITIGATIONS

In our opinion, slopes at the south edge of the site and between the existing school buildings and the play fields to the east may meet City of Lynnwood criteria for treatment as geologically critical areas as defined in LMC Section 17.10.030. The definition includes any slope inclined more than 40 percent without a requirement for a minimum height. Code section 17.10.092 offers a mechanism to allow modification of critical slopes. Because the observed subsurface conditions consist primarily of very dense glacially consolidated sediments, the existing slopes are relatively gently inclined, the existing slopes are relatively short, and the existing slopes were created during earlier site grading we anticipate that that the project can be planned without assuming any buffers or setbacks for existing slopes. It is possible that additional analyses will be required at some future time to support a specific site development proposal once detailed plans are developed. No detailed slope stability analysis was completed for this preliminary study, and none is warranted, in our opinion.

6.0 SEISMIC HAZARDS AND MITIGATIONS

The City of Lynnwood critical areas code does not include a definition for seismic hazard areas. Seismic design procedures consistent with the 2012 *International Building Code* (IBC) are expected to be used for this project. The following discussion is a general assessment of seismic hazards that is intended to be useful to the District in terms of understanding seismic issues, and to the structural engineer for final structural design.

Earthquakes occur regularly in the Puget Lowland. The majority of these events are small and are usually not felt by people. However, large earthquakes do occur, as evidenced by the 1949, 7.2-magnitude event; the 2001, 6.8-magnitude event; and the 1965, 6.5-magnitude event. The 1949 earthquake appears to have been the largest in this region during recorded history and was centered in the Olympia area. Evaluation of earthquake return rates indicates that an earthquake of the magnitude between 5.5 and 6.0 is likely within a given 20-year period.

Generally, there are four types of potential geologic hazards associated with large seismic events: 1) surficial ground rupture, 2) seismically induced landslides, 3) liquefaction, and

4) ground motion. The potential for each of these hazards to adversely impact the proposed project is discussed below.

6.1 Surficial Ground Rupture

Generally, the largest earthquakes that have occurred in the Puget Sound area are sub-crustal events with epicenters ranging from 50 to 70 kilometers in depth. Earthquakes that are generated at such depths usually do not result in fault rupture at the ground surface. Current research indicates that surficial ground rupture is possible in areas close to the South Whidbey Island Fault Zone. Although our current understanding of this fault zone is limited and is an active area of research, the site appears to lie within the currently understood limits of the fault zone and therefore surface rupture due to a seismic event in the future cannot be ruled out. Because the project will include renovations and additions to an existing school, and because it is difficult to quantify surface rupture risks and difficult to mitigate such risks if they do exist, our analysis did not include a detailed analysis of the potential for surface rupture due to a seismic event. We are available to discuss the issue of surface rupture risk and possible responses on request.

6.2 Seismically Induced Landslides

It is our opinion that the potential risk of damage to the proposed development by seismically induced slope failures is low due to the lack of substantial slopes and the prevalence of relatively competent, glacially consolidated soils.

6.3 Liquefaction

Liquefaction is a process through which unconsolidated soil loses strength as a result of vibrations, such as those which occur during a seismic event. During normal conditions, the weight of the soil is supported by both grain-to-grain contacts and by the fluid pressure within the pore spaces of the soil below the water table. Extreme vibratory shaking can disrupt the grain-to-grain contact, increase the pore pressure, and result in a temporary decrease in soil shear strength. The soil is said to be liquefied when nearly all of the weight of the soil is supported by pore pressure alone. Liquefaction can result in deformation of the sediment and settlement of overlying structures. Areas most susceptible to liquefaction include those areas underlain by non-cohesive silt and sand with low relative densities, accompanied by a shallow water table.

The subsurface conditions encountered at the site pose low risk of liquefaction due to the lack of observed shallow ground water, and the high density of the lodgement till. No detailed liquefaction analysis was completed as part of this study, and none is warranted, in our opinion.

6.4 Ground Motion

Structural design for the project should follow 2012 IBC standards. The 2012 IBC defines Site Classification by reference to Table 20.3.-1 of the *American Society of Civil Engineers* publication ASCE 7, the current version of which is ASCE 7-10. In our opinion, the subsurface conditions at the site are consistent with a Site Classification of "C" as defined in the referenced documents.

7.0 EROSION HAZARDS AND MITIGATIONS

The following discussion addresses Washington State Department of Ecology (Ecology) erosion control regulations that will be applicable to the project. We anticipate that if the project complies with State requirements, it will also be acceptable with respect to City of Lynnwood requirements.

As of October 1, 2008, Ecology Construction Storm Water General Permit (also known as the National Pollutant Discharge Elimination System [NPDES] permit) requires weekly Temporary Erosion and Sedimentation Control (TESC), turbidity and pH monitoring for all sites 1 or more acres in size that discharge storm water to surface waters of the state. If the project will disturb more than 1 acre, we anticipate that these inspection and reporting requirements will be triggered. The following recommendations are related to general erosion potential and mitigation.

The erosion potential of the site soils is high. Maintaining cover measures atop disturbed ground typically provides the greatest reduction to the potential generation of turbid runoff and sediment transport. During the local wet season (October 1st through March 31st), exposed soil should not remain uncovered for more than 2 days unless it is actively being worked. Ground-cover measures can include erosion control matting, plastic sheeting, straw mulch, crushed rock or recycled concrete, or mature hydroseed.

Project planning and construction should follow local standards of practice with respect to temporary erosion and sedimentation control. Best management practices (BMPs) should include but not be limited to:

- Provide storm drain inlet protection;
- Route surface water away from work areas;
- Keep staging areas and travel areas clean and free of track-out;
- Cover work areas and stockpiled soils when not in use;
- Complete earthwork during dry weather and site conditions, if possible.

III. PRELIMINARY DESIGN RECOMMENDATIONS

8.0 INTRODUCTION

Some portions of the site are underlain by a layer of surficial existing fill that is loose and variable. Existing fill is not suitable for support of new foundations and warrants remedial preparation where it occurs below paving and similar lightly loaded structures. Structural fill or native sediments are suitable for support of shallow foundations, floor slabs, and paving with proper preparation.

9.0 SITE PREPARATION

Existing structures, paving, buried utilities, vegetation, topsoil, and any other deleterious materials should be removed where they are located below planned construction areas. All disturbed soils resulting from demolition activities should be removed to expose underlying undisturbed native sediments and replaced with structural fill, as needed. All excavations below final grade made for demolition activities should be backfilled, as needed, with structural fill. Erosion and surface water control should be established around the clearing limits to satisfy local requirements.

Once demolition has been completed, existing fill should be addressed. The observed thickness of existing fill ranged up to approximately 3 feet. We recommend that existing fill below building areas be removed and replaced with Structural Fill. It is important to include remedial preparation of the existing fill in the bid documents in a way that encourages competitive pricing and reduces the potential for claims of unanticipated conditions. We are available to review project specification sections related to geotechnical issues if requested to do so.

Below planned on-site paving, existing fill should be exposed, proof-rolled, and compacted to 95 percent of the modified Proctor maximum dry density. If a firm and unyielding condition is achieved, no further remedial preparation would be needed. If yielding conditions are encountered, existing fill would be partially removed and replaced with imported structural fill. The depth of replacement of the existing fill below paving should be determined at the time of construction when field conditions are known.

9.1 Site Drainage and Surface Water Control

The site should be graded to prevent water from ponding in construction areas and/or flowing into excavations. Exposed grades should be crowned, sloped, and smooth drum-rolled at the end of each day to facilitate drainage. Accumulated water must be removed from subgrades and work areas immediately prior to performing further work in the area. Equipment access

Proposed Renovations and Additions	Subsurface Explorotion ond Preliminary
Spruce Elementory School	Geotechnicol Engineering Report
Lynnwood, Woshington	Preliminory Desian Recommendotions

may be limited, and the amount of soil rendered unfit for use as structural fill may be greatly increased, if drainage efforts are not accomplished in a timely sequence. If an effective drainage system is not utilized, project delays and increased costs could be incurred due to the greater quantities of wet and unsuitable fill, or poor access and unstable conditions.

We anticipate that perched ground water could be encountered in excavations completed during construction. We do not anticipate the need for extensive dewatering in advance of excavations. The contractor should be prepared to intercept any ground water seepage entering the excavations and route it to a suitable discharge location.

Final exterior grades should promote free and positive drainage away from the buildings at all times. Water must not be allowed to pond or to collect adjacent to foundations or within the immediate building area. We recommend that a gradient of at least 3 percent for a minimum distance of 10 feet from the building perimeters be provided, except in paved locations. In paved locations, a minimum gradient of 1 percent should be provided, unless provisions are included for collection and disposal of surface water adjacent to the structures.

9.2 Subgrade Protection

To the extent that it is possible, existing pavement should be used for construction staging areas. If building construction will proceed during the winter, we recommend the use of a working surface of sand and gravel, crushed rock, or quarry spalls to protect exposed soils, particularly in areas supporting concentrated equipment traffic. In winter construction staging areas and areas that will be subjected to repeated heavy loads, such as those that occur during construction of masonry walls, a minimum thickness of 12 inches of quarry spalls or 18 inches of pit run sand and gravel is recommended. If subgrade conditions are soft and silty, a geotextile separation fabric, such as Mirafi 500X or approved equivalent, should be used between the subgrade and the new fill. For building pads where floor slabs and foundation construction will be completed in the winter, a similar working surface should be used, composed of at least 6 inches of pit run sand and gravel or crushed rock. Construction of working surfaces from advancing fill pads could be used to avoid directly exposing the subgrade soils to vehicular traffic.

Foundation subgrades may require protection from foot and equipment traffic and ponding of runoff during wet weather conditions. Typically, compacted crushed rock or a lean-mix concrete mat placed over a properly prepared subgrade provides adequate subgrade protection. Foundation concrete should be placed and excavations backfilled as soon as possible to protect the bearing surface.

9.3 Proof-Rolling and Subgrade Compaction

Following the recommended demolition, site stripping, existing fill removal, and planned excavation, the stripped subgrade within the building and paving areas should be proof-rolled with heavy, rubber-tired construction equipment, such as a fully loaded tandem-axle dump truck. Proof-rolling should be performed prior to structural fill placement or foundation excavation. The proof-roll should be monitored by the geotechnical engineer so that any soft or yielding subgrade soils can be identified. Any soft/loose, yielding soils should be removed to a stable subgrade. The subgrade should then be scarified, adjusted in moisture content, and recompacted to the required density. Proof-rolling should only be attempted if soil moisture contents are at or near optimum moisture content. Proof-rolling of wet subgrades could result in further degradation. Low areas and excavations may then be raised to the planned finished grade with compacted structural fill. Subgrade preparation and selection, placement, and compaction of structural fill should be performed under engineering-controlled conditions in accordance with the project specifications.

9.4 Overexcavation/Stabilization

Construction during extended wet weather periods could create the need to overexcavate exposed soils if they become disturbed and cannot be recompacted due to elevated moisture content and/or weather conditions. Even during dry weather periods, soft/wet soils, which may need to be overexcavated, may be encountered in some portions of the site. If overexcavation is necessary, it should be confirmed through continuous observation and testing by Associated Earth Sciences, Inc. (AESI). Soils that have become unstable may require remedial measures in the form of one or more of the following:

- 1. Drying and recompaction. Selective drying may be accomplished by scarifying or windrowing surficial material during extended periods of dry and warm weather.
- 2. Removal of affected soils to expose a suitable bearing subgrade and replacement with compacted structural fill.
- 3. Mechanical stabilization with a coarse crushed aggregate compacted into the subgrade, possibly in conjunction with a geotextile.
- 4. Soil/cement admixture stabilization.

9.5 Wet Weather Conditions

If construction proceeds during an extended wet weather construction period and the moisture-sensitive site soils become wet, they will become unstable. Therefore, the bids for site grading operations should be based upon the time of year that construction will proceed. It is expected that in wet conditions additional soils may need to be removed and/or other

stabilization methods used, such as a coarse crushed rock working mat, to develop a stable condition if silty subgrade soils are disturbed in the presence of excess moisture. The severity of construction disturbance will be dependent, in part, on the precautions that are taken by the contractor to protect the moisture- and disturbance-sensitive site soils. If overexcavation is necessary, it should be confirmed through continuous observation and testing by a representative of our firm.

9.6 Temporary and Permanent Cut Slopes

In our opinion, stable construction slopes should be the responsibility of the contractor and should be determined during construction. For estimating purposes, however, we anticipate that temporary, unsupported cut slopes in the existing fill can be made at a maximum slope of 1.5H:1V or flatter. Temporary slopes in unsaturated lodgement till sediments may be planned at 1H:1V. As is typical with earthwork operations, some sloughing and raveling may occur, and cut slopes may have to be adjusted in the field. If ground water seepage is encountered in cut slopes, or if surface water is not routed away from temporary cut slope faces, flatter slopes will be required. In addition, WISHA/OSHA regulations should be followed at all times. Permanent cut and structural fill slopes that are not intended to be exposed to surface water should be designed at inclinations of 2H:1V or flatter. All permanent cut or fill slopes should be compacted to at least 95 percent of the modified Proctor maximum dry density, as determined by ASTM:D 1557, and the slopes should be protected from erosion by sheet plastic until vegetation cover can be established during favorable weather.

9.7 Frozen Subgrades

If earthwork takes place during freezing conditions, all exposed subgrades should be allowed to thaw and then be recompacted prior to placing subsequent lifts of structural fill or foundation components. Alternatively, the frozen material could be stripped from the subgrade to reveal unfrozen soil prior to placing subsequent lifts of fill or foundation components. The frozen soil should not be reused as structural fill until allowed to thaw and adjusted to the proper moisture content, which may not be possible during winter months.

10.0 STRUCTURAL FILL

All references to structural fill in this report refer to subgrade preparation, fill type and placement, and compaction of materials, as discussed in this section. If a percentage of compaction is specified under another section of this report, the value given in that section should be used.

After stripping, planned excavation, and any required overexcavation have been performed to the satisfaction of the geotechnical engineer, the upper 12 inches of exposed ground in areas to receive fill should be recompacted to 90 percent of the modified Proctor maximum density using ASTM:D 1557 as the standard. If the subgrade contains silty soils and too much moisture, adequate recompaction may be difficult or impossible to obtain and should probably not be attempted. In lieu of recompaction, the area to receive fill should be blanketed with washed rock or quarry spalls to act as a capillary break between the new fill and the wet subgrade. Where the exposed ground remains soft and further overexcavation is impractical, placement of an engineering stabilization fabric may be necessary to prevent contamination of the free-draining layer by silt migration from below.

After recompaction of the exposed ground is tested and approved, or a free-draining rock course is laid, structural fill may be placed to attain desired grades. Structural fill is defined as non-organic soil, acceptable to the geotechnical engineer, placed in maximum 8-inch loose lifts, with each lift being compacted to 95 percent of the modified Proctor maximum density using ASTM:D 1557 as the standard. Use of soils from the site in structural fill applications is acceptable if the material meets the project specifications for the intended use, and if specifically allowed by project specifications. In the case of roadway and utility trench filling, structural fill should be placed and compacted in accordance with current City of Lynnwood codes and standards. The top of the compacted fill should extend horizontally outward a minimum distance of 3 feet beyond the locations of the roadway edges before sloping down at an angle of 2H:1V.

The contractor should note that any proposed fill soils must be evaluated by AESI prior to their use in fills. This would require that we have a sample of the material 72 hours in advance to perform a Proctor test and determine its field compaction standard. Soils in which the amount of fine-grained material (smaller than the No. 200 sieve) is greater than approximately 5 percent (measured on the minus No. 4 sieve size) should be considered moisture-sensitive. Use of moisture-sensitive soil in structural fills should be limited to favorable dry weather conditions, and is only permitted if specifically allowed by project plans and specifications. The native and existing fill soils present on-site contained significant amounts of silt and are considered highly moisture-sensitive. Existing fill can contain construction/demolition materials and/or significant organic content in which case they are not suitable for reuse in structural fill applications. If fill is placed during wet weather or if proper compaction cannot be obtained, a select import material consisting of a clean, free-draining gravel and/or sand should be used. Free-draining fill consists of non-organic soil with the amount of fine-grained material limited to 5 percent by weight when measured on the minus No. 4 sieve fraction with at least 25 percent retained on the No. 4 sieve.

A representative from our firm should inspect the stripped subgrade and be present during placement of structural fill to observe the work and perform a representative number of in-place density tests. In this way, the adequacy of the earthwork may be evaluated as filling

progresses, and any problem areas may be corrected at that time. It is important to understand that taking random compaction tests on a part-time basis will not assure uniformity or acceptable performance of a fill. As such, we are available to aid the District in developing a suitable monitoring and testing program.

11.0 FOUNDATIONS

Spread footings may be used for building support when founded directly on undisturbed lodgement till, or on structural fill placed above suitable native deposits, as previously discussed. If foundations will be underlain by a combination of very dense native sediments and new structural fill, we recommend that an allowable bearing pressure of 3,500 pounds per square foot (psf) be used for design purposes, including both dead and live loads. Higher foundation soil bearing pressures are possible for foundations supported entirely on undisturbed lodgement till, however we do not expect that higher bearing pressures will be needed. If higher foundation soil bearing pressures are needed, we should be allowed to offer situation-specific recommendations.

Perimeter footings should be buried at least 18 inches into the surrounding soil for frost protection. However, all footings must penetrate to the prescribed bearing stratum, and no footing should be founded in or above organic, or loose soils. All footings should have a minimum width of 18 inches.

It should be noted that the area bound by lines extending downward at 1H:1V from any footing must not intersect another footing or intersect a filled area that has not been compacted to at least 95 percent of ASTM:D 1557. In addition, a 1.5H:1V line extending down from any footing must not daylight because sloughing or raveling may eventually undermine the footing. Thus, footings should not be placed near the edge of steps or cuts in the bearing soils.

Anticipated settlement of footings founded as described above should be on the order of ³/₄ inch or less. However, disturbed soil not removed from footing excavations prior to footing placement could result in increased settlements. All footing areas should be inspected by AESI prior to placing concrete to verify that the design bearing capacity of the soils has been attained and that construction conforms to the recommendations contained in this report. Such inspections may be required by the governing municipality. Perimeter footing drains should be provided, as discussed under the "Drainage Considerations" section of this report.

11.1 Drainage Considerations

Foundations should be provided with foundation drains. Drains should consist of rigid, perforated, polyvinyl chloride (PVC) pipe surrounded by washed pea gravel. The drains should be constructed with sufficient gradient to allow gravity discharge away from the proposed

buildings. Roof and surface runoff should not discharge into the footing drain system, but should be handled by a separate, rigid, tightline drain. In planning, exterior grades adjacent to walls should be sloped downward away from the proposed structures to achieve surface drainage.

12.0 FLOOR SUPPORT

Floor slabs can be supported on suitable native sediments, or on structural fill placed above suitable native sediments. Floor slabs should be cast atop a minimum of 4 inches of clean, washed, crushed rock or pea gravel to act as a capillary break. Areas of subgrade that are disturbed (loosened) during construction should be compacted to a non-yielding condition prior to placement of capillary break material. Floor slabs should also be protected from dampness by an impervious moisture barrier at least 10 mils thick. The moisture barrier should be placed between the capillary break material and the concrete slab.

13.0 FOUNDATION WALLS

All backfill behind foundation walls or around foundation units should be placed as per our recommendations for structural fill and as described in this section of the report. Horizontally backfilled walls, which are free to yield laterally at least 0.1 percent of their height, may be designed to resist active lateral earth pressure represented by an equivalent fluid equal to 35 pounds per cubic foot (pcf). Fully restrained, horizontally backfilled, rigid walls that cannot yield should be designed for an at-rest equivalent fluid of 50 pcf. Walls with sloping backfill up to a maximum gradient of 2H:1V should be designed using an equivalent fluid of 55 pcf for yielding conditions or 75 pcf for fully restrained conditions. If parking areas are adjacent to walls, a surcharge equivalent to 2 feet of soil should be added to the wall height in determining lateral design forces.

As required by the 2012 IBC, retaining wall design should include a seismic surcharge pressure in addition to the equivalent fluid pressures presented above. Considering the site soils and the recommended wall backfill materials, we recommend a seismic surcharge pressure of 5H and 10H psf, where H is the wall height in feet, for the "active" and "at-rest" loading conditions, respectively. The seismic surcharge should be modeled as a rectangular distribution with the resultant applied at the midpoint of the walls.

The lateral pressures presented above are based on the conditions of a uniform backfill consisting of excavated on-site soils, or imported structural fill compacted to 90 percent of ASTM:D 1557. A higher degree of compaction is not recommended, as this will increase the pressure acting on the walls. A lower compaction may result in settlement of the slab-on-grade or other structures supported above the walls. Thus, the compaction level is critical and must

be tested by our firm during placement. Surcharges from adjacent footings or heavy construction equipment must be added to the above values. Perimeter footing drains should be provided for all retaining walls, as discussed under the "Drainage Considerations" section of this report.

It is imperative that proper drainage be provided so that hydrostatic pressures do not develop against the walls. This would involve installation of a minimum, 1-foot-wide blanket drain to within 1 foot of finish grade for the full wall height using imported, washed gravel against the walls.

13.1 Passive Resistance and Friction Factors

Lateral loads can be resisted by friction between the foundation and the natural glacial soils or supporting structural fill soils, and by passive earth pressure acting on the buried portions of the foundations. The foundations must be backfilled with structural fill and compacted to at least 95 percent of the maximum dry density to achieve the passive resistance provided below. We recommend the following allowable design parameters:

- Passive equivalent fluid = 250 pcf
- Coefficient of friction = 0.30

14.0 PAVEMENT RECOMMENDATIONS

Pavement areas should be prepared in accordance with the "Site Preparation" section of this report. If the stripped native soil or existing fill pavement subgrade can be compacted to 95 percent of ASTM:D 1557 and is firm and unyielding, no additional overexcavation is required. Soft or yielding areas should be overexcavated to provide a suitable subgrade and backfilled with structural fill.

The pavement sections included in this report section are for driveway and parking areas on-site, and are not applicable to right-of-way improvements. We understand that right-of-way paving will be limited to small patches and miscellaneous work that does not require a detailed pavement thickness analysis.

Pavement subgrades underlain by existing fill should be prepared in accordance with the "Site Preparation" section of this report. The exposed ground should be recompacted to 95 percent of ASTM:D 1557. If required, structural fill may then be placed to achieve desired subbase grades. Upon completion of the recompaction and structural fill, a pavement section consisting of 2½ inches of asphaltic concrete pavement (ACP) underlain by 4 inches of 1¼-inch Crushed Surfacing Base Course is the recommended minimum in areas of planned passenger car driving and parking. In heavy traffic areas, a minimum pavement section consisting of 3 inches of ACP

underlain by 2 inches of $\frac{5}{8}$ -inch crushed surfacing top course and 4 inches of 1⁴-inch Crushed Surfacing Base Course is recommended. The crushed rock courses must be compacted to 95 percent of the maximum density, as determined by ASTM:D 1557. All paving materials should meet gradation criteria contained in the current Washington State Department of Transportation (WSDOT) Standard Specifications.

Depending on construction staging and desired performance, the Crushed Surfacing Base Course material may be substituted with asphalt treated base (ATB) beneath the final asphalt surfacing. The substitution of ATB should be as follows: 4 inches of crushed rock can be substituted with 3 inches of ATB, and 6 inches of crushed rock may be substituted with 4 inches of ATB. ATB should be placed over a native or structural fill subgrade compacted to a minimum of 95 percent relative density, and a 1½- to 2-inch thickness of crushed rock to act as a working surface. If ATB is used for construction access and staging areas, some rutting and disturbance of the ATB surface should be expected. The general contractor should remove affected areas and replace them with properly compacted ATB prior to final surfacing.

15.0 PROJECT DESIGN AND CONSTRUCTION MONITORING

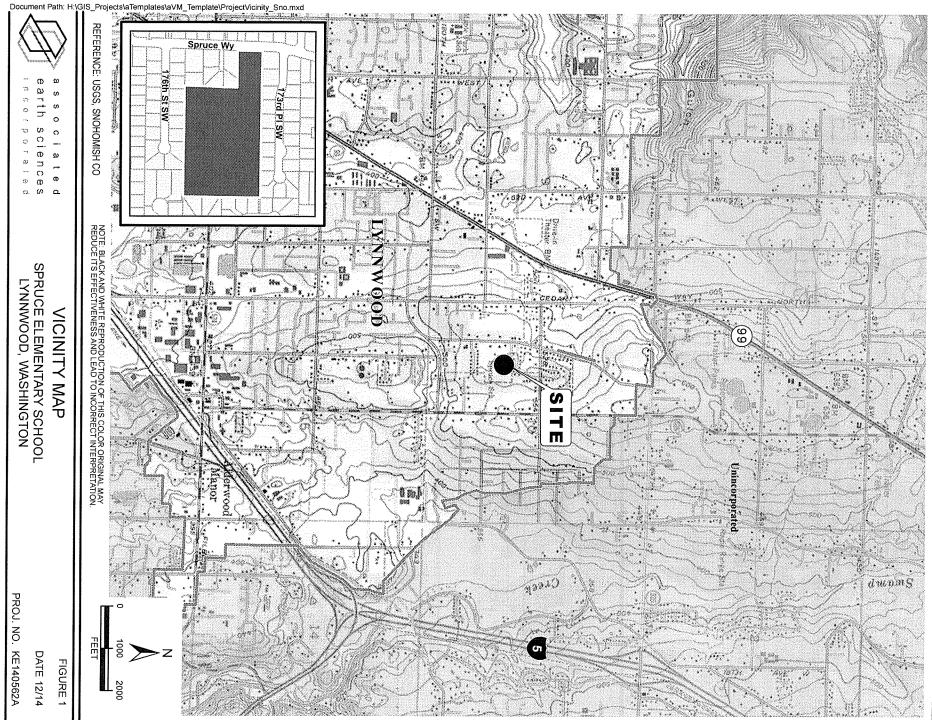
Our report is preliminary since project plans had not been developed at the time this report was written. We recommend that AESI perform a geotechnical review of the plans prior to final design completion. In this way, we can confirm that our earthwork and foundation recommendations have been properly interpreted and implemented in the design.

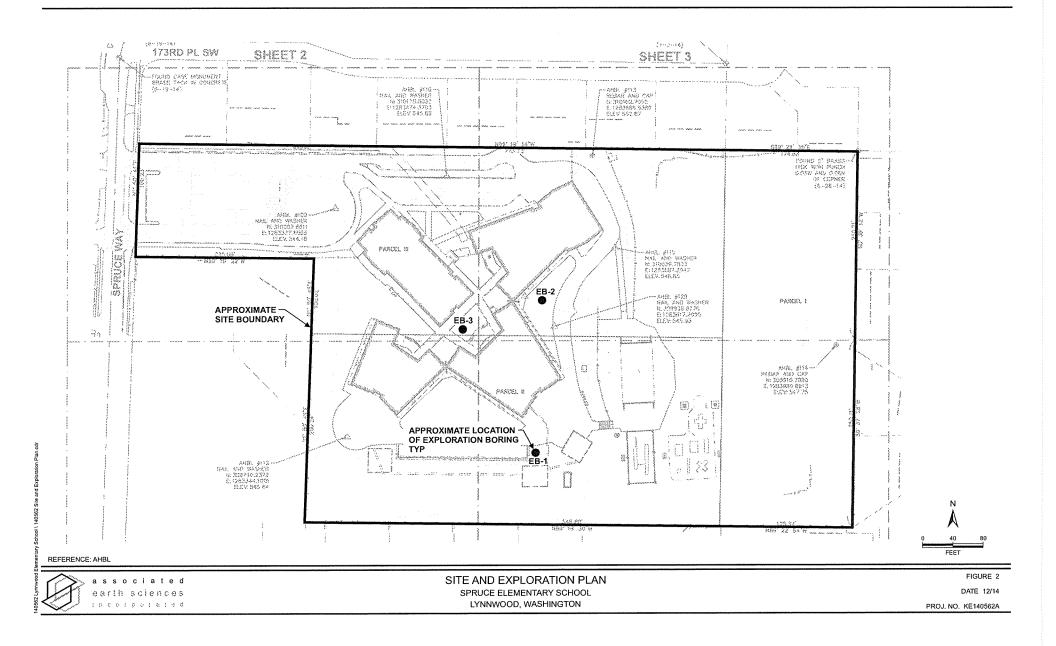
We are also available to provide geotechnical engineering services during construction. The integrity of the foundation system depends on proper site preparation and construction procedures. In addition, engineering decisions may have to be made in the field in the event that variations in subsurface conditions become apparent. Construction monitoring services are not part of this current scope of work. If these services are desired, please let us know, and we will prepare a cost proposal.

Proposed Renovations and Additions Spruce Elementary School Lynnwood, Washington Subsurface Exploration and Preliminary Geotechnical Engineering Report Preliminary Design Recommendations

We have enjoyed working with you on this study and are confident that these recommendations will aid in the successful completion of your project. If you should have any questions or require further assistance, please do not hesitate to call.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington

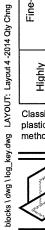

Bruce W. Guenzler, L.E.G. Senior Project Geologist



Kurt D. Merriman, P.E. Senior Principal Engineer

Attachments:

Figure 1: Vicinity MapFigure 2: Site and Exploration PlanAppendix: Exploration LogsLaboratory Testing Results



APPENDIX

~, ⁻

	Fraction		000	_	Well-graded gravel and	Terms D	escribing R	lelative Dens	ity and Consistency
	Trac	s (5)	0.0.	GW	gravel with sand, little to		Density	SPT ⁽²⁾ blows/foot	
	e	Fines	200		no fines	Coarse-	Very Loose	0 to 4	
Sve	Coars	5%	00000		Poorly-graded gravel	Grained Soils	Loose Medium Dense	4 to 10 10 to 30	Ta at Ormalia la
Sie	of C 4 S	M	00000	GP	and gravel with sand,		Dense	30 to 50	Test Symbols
200			00000		little to no fines		Very Dense	>50	G = Grain Size M = Moisture Content
ò	50% ⁽¹ on No.	┝─	19090				Consistency	SPT ⁽²⁾ blows/foot	A = Atterberg Limits
u u	ed		200	GM	Silty gravel and silty gravel with sand	Fine-	Very Soft	0 to 2	C = Chemical
ed	fore than Retained	Fines			graver with sand	Grained Soils	Soft Medium Stiff	2 to 4 4 to 8	DD = Dry Density K = Permeability
tain	Mor	1.8			······································		Stiff	8 to 15	R - Permeability
Re	- s	12	(H)	GC	Clayey gravel and		Very Stiff	15 to 30	
¹⁾ %(Gravels - More than Retained		S D S D		clayey gravel with sand		Hard	>30	
Coarse-Grained Soils - More than 50% ⁽¹⁾ Retained on No. 200 Sieve		ļ	4147		Wall graded agod agd			ponent Defin	
tha	tion	(2)		ew	Well-graded sand and sand with gravel, little	Descriptive T Boulders		ange and Sieve N than 12"	lumber
ore	rac	se		311	to no fines	Cobbles	3" to 1		
2	SeF	i E	·····			Gravel		– lo. 4 (4.75 mm)	
oils	f Coan Sieve	≤5%		0.0	Poorly-graded sand	Coarse Grav	el 3" to 3	/4"	
s pe	of C A Sie			SP	and sand with gravel, little to no fines	Fine Gravel		No. 4 (4.75 mm)	
aine	lo. 4					Sand		(4.75 mm) to No. 20	. , , , , , , , , , , , , , , , , , , ,
0 0	% ⁽¹⁾ or More of Coarse Fraction Passes No. 4 Sieve				Silty sand and	Coarse Sano Medium Sar		(4.75 mm) to No. 10 (2.00 mm) to No. 4(
arse	(1) ass	s (5)		SM	silty sand with	Fine Sand		(0.425 mm) to No. :	
ပိ	50% ⁽	Fines			gravel	Silt and Clay	Smalle	er than No. 200 (0.07	75 mm)
	1.	≥12%			Clayey sand and		nated Perc	ontono	Moisture Content
	Sands	Ň		sc	clayey sand with gravel	Component		ge by Weight	Dry - Absence of moisture,
	S					Trace	<u>i ercenta</u>	<5	dusty, dry to the touch
					Silt, sandy silt, gravelly silt,	Hace		<0	Slightly Moist - Perceptible
e		2		ML	silt with sand or gravel	Some	5	i to <12	moisture Moist - Damp but no visible
Sie	s	di la ca			-	Modifier	1:	2 to <30	water
001	Clay	ŝ			Clay of low to medium	(silty, sandy		2 10 400	Very Moist - Water visible but
0	g	Ĕ		CL	plasticity; silty, sandy, or		0.	D to 150	not free draining
SS N	Silts and Clays	I			gravelly clay, lean clay	Very <i>modifier</i> (silty, sandy		0 to <50	Wet - Visible free water, usually from below water table
asse	lis -				Organic clay or silt of low				
More Passes No. 200 Sieve		Liquid Limit Less man 30		OL	plasticity		Blows/6" or	Symbols	
Mo						Sampler	portion of 6"		Cement grout
¹⁾ or	 		ΠΠΠ		Elastic silt, clayey silt, silt		Sam	pler Type	surface seal
.) %(мн	with micaceous or	2.0" OD Split-Spoon		scription	(4) Bentonite
- 5(NOF			diatomaceous fine sand or	Sampler	3.0" OD Split-	Spoon Sampler	Filter pack with
oils	lays	5			silt Clay of high plasticity,	(SPT)		-Spoon Ring Sample	er (4) : blank casing
spi	D P	00	/////	СН	sandy or gravelly clay, fat	Bulk sample		Vall Tube Sampler	⊻: ↓ section
aine	an san	Ē		СП	clay with sand or gravel		📕 (includina She		· Ħ. ·] or Hydrotip
Ģ	Silts and Clays				_	1	en l		· ☐ ·] with filter pack
Fine-Grained Soils - 50% ⁽¹⁾ or		ГI		0 1	Organic clay or silt of		O Portion not rec	covered	
				UH	medium to high plasticity	(1) Percentage by		⁽⁴⁾ D	epth of ground water
	<u> </u>		Killing Charles	ļ		(SPT) Standar (ASTM D-1586	d Penetration Tes	<u> </u>	ATD = At time of drilling
≧	ls Is				Peat, muck and other	⁽³⁾ In General Ac		<u> </u>	Static water level (date)
High	Organic Soils			РТ	highly organic soils	Standard Prac	ctice for Description		ombined USCS symbols used for
				1		and Identificat	ion of Soils (AST)	vi D-2488) fir	nes between 5% and 12%
~					port are based on visual field and/or				

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

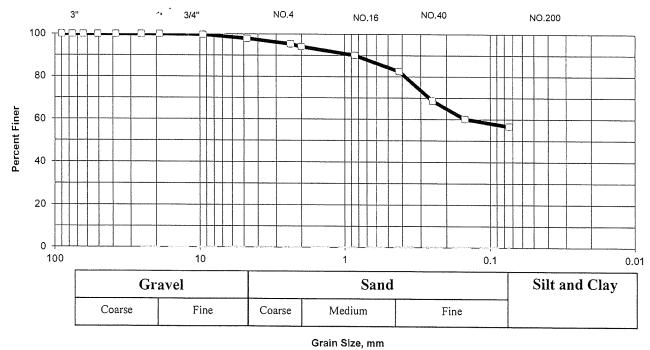
associated earth sciences incorporated

EXPLORATION LOG KEY

FIGURE A1

	\sim	> ª	s s o	ciated		Exploratio	n Log	
$ \langle \langle \rangle \rangle$	Į			sciences poraled	Project Number KE140562A	Exploration Nu EB-1	imber	Sheet 1 of 1
Projec Locati Driller/ Hamm	on /Equ	uipme	nt t/Drop	Spruce Elen Lynnwood, V Geologic Dr 140# / 30"	n NA ill - HSA SPT		Ground Surface Datum Date Start/Finish Hole Diameter (ir	AHBL_July 2014 12/22/14 12/22/14
Depth (ft)	S T	Samples	Graphic Symbol		DECODIDEION		Well Completion Water Level Blows/6"	Blows/Foot
			V 12 - 21		DESCRIPTION Grass / Topsoil			0 20 30 40
			<u>1. 1. 1</u>					
		S-1		Very dense, ver nonstratified (Si	Lodgement Till y moist, gray, silty fine gravelly fine M).	to coarse SAND;	15 25 50/5"	◆ 50/5"
- 5		S-2		Gradation as at	oove.		17 39 50/5"	◆ 50/5"
- 10		S-3		Gradation as al	oove.		30 50/3"	◆ 50/3"
					tion boring at 11 feet encountered.			
S		2" OI 3" OI		Spoon Sampler (Spoon Sampler (I		M - Moisture ☑ Water Level () ☑ Water Level at time	of drilling (ATD)	Logged by: BWG Approved by:

	$\overline{>}$	> a		ciated		Exploration	n Log		
$ \langle \langle \rangle$	Į			sciences rporaled	Project Number KE140562A	Exploration Nur EB-2	nber	Sheet 1 of 1	
Project Locatic Driller/ Hamm	n		nt t/Drop	Spruce Elem Lynnwood, V Geologic Dril 140# / 30"	1		Ground Surface Datum Date Start/Finish Hole Diameter (i	AHBL July 2 12/22/14,12/	014
Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION		Well Completion Water Level Blows/6"	Blows/Foot	Other Tests
			<u> 44. 7</u>		Grass / Topsoil			10 20 30 40	
			<u>4 34</u> 11.1		Lodgement Till				
-		S-1		Very dense, ven nonstratified (SN	moist, gray, silty fine gravelly fine	to coarse SAND;	19 41 50/4"		◆ 50/4"
- 5		S-2		Gradation as ab	ove. -,		29 36 37		▲73
- 10		S-3		Gradation as ab	ove.		27 40 50/4"		▲ 50/4"
				Bottom of explorat Ground water not	on boring at 11.5 feet encountered.				
5		2" OI 3" OI		Spoon Sampler (S Spoon Sampler (E	& M) 🚺 Ring Sample	M - Moisture ☑ Water Level () 및 Water Level at time o	of drilling (ATD)	Logged by: Approved b	BWG y:


Project Nar ocation Driller/Equi lammer W	ne ne		sciences poraled	Project Number	Exploration Nu	mber		Shoot	
ocation Driller/Equi				KE140562A	EB-3			Sheet 1 of 1	
	/eight	it /Drop	Spruce Elen Lynnwood, V Geologic Dr 140# / 30''	n WA ill - HSA SPT		Ground Sur Datum Date Start/F Hole Diame	inish <u>12/2</u>	L July 20 2/14,12/2)14
Depth (ft)	Samples	Graphic Symbol				Well Completion Water Level Blows/6"	Blows	s/Foot	
		<u>x1x: 1</u>		DESCRIPTION Grass / Topsoil			10 20	30 40	
	/	<u> </u>		Grass / Topsoli					
			Loose, very mo	Fill ist, gray, silty SAND (SM).					
	-		Hand dug to 2 1	1/2 feet.					
	S-1		Very dense, ver nonstratified (Sl	Lodgement Till ry moist, gray, silty fine gravelly fine M).	to coarse SAND;	- — 23 50/5			♠ 50/5
5	S-2		Gradation as ab	pove.		18 35 50/5	0		▲50/5
10	S-3		Gradation gene sand, trace silt.	rally as above, but with a thin seam	(~ 1/2 inch) of fine	20 38 45			▲83
		· I I-	Bottom of exploral Ground water not	tion boring at 11.5 feet encountered.					
): Spoon Sampler (S	SPT) 🗌 No Recovery	M - Moisture		L	ogged by:	BWG
[]		Split : Sampl	Spoon Sampler (I		☑ Water Level () ☑ Water Level at time	of abilities / Am		pproved by	:

GRAIN SIZE ANALYSIS - MECHANICAL

Date Sampled	Project		Project No.		Soil Description
12/22/2014	Spruce Elementary		KE140562A		Sandy silt trace gravel
Tested By	Location		EB/EP No	Depth	Intended Use / Specification
MS	Onsite		EB-3	5'	
Wt. of moisture v	wet sample + Tare	331.5	Total Sample	Tare	467.72
Wt. of moisture of	dry Sample + Tare	309.94	Total Sample	wt + tare	1137.57
Wt. of Tare		100	Total Sample	Wt	669.9
Wt. of moisture [Dry Sample	209.94	Total Sample	Dry Wt	607.5
Moisture %		10%			

				Specification Re	equirements
Diam. (mm)	Wt. Retained (g)	% Retained	% Passing	Minimum	Maximum
90		-	100.00	-	-
76.1		-	100.00	-	-
64		-	100.00	-	-
50.8		-	100.00		-
38.1		-	100.00	-	-
25.4		-	100.00		
19		-	100.00		
9.51	1.64	0.27	99.73		
4.76	12.66	2.08	97.92		
2.38	28.22	4.65	95.35	······································	
2	35.84	5.90	94.10		
0.85	59.99	9.88	90.12		
0.42	106.07	17.46	82.54		
0.25	189.97	31.27	68.73		
0.149	242.13	39.86	60.14		
0.074	263.19	43.33	56.67		
	90 76.1 64 50.8 38.1 25.4 19 9.51 4.76 2.38 2 0.85 0.42 0.25 0.149	90 30 76.1 64 50.8 38.1 25.4 19 9.51 1.64 4.76 12.66 2.38 28.22 2 35.84 0.85 59.99 0.42 106.07 0.25 189.97 0.149 242.13	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diam. (mm)Wt. Retained (g)% Retained% PassingMinimum90-100.00-76.1-100.00-64-100.00-50.8-100.00-38.1-100.00-25.4-100.00-19-100.00-9.511.640.2799.734.7612.662.0897.922.3828.224.6595.35235.845.9094.100.8559.999.8890.120.42106.0717.4682.540.25189.9731.2768.730.149242.1339.8660.14

ASSOCIATED EARTH SCIENCES, INC.

911 5th Ave., Suite 100 Kirkland, WA 98033 425-827-7701 FAX 425-827-5424

September 26, 2016 Project No. KE140562A

Edmonds School District #15 Capital Projects Office 20420 68th Avenue West Lynnwood, Washington 98036

Attention: Mr. Matthew Finch

Subject: Geotechnical Addendum – Additional Explorations Spruce Elementary School 17405 Spruce Way Lynnwood, Washington

Dear Mr. Finch:

Associated Earth Sciences, Inc. (AESI) has completed supplemental subsurface explorations at the existing Spruce Elementary School located in Lynnwood, Washington (Figure 1). We have previously issued a "Subsurface Exploration and Preliminary Geotechnical Engineering Report," dated January 14, 2015, for the subject project. During our previous study, we completed three exploratory borings and encountered loose existing fill soils to a maximum depth of 3 feet below the surface in one of our borings (EB-3). Underlying the fill soils in EB-3 and underlying the topsoil in the other borings our previous exploration encountered dense, native, glacial till soils. We have been requested to complete additional explorations to the south and east of the existing school buildings.

This study included advancing six additional borings and reviewing previously published geologic literature of the site and surrounding areas. The purpose of this assessment was to provide information regarding soil characteristics/classification to aid in foundation design for the proposed project.

SITE DESCRIPTION

The project site is that of the existing Spruce Elementary School located at 17405 Spruce Way in Lynnwood, Washington. The existing facility includes an existing group of school buildings near the center of the site, with paved parking areas to the west, play areas to the east, and portable

classrooms to the south. Site topography in the building area slopes gently down to the south and west, and appears to have been graded to its current configuration during earlier site development.

At the time this report was published the project design was still in the conceptual phase. We understand that the project will likely include renovation of portions of the existing building, and building additions. Likely areas of new construction include the open landscaped courtyard near the center of the existing building, and existing landscape areas south the existing school buildings as well as, the grass field east of the existing school buildings.

EXPLORATION BORINGS

Six exploration borings were completed on August 30, 2016 at the project site. The borings were in addition to the previous three completed on December 22, 2014. During the drilling process, samples were obtained at generally 2.5- to 5-foot-depth intervals. The exploration borings were continuously observed and logged by a representative from our firm. The locations of our explorations are shown on the "Site and Exploration Plan," Figure 2. The exploration logs presented in Appendix A are based on the field logs, drilling action, and inspection of the samples secured.

Disturbed but representative samples were obtained by using the Standard Penetration Test (SPT) procedure in accordance with *American Society for Testing and Materials* (ASTM) D-1586. This test and sampling method consists of driving a standard, 2-inch outside-diameter, split-barrel sampler a distance of 18 inches into the soil with a 140-pound hammer free-falling a distance of 30 inches. The number of blows for each 6-inch interval is recorded, and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance ("N") or blow count. If a total of 50 is recorded within one 6-inch interval, the blow count is recorded as the number of blows for the corresponding number of inches of penetration. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils; these values are plotted on the attached exploration boring logs.

The samples obtained from the split-barrel sampler were classified in the field and representative portions placed in watertight containers. The samples were then transported to our laboratory for further visual classification and laboratory testing.

SUBSURFACE CONDITIONS

Subsurface conditions were inferred from the field explorations accomplished for this study, a visual reconnaissance of the site, and published geologic maps of the area. The encountered stratigraphy is described below and is provided in detail on the attached exploration pit logs.

Surficial Topsoil

Exploration borings encountered approximately 6 to 8 inches of topsoil and grass. Topsoil is not suitable for structural support, and should be stripped from structural areas. Excavated topsoil may be suitable for reuse in landscape areas if allowed by project documents.

Fill

Existing fill was encountered in exploration boring EB-5 to a depth of approximately 13 feet below the existing ground surface. The existing fill was observed to be medium dense, silty, fine sand with trace to some gravel. A hydrocarbon odor was detected by AESI as the auger reached a depth of 8 feet below the surface. AESI took samples of the cuttings to get tested for possible contaminants. Testing results indicated that the fill soil contained hydrocarbons as gasoline and diesel in concentrations below required cleanup levels as defined by the Department of Ecology's (Ecology) Model Toxic Control Act (MTCA) Method A cleanup levels for unrestricted sites. We recommend further studies are completed to delineate the extent of the encountered contaminants, if project elements are proposed in the vicinity of EB-5. Results of the environmental testing are included in Appendix B.

Furthermore, existing fill will require removal or other remedial preparation below planned building areas and remedial preparation below planned paving. Excavated existing fill is suitable for reuse in structural fill applications if specifically allowed by project specifications, and if any organic or other deleterious materials are removed. Excavated existing fill material is expected to be wetter than optimum moisture content for compaction purposes and will require drying during dry site and weather conditions prior to use in compacted fills.

Vashon Lodgement Till

Each of the exploration borings encountered native sediments consisting of very dense, silty sand with gravel interpreted as Vashon lodgement till. Lodgement till was deposited at the base of an active continental glacier and was compacted by the weight of the overlying glacial ice. Lodgement till is suitable for structural support when properly prepared. Excavated lodgement till material is suitable for use in structural fill applications if suitable moisture conditions are achieved prior to compaction, and if such reuse is specifically allowed by project plans and specifications. At the time of exploration, we estimate that most or all of the lodgement till soils that we observed were above optimum moisture content for compaction in structural fill applications.

Our interpretations of subsurface conditions onsite are in general agreement with the published geologic map of the area, as represented by the J.P. Minard, 1983, *Geologic Map of the Edmonds East and part of the Edmonds West Quadrangles, Washington: U.S. Geological*

Survey, Miscellaneous Field Studies Map MF-1541. The published map indicates that the site is in an area characterized by Vashon lodgement till at the ground surface.

No ground water was encountered in any of our additional explorations. . It should be noted that the occurrence and level of ground water seepage at the site may vary in response to such factors as changes in season, precipitation, and site use.

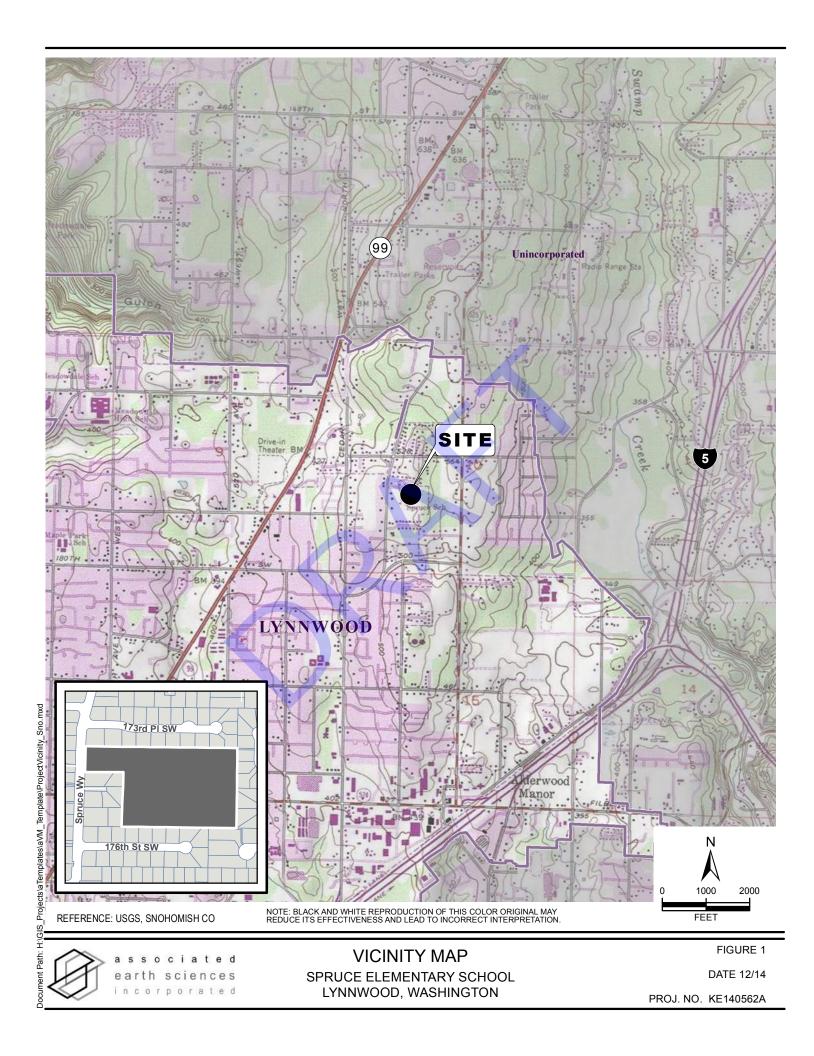
CONCLUSIONS AND RECOMMENDATIONS

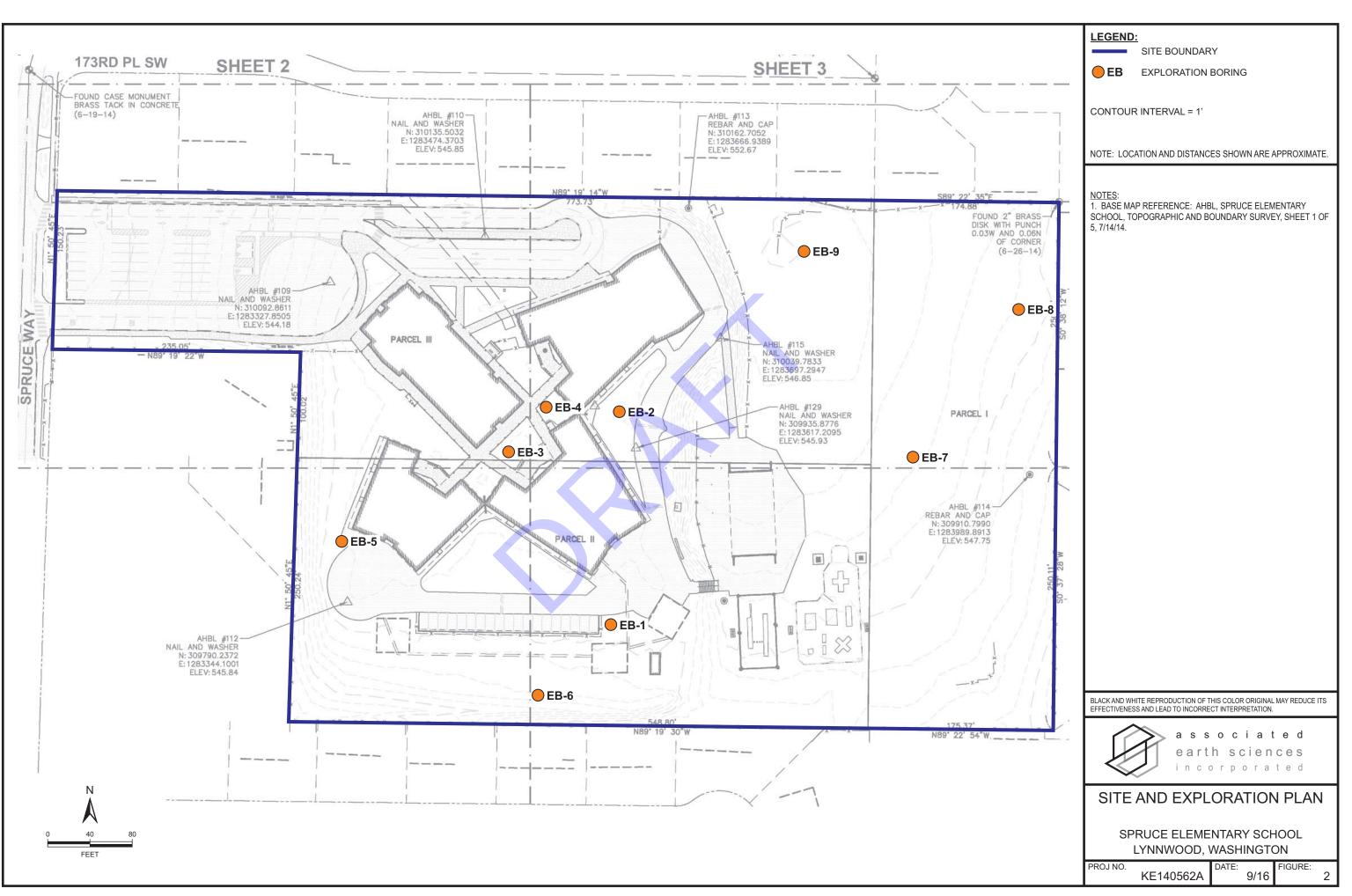
Foundations

Based on our explorations, native lodgement till with the ability to support the 3,500 pounds per square foot (psf) bearing pressure given in our initial report were generally encountered near the surface with the exception of EB-5. EB-5 encountered existing fill soils to a depth of approximately 12 feet below the surface. The existing fill soils encountered in EB-5 contained hydrocarbon contaminants in concentrations under the Ecology MTCA cleanup levels. The fill soils in EB-5 are overlying the dense native, glacial till soils. Existing fill soils are not suitable for foundation support and may need remedial preparation under new pavement. Design and construction recommendations presented in our above-referenced report should be followed.

We have enjoyed working with you on this study and are confident that these recommendations will aid in the successful completion of your project. If you should have any questions or require further assistance, please do not hesitate to call.

Sincerely ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington




Anthony Romanick, P.E. Senior Staff Engineer

Attachments:Figure 1:Vicinity MapFigure 2:Site and Exploration PlanAppendix A:Exploration LogsAppendix B:Environmental Test Results

Kurt D. Merriman, P.E. Senior Principal Engineer

0562 Spruce Elementary School \ 140562 Site Explr 9-16

APPENDIX A

Exploration Logs

			0.0.1				
	Fraction		D D C	~	Well-graded gravel and	Terms Describing Relative Density and Consister	ıcy
	Fra	ines ⁽⁵⁾		GW	gravel with sand, little to	Density <u>SPT⁽²⁾blows/foot</u>	
	e e	Ц Ш			no fines	Coarse- Loose 4 to 10	
eve	Coarse F Sieve	5%		0 D	Poorly-graded gravel	L Grained Solls Marker Branchaster and	
Sie	4 و	VI		GP	and gravel with sand,	Dense 30 to 50)
200	É 9				little to no fines	Very Dense >50 M – Moisture Conte	nt
9	50% ⁽¹⁾ on No.		ษัตรัต		Silty gravel and silty	Consistency <u>SPT⁽²⁾blows/foot</u> A = Atterberg Limits	
lu	than	es ⁽⁵⁾		GM	gravel with sand	Very Soft 0 to 2 C = Chemical Fine- Orf Orf DD Darbits	
eq	lore than Retained	nes			graver with band	Fine-Soft2 to 4DD = Dry DensityGrained SoilsMedium Stiff4 to 8K = Permeability	
tair	2	1				Stiff 8 to 15	
E Re	- 2		HA.	GC	Clayey gravel and	Very Stiff 15 to 30 Hard >30	
¹⁾ %(Gravels		, N. N.		clayey gravel with sand		
n 50			<u>4747</u>		Moll are ded acred and	Component Definitions	
tha	tion	(5)		сw	Well-graded sand and sand with gravel, little	Descriptive Term Size Range and Sieve Number Boulders Larger than 12"	
ore	rac			344	to no fines	Cobbles 3" to 12"	
Σ	Эё	Fines				Gravel 3" to No. 4 (4.75 mm)	
Coarse-Grained Soils - More than $50\%^{(1)}$ Retained on No. 200 Sieve	Coarse Fraction lieve	≤5%		<u> </u>	Poorly-graded sand	Coarse Gravel 3" to 3/4"	
s S D	of Coar 4 Sieve			SP	and sand with gravel, little to no fines	Fine Gravel 3/4" to No. 4 (4.75 mm)	
aine	o. 4					Sand No. 4 (4.75 mm) to No. 200 (0.075 mm)	
Ö	50% ⁽¹⁾ or More Passes No.				Silty sand and	Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand No. 10 (2.00 mm) to No. 40 (0.425 mm)	
Irse	1) ISSE	(2)		SM	silty sand with	Fine Sand No. 40 (0.425 mm) to No. 200 (0.075 mm)	
Co Co)%(Pa	Fines			gravel	Silt and Clay Smaller than No. 200 (0.075 mm)	
	1.	Н %			Clayey sand and		
	Sands	≧ 12%		SC	clayey sand with gravel	(3) Estimated Percentage Moisture Conter Component Percentage by Weight Dry - Absence of moisture	
	Sa					dusty dry to the tou	
						Trace <5 Slightly Moist - Perceptibl	
		5		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	Some 5 to <12 moisture	
eve	9	ດ =			Silt with Sand of graver	Modifier 12 to <30 Moist - Damp but no visik	ble
00 8	and Clays				Clay of low to medium	Modifier 12 to <30 Water (silty, sandy, gravelly) Very Moist - Water visible	but
. 20		אָ ני			plasticity; silty, sandy, or	not free drain	
N N	an			CL	gravelly clay, lean clay	Very modifier 30 to <50 Wet - Visible free water, u	
Passes No. 200 Sieve	Silts					(silty, sandy, gravelly) from below water ta	able
	Silts and Clays	hui			Organic clay or silt of low	Symbols	_
lore	=			OL	plasticity	Blows/6" or Sampler portion of 6"	rout.
or N						Sampler portion of 6" Type / Cement gr	eal
(1)					Elastic silt, clayey silt, silt with micaceous or	2.0" OD Sampler Type Bentonite	
50%	5	ם		МН	diatomaceous fine sand or	Split-Spoon (4) seal	
<u>s</u>	ys				silt	Sampler 3.0" OD Split-Spoon Sampler Filter pack	
Fine-Grained Soils - 50% ⁽¹⁾ or Mo	Silts and Clays				Clay of high plasticity,	(SP1) 3.25" OD Split-Spoon Ring Sampler (a) [:] (blank casi section Bulk sample Image: Split Spli	ng
Jed	and a to			СН	sandy or gravelly clay, fat	3.0" OD Thin-Wall Tube Sampler	
Brair	lts :				clay with sand or gravel	Grab Sample	
-9-		nin			Organic clay or silt of	Portion not recovered	
	-	Ĕ		он	medium to high		
1					plasticity	(2) (CDT) Chardened Departmention Test	
					Poot muck and other	(ASTM D-1586) ∇ Static water level (date)	
Highly	rganic Soils			РТ	Peat, muck and other highly organic soils	⁽⁶⁾ In General Accordance with	od for
H _i	ы S O			rı		Standard Practice for Description (* Combined USCS symbols us and Identification of Soils (ASTM D-2488) fines between 5% and 12%	GU IUI
						r laboratory observations, which include density/consistency, moisture condition, grain size, ar	

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

associated earth sciences incorporated

EXPLORATION LOG KEY

FIGURE A1

blocks \ dwg \ log_key.dwg LAYOUT: Layout 4 -2014 Qty Chng

1	2	> a		o c i a t e d		Exploration	n Lo	g				
\triangleleft				sciences rporated	Project Number KE140562A	Exploration Nur EB-1	nber				neet of 1	
Projec	t Na	me		Spruce Eler	n		Groun	d Su	face El	evation (ft)	545	
Location Driller/		inmer	.t	I down a start of a set of a	A / A		Datum Date S		inich	AHBL	July 201 4,12/22	14
Hamm	ner V	Veight	/Drop	140# / 30"	WA ill - HSA SPT		Hole D			7 inche	14, 12/22 S	/14
								-				0
(#)		oles	ohic				etior	Leve		Blows/F	oot	Tests
Depth (ft)	S	Samples	Graphic Symbol				Well Completion	Water Level Blows/6"		Biotion	001	Other Tests
	1	0			DESCRIPTION		ŏ	3	10	20 30	0 40	ð
			<u>z_l y^x - <u>z</u>_l</u>		Grass / Topsoil							
					Lodgement Till							
-	Τ	S-1		Very dense, ver nonstratified (Si	y moist, gray, silty fine gravelly fine to c vl).	oarse SAND;		15 25 50/				\$ 50/5"
- 5												
Ļ		S-2		Gradation as ab	ove.			17 39 50/				50/5 "
-								50/	5"			
-												
-												
- 10 -	Τ	S-3		Gradation as ab	ove.			30 50/3	3"			▲ 50/3"
				Bottom of explora Ground water no	ation boring at 11 feet t encountered.							
-												
- 15												
-												
-												
-												
20												
2 0												
-												
-												
-												
- 25												
-												
-												
- 30												
-												
-												
-												
-												
- 35												
Í.												
-												
Sa	amp	ler Ty	be (ST)	:							I	
Г	_			spoon Sampler (SP	PT) No Recovery M	- Moisture						BWG
		3" OE	Split S	poon Sampler (D		Water Level ()				Appro	oved by:	JHS
	®Z	Grab	Sample	2	🖉 Shelby Tube Sample 💆	Water Level at time of	drilling (ATD)			

	\sim	> a		ociated		Exploratio Exploration Nu	n Log	-1		
	Z			sciences rporated	Project Number KE140562A	Exploration Nu EB-2	Imber		Sheet 1 of	1
Project Locatic Driller/ Hamm	n Equi	pmen		Spruce Eler Lynnwood, Geologic Dr 140# / 30"	n WA ill - HSA SPT	· 	Ground Sur Datum Date Start/F Hole Diame	inish	evation (ft)	546 y 2014 2/22/14
Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION		Well Completion Water Level Blows/6"		Blows/Foot	Other
			<u>1. x 1.</u>	-	Grass / Topsoil			10	20 30	40
-				-	Lodgement Till					
- 5	Ι	S-1			y moist, gray, silty fine gravelly fine to M).	o coarse SAND;	19 41 50/4			▲50/4"
- 5 - -		S-2		Gradation as ab	ove.	Χ	29 36 37			7 3
- 10	T	S-3		Gradation as ab	ove.		27 40 50/4			▲50/4"
- - 15 - - - 20				Bottom of explora Ground water no	ation boring at 11.5 feet t encountered.					
- - 25 -										
- - 30 - -										
AESIBOR 140562.GPJ September 22, 2016										
AESIBOR 140562.C		2" OD 3" OD		Spoon Sampler (SF Spoon Sampler (D		M - Moisture ☑ Water Level () ፪ Water Level at time of	drilling (ATD)		Logged b Approved	y: BWG Iby: JHS

	2	> a		ociated		Exploratio	n Log	1	
	2			sciences rporated	Project Number KE140562A	Exploration Nu EB-3	Imber	Sheet 1 of	
Project Locatic Driller/ Hamm	n Equi	pmen		Spruce Eler Lynnwood, Geologic Dr 140# / 30"	ກ		Ground Surf Datum Date Start/Fi Hole Diamet	face Elevation (ft) _ _AHBL_Jul inish _12/22/14,2	544 v 2014
Depth (ft)	S T	Samples	Graphic Symbol		DESCRIPTION		Well Completion Water Level Blows/6"	Blows/Foot	0ther Tests
			<u>71 x</u> 7		Grass / Topsoil				40
- - - - 5		S-1 S-2		Hand dug to 2 1	Lodgement Till y moist, gray, silty fine gravelly fine to V).		- — 12 23 50/5 18		▲ 50/5"
- - - - 10				Gradation gener	ally as above, but with a thin seam (~	1/2 inch) of fine sand,	18 35 50/5 20	n	▲ 50/5"
-		S-3		trace silt.	ation boring at 11.5 feet		20 38 45		▲83
- 15 - - - - 20									
- - - - 25									
- - - 30 -									
AESIBOR 140562.GPJ September 22, 2016									
AESIBOR 140562.GI		2" OD 3" OD		Spoon Sampler (Sl Spoon Sampler (D	& M) Ring Sample	M - Moisture ☑ Water Level () ፶ Water Level at time of	f drilling (ATD)		by: BWG diby: JHS

ſ	2			ociated			Exploratio	n Lo	bg						
\triangleleft	2			rporated	Project N KE140		Exploration Nu EB-4	mber					Sheet 1 of 1		
Project Locatio		ne		Spruce Eler	nentary School			Grou Datu		Surfa	ace Ele	vation (fl _N/A_	t)		
Driller/E Hamme	Equi			<u>GDI / SPT</u> 140# / 30"				Date Hole	Sta			8/30/	/16,8/3 inches	0/16	
		leigin									a (III)	4.20	Inches	s	
Depth (ft)	S T	Samples	Graphic Symbol					Well	ater Level	3lows/6"		Blows	/Foot		Other Tests
		0)			DES	CRIPTION		Č	S		10	20	30	40	ð
-			11 11 12	<u></u>	Gras Vashon	ss / Topsoil Lodgement Till		/							
-	Τ	S-1		Dense, moist, ta gravel in sample	annish brown, gravell er; contains organics;	y, fine to mediun blow counts ove	n SAND, some silt; broken erstated due to gravel (SP).			17 13 27				40	
- 5	Ι	S-2		Very dense, mo contains interbe	ist, grayish tan, silty, d of fine to medium \$	fine to medium S SAND, trace silt (SAND, some gravel; SM-SP).		ł	24 50/6"					
- - - 10 -	T	S-3		Very dense, mo unsorted (SM).	ist, tannish gray, silty	r, fine to medium	SAND, some gravel;		4	26 50/6"					
- - 15 - -	T	S-4		As above.		7,			į	50/5"					▲ 50/5"
- - 20	T	S-5		As above.				~	ł	50/5"					▲ 50/5"
- - - 25 -				Bottom of explora No ground water	ation boring at 20.5 fee encountered.	t									
- - 30 -															
AESIBOR 140562 (2016).GPJ September 20, 2016															
AESIBOR 140562 (2" OE 3" OE		Spoon Sampler (Sl Spoon Sampler (D	& M) 📕 Ring S	Sample	M - Moisture $\overline{\checkmark}$ Water Level () Ψ Water Level at time of	drilling	(A ⁻	TD)			gged by proved		WR CJK

	\sim	> a		o c i a t e d		Exploration Exploration Nur	n Lo	g	-			
	I	1 224		sciences rporated	Project Number KE140562A	Exploration Nur EB-5	nber				heet of 1	
Project Locatio		ne		Spruce Eler	nentary School		Grour Datun		rface Ele	evation (ft)		
Driller/	Equip			GDI / SPT			Date \$	Start/F		N/A 8/30/1	6,8/30/16	
Hamm	er W	eight/	Drop	140# / 30"				Jiame	eter (in)	4.25 ir	iches	
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	Water Level Blows/6"		Blows/F	Foot	Other Tests
					DESCRIPTION		0	5	10) 20 3	80 40	0
-			<u>11</u> 11 11	~	Grass / Topsoil Fill							
-	T	S-1		Medium dense, SAND, some gra	moist, gray, silty, fine SAND, grades t avel; contains organics; unsorted (SM	o silty, fine to medium).		11 10 9		▲ 19		
- 5 - -		S-2		Medium dense,	very moist, tannish gray, silty, fine SA	ND, trace gravel (SM).		4 6 8		▲ 14		
- 10 - -		S-3			very moist, gray, silty, fine SAND, trac	e gravel (SM).		4 7 9		▲ 16		
ł				<u>Driller</u> notes har	der drilling at 13 feet Vashon Lodgement Till		-					
- 15 -	Τ	S-4		Very dense, mo	st, tan, silty, fine to medium SAND; u	nsorted (SM).		32 50/9	5"			
- 20				Bottom of explora No ground water	tion boring at 16 feet encountered.							
- 25 - -												
- 30 												
AESIBOR 140682 (2016) GPJ September 20, 2016												
) 59901	-		e (ST) Solit s			A Mointurn					ged by: A	
5 2 2	Ë.			Spoon Sampler (SF Spoon Sampler (D		M - Moisture ☑ Water Level ()					roved by: (AWR CJK
VESIB(~		Sample			Water Level at time of	drilling	(ATD)			

	$\hat{\lambda}$	> a		o ciate d		Exploratio Exploration Nu	n Lo	bg		1				
\triangleleft	2			sciences rporated	Project Number KE140562A	Exploration Nu EB-6	mber					Sheet 1 of 1		
Project Locatio		ne		Spruce Eler	mentary School		Grour Datun		Surf	ace Ele	evation (ft N/A)		
Driller/ Hamm	Equi	omen	t Dran	Lynnwood, GDI / SPT 140# / 30"			Date \$	Sta			_N/A _8/30/	16,8/3 inches	0/16	
namm		eignu	Бюр	140#7 30			Hole [er (111)	4.25	incnes		
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	ter Level	Blows/6"		Blows	/Foot		Other Tests
Ď	T	ŝ	00		DESCRIPTION		Č	Wa	B	10	20	30 4	0	ġ
-			<u></u>	~	Grass / Topsoil Vashon Lodgement Till	l	~							
-	Τ	S-1		Very dense, mo	ist, tan, silty, fine SAND, some grave	el; unsorted (SM).			15 25 46					·61
- 5				As above.										
-	\square	S-2		A3 0000C.					26 35 49					84
-														
- 10 -	T	S-3		As above.				ł	50/6"					50/6"
-														
- - 15														
-				Bottom of exploration No ground water	ation boring at 15.5 feet encountered.									
-														
- 20 -														
-														
- 25														
-														
- 30 -														
0														
er 20, 2016														
Septemb														
AESIBOR 140562 (2016),GPJ September 20, 2016														
140562 (2 S	2 2		e (ST) Split S	: Spoon Sampler (Sl	PT) No Recovery	M - Moisture			. 1			gged by:		
				Spoon Sampler (D		∇ Water Level ()	drilling	/ ^ -	יחד		Ар	proved I	o y: Cil	K
AEC	® (Grab S	Sample	9	Shelby Tube Sample	▼ Water Level at time of	unning	(A	(סי					

Ĺ	7	> a e	s s arth	ociated sciences	Project Number	Exploratio Exploration Nu		bg			S	heet		
\leq	2		nco	rporated	KE140562A	EB-7					1	of 1		
Project Locatio		е		Spruce Eler	mentary School		Grou Datur		Surfac	e Elevat	tion (ft) N/A			
Driller/	Equip			<u>Lynnwood,</u> <u>GDI / SPT</u>			Date	Star		sh _	8/30/1	6,8/30	/16	
Hamm	er We	eight/l	Drop	140#/30"			Hole	Diar	neter	(in) _	4.25 ir	nches		
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	Water Level	Blows/6"	B	lows/f	=oot		Other Tests
					DESCRIPTION			>		10	20 3	30 40)	0
-				~	Grass / Topsoil Vashon Lodgement Ti	11								
-		S-1		Medium dense, unsorted (SM).	moist, tan, silty, fine to medium SAI	ND, some gravel; oxidized;			6 14 13			27		
- 5 - -		S-2		Medium dense,	moist, tan, silty, fine SAND, some g	gravel; unsorted (SM).			20 10 9		▲ 19			
- 10 - -		S-3		As above.					6 14 18			▲ 32		
- 15 - -	;	S-4		Very dense, ver unsorted (SM).	y moist, gray, silty, fine to medium S	SAND, some gravel;		5	15 23 0/5"					
- - 20 -		S-5		As above.				5	36 45 0/3"					
- - - 25 -				Bottom of explora No ground water	ation boring at 21.5 feet encountered.									
- - - 30 -														
PJ September 20, 2016														
SOR 1405] 3'	OD OD	Split S	Spoon Sampler (Sl Spoon Sampler (D		M - Moisture ☑ Water Level () ـ¥ Water Level at time of	f drilling	 (AT	⁻ D)			ged by: roved b	AW E CJI	

	\sim	> a		ociated		Exploratio Exploration Nu	n Lo	bg		1				
\triangleleft	2			sciences rporated	Project Number KE140562A	Exploration Nu EB-8	mber					Sheet 1 of 1		
Project Locatio		ne		Spruce Eler	nentary School		Grou Datur		Surfa	ace Ele	evation (ft)			
Driller/	Equi			GDI / SPT			Date	Sta			N/A 8/30/1	6,8/3)/16	
Hamm	er V	/eight	/Drop	140# / 30"			Hole	Dia	mete	er (in)	4.25 i	nches		
Depth (ft)	S T	Samples	Graphic Symbol				Well Completion	Water Level	Blows/6"		Blows/	Foot		Other Tests
		0,			DESCRIPTION		Ö	2		10	20	30 4	0	ð
-			<u>71 x 7</u> 1		Grass / Topsoil Vashon Lodgement Ti	11	~							
-	Ι	S-1		Medium dense, gravel in sample	moist, tan, silty, fine to medium SA r; blow counts may be overstated d	ND, some gravel; broken ue to rock (SM).			7 16 12			28		
- 5 - -	T	S-2		Medium dense, (SM).	moist, tan, silty, fine to medium SA	ND, some gravel; unsorted			21 11 16			27		
- - 10 -	T	S-3		Dense, moist, g	ray, silty, fine to medium SAND, so	me gravel; unsorted (SM).			11 21 32					53
- - - 15 -	T	S-4		Detters of our las					29 50/4"					
- - - 20				No ground water	ation boring at 16 feet encountered.									
-														
- 25 - -														
- - 30 -														
sr 20, 2016 														
AESIBOR 140562 (2016),GPJ September 20, 2016														
[]]]]]]]]]]]]]]]]]]]	-		be (ST) Split S): Spoon Sampler (Sl	PT) No Recovery	M - Moisture			<u> </u>			ged by:		
BOR		3" OD	Split S	Spoon Sampler (D	& M) Ring Sample	$\overline{2}$ Water Level ()					Арр	roved l	by: Cli	ĸ
AESI	n Z	Grab	Sample	e	Shelby Tube Sample	Water Level at time of	drilling	(A	TD)					

	2	> a		ociated		Exploration Exploration Num	l Lo	g				
	2			sciences rporated	Project Number KE140562A	Exploration Num EB-9	iber				neet of 1	
Project Locatio		me		Spruce Eler	mentary School		Ground	d Sui	face Ele	evation (ft)		
Driller/	Equ	ipmen	t	Lynnwood, V GDI / SPT	VVA		Date S			N/A 8/30/10 4.25 in	6,8/30/1	16
Hamm	er V	Veight	/Drop	140# / 30"			Hole D	iame	ter (in)	_4.25 in	ches	
Depth (ft)	S	Samples	Graphic Symbol				Well Completion	Water Level Blows/6"		Blows/F	oot	Other Tests
	1	0			DESCRIPTION			ŝ"	10	20 3	0 40	ð
-			x ¹ ½ .x ¹	<	Grass / Topsoil Vashon Lodgement Till	/	-					
- - - 5		S-1 S-2		Medium dense, Becomes dense	moist, tan, silty, fine SAND, some grav	el; unsorted (SM).		9 12 16 12 23 30			28	5 3
- - 10		S-3		As above.	ation boring at 10.5 feet encountered.			30 12 36 50				86
- 15 - 20				No ground water	encountered.							
- 25 - 30												
- 35												
		2" OD 3" OD		spoon Sampler (Sl spoon Sampler (D	& M) Ring Sample 🕎	I - Moisture Water Level () Water Level at time of d	lrilling (ATD)	·		ed by: oved by:	AWR CJK

APPENDIX B

Environmental Test Results

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 9, 2016

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr Sondergaard:

Included are the results from the testing of material submitted on August 31, 2016 from the Spruce Elementary, PO KE140562A, F&BI 608592 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AE10909R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 31, 2016 by Friedman & Bruya, Inc. from the Associated Earth Sciences Spruce Elementary, PO KE140562A, F&BI 608592 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences
608592 -01	EB-5

Sample EB-5 was extracted from a 4 ounce jar. The data were flagged accordingly.

The 8270D calibration standard for benzoic acid, 2,4-dinitrophenol, and 4,6-dinitro-2methylphenol did not pass the acceptance criteria. The data were flagged accordingly. In addition, the relative percent difference for 4-chloroaniline by 8270D exceeded the acceptance criteria. 4-Chloroaniline was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592 Date Extracted: 08/31/13 Date Analyzed: 08/31/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

		Surrogate
<u>Sample ID</u>	Gasoline Range	(% Recovery)
Laboratory ID		(Limit 50-150)
·		
EB-5 pc	18	100
608592-01		
		00
Method Blank 06-1806 MB	<2	92
00-1800 MID		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592 Date Extracted: 08/31/16 Date Analyzed: 08/31/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS **DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx**

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	Diesel Range	Motor Oil Range	Surrogate (% Recovery)
Laboratory ID	(C ₁₀ -C ₂₅)	(C ₂₅ -C ₃₆)	(Limit 53-144)
EB-5	91 x	<250	71
608592-01			
Method Blank 06-1791 MB2	<50	<250	86

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-5 08/31/16 09/07/16 09/07/16 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences Spruce Elementary, PO KE140562A 608592-01 1/5 090718.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 84 1726 ip	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		<0.01		
Benz(a)anthracene		<0.01		
Chrysene		<0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther		< 0.01		
Benzo(k)fluoranther		< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrace		< 0.01		
Benzo(g,h,i)perylene	9	<0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blat Not Applica 09/07/16 09/07/16 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences Spruce Elementary, PO KE140562A 06-1841 mb 1/5 090717.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 87 91	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		<0.01		
Benz(a)anthracene		<0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther		< 0.01		
Benzo(k)fluoranther		< 0.01		
Indeno(1,2,3-cd)pyre		<0.01		
Dibenz(a,h)anthrac		<0.01		
Benzo(g,h,i)perylene	e	<0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-5 08/31/16 09/07/16 09/07/16 Soil mg/kg (ppm) I	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth So Spruce Elementary, 608592-01 1/5 090706.D GCMS8 ya	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		% Recovery: 98 96 97 90 100 78	Lower Limit: 56 54 31 47 35 24	Upper Limit: 115 113 164 133 141 188	
Compounds:		Concentration mg/kg (ppm)	Compour	nds:	Concentration mg/kg (ppm)
Phenol Bis(2-chloroethyl) et 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol Bis(2-chloroisopropy 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propy 3-Methylphenol + 4- Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy)r 2,4-Dichlorophenol 1,2,4-Trichlorobenze	her)) ether ylamine Methylphenol nethane ene	< 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	Hexachle 2,4,6-Tri 2,4,5-Tri 2-Chloro 2-Nitroa Dimethy 2,6-Dinit 3-Nitroa 2,4-Dinit 4-Nitrop Diethyl µ 4-Chloro N-Nitros 4-Nitroa 4,6-Dinit 4-Bromo Hexachle	procyclopentadiene chlorophenol chlorophenol naphthalene niline l phthalate crotoluene niline crophenol curan crotoluene henol phthalate phenyl phenyl ether codiphenylamine	< 0.15 < 0.5 < 0.5 < 0.05 < 0.25 < 0.25 < 0.25 < 5 < 1.5 ca < 0.05 < 0.25 < 1.5 < 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.25 < 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
Hexachlorobutadien 4-Chloroaniline 4-Chloro-3-methylph 2-Methylnaphthaler 1-Methylnaphthaler	nenol ne	<0.05 <5 <0.5 <0.05 <0.05	Benzyl b Bis(2-eth	e yl phthalate utyl phthalate ylhexyl) phthalate yl phthalate	<0.5 <0.5 <0.5 <0.8 <0.5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 09/07/16 09/07/16 Soil mg/kg (ppm) Dr	ry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences Spruce Elementary, PO KE14056 06-1840 mb 090705.D GCMS8 ya						
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		94 93 97 93 83 105	Lower Limit: 56 54 31 47 35 24		Upper Limit: 115 113 164 133 141 188					
Compounds:		ncentration g/kg (ppm)	Compour	nds:		Concentration mg/kg (ppm)				
Phenol Bis(2-chloroethyl) et 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol Bis(2-chloroisopropy 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propy 3-Methylphenol + 4- Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy)r 2,4-Dichlorophenol 1,2,4-Trichlorobenze	her)) ether ylamine Methylphenol nethane ene	<0.1 <0.01 <0.1 <0.01 <0.01 <0.01 <0.1 <0.	Hexachla 2,4,6-Tri 2,4,5-Tri 2-Chloron 2-Nitroan Dimethy 2,6-Dinit 3-Nitroan 2,4-Dinit 4-Nitroph Diethyl p 4-Chlorop N-Nitrosa 4,6-Dinit 4-Bromop Hexachla Pentachla	procyclopenta chlorophenol chlorophenol naphthalene niline l phthalate rotoluene niline rophenol uran rotoluene henol phthalate phenyl pheny odiphenylam niline rro-2-methylp phenyl pheny pobenzene orophenol	l ether ine henol	< 0.03 < 0.1 < 0.01 < 0.05 < 0.1 < 0.05 < 1 < 0.3 ca < 0.01 < 0.05 < 0.3 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.1 < 0.05 < 0.01 < 0.05 < 0.1 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.05 < 0.05 < 0.01 < 0.05 < 0.05 < 0.03 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01				
Hexachlorobutadien 4-Chloroaniline 4-Chloro-3-methylph 2-Methylnaphthaler 1-Methylnaphthaler	nenol ne	<0.01 <1 <0.1 <0.01 <0.01	Carbazol Di-n-buty Benzyl b Bis(2-eth Di-n-octy		< 0.1 < 0.1 < 0.1 < 0.16 < 0.1					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Date Received:08/31/16Date Extracted:08/31/16Date Analyzed:09/01/16Matrix:Soil		Date Received:08/31/16Date Extracted:08/31/16Date Analyzed:09/01/16Matrix:Soil		Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences Spruce Elementary, PO KE140562 608592-01 083153.D GCMS4 JS						
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:								
1,2-Dichloroethane-	d4	100	62	142								
Toluene-d8		94	55	145								
4-Bromofluorobenze	ene	107	65	139								
		Concentration			Concentration							
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)							
Dichlorodifluoromet	thane	<0.5	1 3-Dich	loropropane	< 0.05							
Chloromethane	linarie	<0.5		oroethene	< 0.025							
Vinyl chloride		< 0.05		chloromethane	< 0.05							
Bromomethane		< 0.5	1,2-Dibro	omoethane (EDB)	< 0.05							
Chloroethane		<0.5	Chlorobe		< 0.05							
Trichlorofluorometh	nane	< 0.5	Ethylber		< 0.05							
Acetone		<0.5		Tetrachloroethane	<0.05 <0.1							
1,1-Dichloroethene		< 0.05										
Hexane		< 0.25	o-Xylene	< 0.05								
Methylene chloride		< 0.5	Styrene	< 0.05								
Methyl t-butyl ethe		<0.05 <0.05	Bromofo	lbenzene	< 0.05							
trans-1,2-Dichloroet 1,1-Dichloroethane	unene	<0.05	n-Propyl		<0.05 <0.05							
2,2-Dichloropropane		< 0.05	Bromobe		< 0.05							
cis-1,2-Dichloroethe		<0.05		imethylbenzene	< 0.05							
Chloroform		< 0.05		Tetrachloroethane	< 0.05							
2-Butanone (MEK)		< 0.5		ichloropropane	< 0.05							
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro		< 0.05							
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	toluene	< 0.05							
1,1-Dichloropropene		< 0.05		ylbenzene	< 0.05							
Carbon tetrachlorid	e	< 0.05		imethylbenzene	< 0.05							
Benzene		< 0.03	J	lbenzene	< 0.05							
Trichloroethene		< 0.02		pyltoluene	25 ve							
1,2-Dichloropropane		< 0.05		lorobenzene	< 0.05							
Bromodichlorometh Dibromomethane	lane	<0.05 <0.05		lorobenzene lorobenzene	<0.05 <0.05							
4-Methyl-2-pentano	ne	< 0.5		omo-3-chloropropane	< 0.5							
cis-1,3-Dichloroprop		<0.05		ichlorobenzene	<0.25							
Toluene		< 0.05		orobutadiene	<0.25							
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha		< 0.05							
1,1,2-Trichloroetha		< 0.05	-	chlorobenzene	< 0.25							
2-Hexanone		<0.5										

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	te Received:08/31/16te Extracted:08/31/16te Analyzed:09/01/16trix:Soil		Date Received:08/31/16Date Extracted:08/31/16Date Analyzed:09/01/16Matrix:Soil		Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Scie Spruce Elementary, F 608592-01 1/10 090108.D GCMS4 VM	
		04 F	Lower	Upper			
Surrogates:]4	% Recovery:	Limit:	Limit:			
1,2-Dichloroethane- Toluene-d8	u 4	99 97	62 55	142 145			
4-Bromofluorobenze	ne	106	55 65	145			
4 Di omonuoi obchize			00	135			
~ .		Concentration	~		Concentration		
Compounds:		mg/kg (ppm)	Compour	nds:	mg/kg (ppm)		
Dichlorodifluoromet	thane	<5	1,3-Dich	loropropane	< 0.5		
Chloromethane		<5		oroethene	< 0.25		
Vinyl chloride		< 0.5	Dibromo	chloromethane	< 0.5		
Bromomethane		<5		omoethane (EDB)	< 0.5		
Chloroethane		<5	Chlorobe		< 0.5		
Trichlorofluorometh	nane	<5	Ethylber		<0.5		
Acetone		<5		etrachloroethane	< 0.5		
1,1-Dichloroethene		< 0.5	m,p-Xyle		<1		
Hexane		<2.5	o-Xylene		< 0.5		
Methylene chloride		<5	Styrene	< 0.5			
Methyl t-butyl ether trans-1,2-Dichloroet		<0.5 <0.5	Bromofo	lbenzene	<0.5 <0.5		
1,1-Dichloroethane	uiene	<0.5	n-Propyl		<0.5 <0.5		
2,2-Dichloropropane	a	< 0.5	Bromobe		< 0.5		
cis-1,2-Dichloroethe		<0.5		methylbenzene	<0.5		
Chloroform		< 0.5		etrachloroethane	< 0.5		
2-Butanone (MEK)		<5		chloropropane	< 0.5		
1,2-Dichloroethane	(EDC)	< 0.5	2-Chloro		< 0.5		
1,1,1-Trichloroetha	ne	< 0.5	4-Chloro	toluene	< 0.5		
1,1-Dichloropropene		< 0.5		ylbenzene	< 0.5		
Carbon tetrachlorid	e	<0.5		methylbenzene	< 0.5		
Benzene		< 0.3	0	lbenzene	<0.5		
Trichloroethene		< 0.2		pyltoluene	29		
1,2-Dichloropropane		<0.5		lorobenzene	< 0.5		
Bromodichlorometh	lane	< 0.5		lorobenzene	< 0.5		
Dibromomethane		< 0.5		lorobenzene	< 0.5		
4-Methyl-2-pentano		<5		omo-3-chloropropane	<5		
cis-1,3-Dichloroprop Toluene	berle	<0.5 <0.5		chlorobenzene orobutadiene	$<\!\!2.5 < \!\!2.5$		
trans-1,3-Dichlorop	ronene	<0.5 <0.5	Naphtha		<2.5 <0.5		
1,1,2-Trichloroetha		<0.5		chlorobenzene	<0.5		
2-Hexanone		<5	1,~,0 111		~~.0		
		-					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Not Applica 08/31/16 08/31/16 Soil	Not ApplicableProject:08/31/16Lab ID:08/31/16Data File:SoilInstrument:		Associated Earth Scie Spruce Elementary, F 06-1797 mb 083106A.D GCMS4 JS		
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:		
1,2-Dichloroethane-	·d4	99	62	142		
Toluene-d8		95	55	145		
4-Bromofluorobenze	ene	106	65	139		
		Concentration			Concentration	
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)	
-	.1		-			
Dichlorodifluorome Chloromethane	tnane	<0.5 <0.5		loropropane oroethene	<0.05 <0.025	
Vinyl chloride		<0.5 <0.05		orbethene	<0.025 <0.05	
Bromomethane		< 0.5		omoethane (EDB)	< 0.05	
Chloroethane		<0.5	Chlorobe		< 0.05	
Trichlorofluorometl	hane	< 0.5	Ethylber		< 0.05	
Acetone		< 0.5		etrachloroethane	< 0.05	
1,1-Dichloroethene		< 0.05	ene	< 0.1		
Hexane		< 0.25	5			
Methylene chloride		<0.5	Styrene		< 0.05	
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05	
trans-1,2-Dichloroe	thene	< 0.05	Bromofo		< 0.05	
1,1-Dichloroethane		< 0.05	n-Propyl		< 0.05	
2,2-Dichloropropane cis-1,2-Dichloroethe		<0.05 <0.05	Bromobe		< 0.05	
Chloroform	ene	< 0.05		methylbenzene Fetrachloroethane	<0.05 <0.05	
2-Butanone (MEK)		< 0.5		chloropropane	< 0.05	
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro		< 0.05	
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05	
1,1-Dichloropropene		< 0.05	tert-Buty	ylbenzene	< 0.05	
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	methylbenzene	< 0.05	
Benzene		< 0.03	5	lbenzene	< 0.05	
Trichloroethene		< 0.02		pyltoluene	< 0.05	
1,2-Dichloropropan		< 0.05		lorobenzene	< 0.05	
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05	
Dibromomethane	200	< 0.05		lorobenzene	< 0.05	
4-Methyl-2-pentano cis-1,3-Dichloroprop		<0.5 <0.05		omo-3-chloropropane chlorobenzene	<0.5 <0.25	
Toluene		<0.05 <0.05		orobutadiene	<0.25 <0.25	
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha		<0.25	
1,1,2-Trichloroetha		<0.05		chlorobenzene	<0.25	
2-Hexanone		< 0.5	-,,			

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: Laboratory Control Sample Percent Percent RPD Spike Recovery Recovery Acceptance Level Criteria Analyte Reporting Units LCS LCSD (Limit 20) Gasoline 71-131 mg/kg (ppm) 20 90 90 0

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 608551-01 (Matrix Spike)

0		•	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	87	86	64-133	1
Laboratory Code:	Laboratory Contro	l Sample					
		C 1	Percent				
	Reporting	Spike	Recovery	· · ·			
Analyte	Units	Level	LCS	Crite			
Diesel Extended	mg/kg (ppm)	5,000	90	58-1	147		
		2					

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Couc. Laborat		10 1/0	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	90	91	58-121	1
Acenaphthylene	mg/kg (ppm)	0.17	85	86	54-121	1
Acenaphthene	mg/kg (ppm)	0.17	87	89	54-123	2
Fluorene	mg/kg (ppm)	0.17	90	90	56-127	0
Phenanthrene	mg/kg (ppm)	0.17	88	89	55-122	1
Anthracene	mg/kg (ppm)	0.17	86	83	50-120	4
Fluoranthene	mg/kg (ppm)	0.17	87	82	54-129	6
Pyrene	mg/kg (ppm)	0.17	83	97	53-127	16
Benz(a)anthracene	mg/kg (ppm)	0.17	87	89	51-115	2
Chrysene	mg/kg (ppm)	0.17	86	91	55-129	6
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	86	89	56-123	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	89	88	54-131	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	83	81	51-118	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	86	85	49-148	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	88	84	50-141	5
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	86	87	52-131	1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270D

Laboratory Code: 608592-01 1/5 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Acceptance Criteria		
Phenol	mg/kg (ppm)	0.33	< 0.5	107	50-150		
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.33	< 0.05	102	50-150		
2-Chlorophenol	mg/kg (ppm)	0.33	< 0.5	102	44-133		
1,3-Dichlorobenzene	mg/kg (ppm)	0.33	<0.05	94	50-150		
1,4-Dichlorobenzene	mg/kg (ppm)	0.33	< 0.05	94	50-150		
1,2-Dichlorobenzene	mg/kg (ppm)	0.33	<0.05	95	50-150		
Benzyl alcohol	mg/kg (ppm)	0.33	<0.5	102	50-150		
Bis(2-chloroisopropyl) ether	mg/kg (ppm)	0.33	< 0.05	96	50-150		
2-Methylphenol	mg/kg (ppm)	0.33	<0.5	101	42-143		
Hexachloroethane	mg/kg (ppm)	0.33	< 0.05	100	31-132		
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.33	<0.05	104	50-150		
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.33	<1	103	10-250		
Nitrobenzene	mg/kg (ppm)	0.33	<0.05	104	50-150		
	mg/kg (ppm)	0.33	<0.05	100	50-150		
Isophorone	mg/kg (ppm)	0.33	<0.5	116	29-152		
2-Nitrophenol	mg/kg (ppm)	0.33	<0.5	99	16-163		
2,4-Dimethylphenol	mg/kg (ppm)	0.5	<2.5	102	10-250		
Benzoic acid	mg/kg (ppm)	0.33	<0.05	102	50-150		
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.33	<0.05	103	39-145		
2,4-Dichlorophenol	mg/kg (ppm)	0.33	<0.05	95	50-150		
1,2,4-Trichlorobenzene	mg/kg (ppm)	0.33	< 0.05	95 91	50-150		
Hexachlorobutadiene	mg/kg (ppm)	0.66		91 67			
4-Chloroaniline	mg/kg (ppm)	0.33	<5		23-110		
4-Chloro-3-methylphenol	mg/kg (ppm)	0.33	<0.5	105	50-150		
2-Methylnaphthalene	mg/kg (ppm)	0.33	< 0.05	98	50-150		
1-Methylnaphthalene	mg/kg (ppm)	0.33	< 0.05	98	50-150		
Hexachlorocyclopentadiene	mg/kg (ppm)	0.33	<0.15	102	10-151		
2,4,6-Trichlorophenol	mg/kg (ppm)	0.33	<0.5	108	38-149		
2,4,5-Trichlorophenol	mg/kg (ppm)	0.33	<0.5	99	50-150		
2-Chloronaphthalene	mg/kg (ppm)	0.33	< 0.05	96	50-150		
2-Nitroaniline	mg/kg (ppm)	0.33	<0.25	105	50-150		
Dimethyl phthalate		0.33	<0.5	101	50-150		
2,6-Dinitrotoluene	mg/kg (ppm)	0.66	<0.25	99	50-150		
3-Nitroaniline	mg/kg (ppm)		<5	71	23-119		
2,4-Dinitrophenol	mg/kg (ppm)	0.33	<1.5	68	10-162		
Dibenzofuran	mg/kg (ppm)	0.33	< 0.05	96	47-149		
2,4-Dinitrotoluene	mg/kg (ppm)	0.33	<0.25	101	50-150		
4-Nitrophenol	mg/kg (ppm)	0.33	<1.5	81	10-179		
Diethyl phthalate	mg/kg (ppm)	0.33	<0.5	107	50-150		
4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.33	< 0.05	94	50-150		
N-Nitrosodiphenylamine	mg/kg (ppm)	0.33	< 0.05	100	50-150		
4-Nitroaniline	mg/kg (ppm)	0.66	<5	82	32-135		
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.33	<1.5	81	10-170		
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.33	< 0.05	99	50-150		
Hexachlorobenzene	mg/kg (ppm)	0.33	< 0.05	95	50-150		
Pentachlorophenol	mg/kg (ppm)	0.33	<0.5	110	12-160		
Carbazole	mg/kg (ppm)	0.33	<0.5	89	50-150		
Di-n-butyl phthalate	mg/kg (ppm)	0.33	<0.5	101	50-150		
Benzyl butyl phthalate	mg/kg (ppm)	0.33	<0.5	109	50-150		
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.33	<0.8	122	10-250		
(mg/kg (ppm)	0.33					

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270D

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20) 10	
Phenol	mg/kg (ppm)	0.33	99	90	51-119		
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.33	99	87	60-112	13	
2-Chlorophenol	mg/kg (ppm)	0.33	97	88	59-114	10	
1,3-Dichlorobenzene	mg/kg (ppm)	0.33	97	85	62-113	13	
1,4-Dichlorobenzene	mg/kg (ppm)	0.33	97	85	61-114	13	
1,2-Dichlorobenzene	mg/kg (ppm)	0.33	97	85	61-113	13	
Benzyl alcohol	mg/kg (ppm)	0.33	99	89	50-119	11	
Bis(2-chloroisopropyl) ether	mg/kg (ppm)	0.33	95	85	59-113	11	
2-Methylphenol	mg/kg (ppm)	0.33	94	86	58-115	9	
Hexachloroethane	mg/kg (ppm)	0.33	98	88	63-114	11	
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.33	99	91	62-114	8	
	mg/kg (ppm)	0.33	96	88	54-120	9	
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.33	104	92	59-114	12	
Nitrobenzene	mg/kg (ppm)	0.33	97	87	61-113	11	
Isophorone	mg/kg (ppm)	0.33	91	89	59-114	2	
2-Nitrophenol	mg/kg (ppm)	0.33	84	75	54-107	11	
2,4-Dimethylphenol	mg/kg (ppm)	0.5	99	96	43-150	3	
Benzoic acid	mg/kg (ppm)	0.33				13	
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.33	98	86	60-114	10	
2,4-Dichlorophenol	mg/kg (ppm)	0.33	98	89	57-118	13	
1,2,4-Trichlorobenzene		0.33	98	86	56-112	13	
Hexachlorobutadiene	mg/kg (ppm)		94	82	60-116		
4-Chloroaniline	mg/kg (ppm)	0.66	63	50	10-126	23 vo	
4-Chloro-3-methylphenol	mg/kg (ppm)	0.33	100	90	59-115	11	
2-Methylnaphthalene	mg/kg (ppm)	0.33	98	86	60-115	13	
1-Methylnaphthalene	mg/kg (ppm)	0.33	99	87	70-130	13	
Hexachlorocyclopentadiene	mg/kg (ppm)	0.33	98	89	41-107	10	
2,4,6-Trichlorophenol	m <mark>g/k</mark> g (ppm)	0.33	92	86	47-119	7	
2,4,5-Trichlorophenol	mg/kg (ppm)	0.33	95	87	61-121	9	
2-Chloronaphthalene	mg/kg (ppm)	0.33	95	85	58-114	11	
2-Nitroaniline	mg/kg (ppm)	0.33	102	91	55-119	11	
Dimethyl phthalate	mg/kg (ppm)	0.33	103	93	58-116	10	
2,6-Dinitrotoluene	mg/kg (ppm)	0.33	103	92	57-119	11	
3-Nitroaniline	mg/kg (ppm)	0.66	83	72	10-143	14	
2,4-Dinitrophenol	mg/kg (ppm)	0.33	85	80	40-122	6	
Dibenzofuran	mg/kg (ppm)	0.33	98	86	56-115	13	
2,4-Dinitrotoluene	mg/kg (ppm)	0.33	105	93	53-126	12	
4-Nitrophenol	mg/kg (ppm)	0.33	91	86	40-124	6	
Diethyl phthalate	mg/kg (ppm)	0.33	108	96	57-116	12	
4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.33	98	85	54-119	14	
N-Nitrosodiphenylamine	mg/kg (ppm)	0.33	95	85	54-113	11	
	mg/kg (ppm)	0.66	80	76	47-109	5	
4-Nitroaniline	mg/kg (ppm)	0.33	88	85	55-147	3	
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.33	100	85 89	56-116	12	
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.33	97	89 87	57-115	11	
Hexachlorobenzene	mg/kg (ppm)	0.33				6	
Pentachlorophenol	mg/kg (ppm)	0.33	91	86	45-123	9	
Carbazole		0.33	93	85	57-116	9 7	
Di-n-butyl phthalate	mg/kg (ppm)		108	101	56-118	4	
Benzyl butyl phthalate	mg/kg (ppm)	0.33	104	100	56-122		
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.33	108	102	56-155	6	
Di-n-octyl phthalate	mg/kg (ppm)	0.33	102	95	58-120	7	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 608577-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	25	24	10-142	4
Chloromethane	mg/kg (ppm)	2.5	<0.5	51	48	10-126	6
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	59	55	10-138	7
Bromomethane	mg/kg (ppm)	2.5	<0.5	66	62	10-163	6
Chloroethane	mg/kg (ppm)	2.5	<0.5	79	75	10-176	5
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	66	63	10-176	5
Acetone	mg/kg (ppm)	12.5	<0.5	79	79	10-163	0
1,1-Dichloroethene	mg/kg (ppm)	2.5	<0.05	70	66 50	10-160	6
Hexane Methylene chloride	mg/kg (ppm)	2.5 2.5	<0.25	66 85	59 81	10-137	11 5
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	<0.5 <0.05	85 79	76	10-156 21-145	5 4
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5 2.5	<0.05	79 72	68	21-145 14-137	4 6
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	81	77	19-140	5
2,2-Dichloropropane		2.5	<0.05	83	79	10-158	5
cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	75	75 71	25-135	5
Chloroform	mg/kg (ppm)	2.5	<0.05	73 79	75	21-145	5
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	83	83	19-147	0
1.2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	<0.05	79	76	12-160	4
1.1.1-Trichloroethane	mg/kg (ppm)	2.5	<0.05	72	68	10-156	6
1,1-Dichloropropene	mg/kg (ppm)	2.5	<0.05	75	71	17-140	5
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	67	65	9-164	3
Benzene	mg/kg (ppm)	2.5	< 0.03	78	74	29-129	5
Trichloroethene	mg/kg (ppm)	2.5	<0.02	74	74 71	21-139	4
1,2-Dichloropropane	mg/kg (ppm)	2.5	<0.02	84	81	30-135	4
Bromodichloromethane	mg/kg (ppm)	2.5	<0.05	76	73	23-155	4
Dibromomethane	mg/kg (ppm)	2.5	<0.05	79	76	23-145	4
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	77	75	24-155	3
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	<0.05	78	74	28-144	5
Toluene	mg/kg (ppm)	2.5	<0.05	85	80	35-130	6
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	<0.05	87	82	26-149	ő
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	<0.05	90	86	10-205	5
2-Hexanone	mg/kg (ppm)	12.5	<0.5	106	102	15-166	4
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	92	88	31-137	4
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	84	80	20-133	5
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	81	78	28-150	4
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	86	83	28-142	4
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	86	82	32-129	5
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	86	81	32-137	6
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	79	75	31-143	5
m,p-Xylene	mg/kg (ppm)	5	<0.1	87	82	34-136	6
o-Xylene	mg/kg (ppm)	2.5	< 0.05	84	81	33-134	4
Styrene	mg/kg (ppm)	2.5	< 0.05	86	82	35-137	5
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	85	81	31-142	5
Bromoform	mg/kg (ppm)	2.5	< 0.05	73	70	21-156	4
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	92	88	23-146	4
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	90	85	34-130	6
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	89	85	18-149	5
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	94	90	28-140	4
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	98	95	25-144	3
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	91	87	31-134	4
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	89	85	31-136	5
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	87	84	30-137	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	87	84	10-182	4
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	87	84	23-145	4
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	87	83	21-149	5
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	89	85	30-131	5
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	88	85	29-129	3
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	91	86	31-132	6
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.5	89	89	11-161	0
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	86	83	22-142	4
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	76	75	10-142	1
Naphthalene	mg/kg (ppm)	2.5	< 0.05	90	87	14-157	3
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	85	83	20-144	2

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/16 Date Received: 08/31/16 Project: Spruce Elementary, PO KE140562A, F&BI 608592

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory	Control Sample	Percent								
	Reporting	Spike	Recovery	Acceptance						
Analyte	Units	Level	LCS	Criteria						
Dichlorodifluoromethane	mg/kg (ppm)	2.5	43	10-146						
Chloromethane	mg/kg (ppm)	2.5	67	27-133						
Vinyl chloride	mg/kg (ppm)	2.5	79	22-139						
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	79 96	38-114 10-163						
Trichlorofluoromethane	mg/kg (ppm)	2.5	86	10-105						
Acetone	mg/kg (ppm)	12.5	101	52-141						
1,1-Dichloroethene	mg/kg (ppm)	2.5	89	47-128						
Hexane	mg/kg (ppm)	2.5	91	43-142						
Methylene chloride	mg/kg (ppm)	2.5	106	42-132						
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	95	60-123						
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	88 97	67-127						
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97	68-115 52-170						
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	90 90	72-113						
Chloroform	mg/kg (ppm)	2.5	94	66-120						
2-Butanone (MEK)	mg/kg (ppm)	12.5	103	57-123						
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	95	56-135						
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	85	62-131						
1,1-Dichloropropene	mg/kg (ppm)	2.5	90	69-128						
Carbon tetrachloride	mg/kg (ppm)	2.5	83	60-139						
Benzene	mg/kg (ppm)	2.5	93 88	68-114 64-117						
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101	64-117 72-127						
Bromodichloromethane	mg/kg (ppm)	2.5	92	72-130						
Dibromomethane	mg/kg (ppm)	2.5	95	70-120						
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	93	45-145						
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	93	75-136						
Toluene	mg/kg (ppm)	2.5	100	66-126						
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	104	72-132						
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	107	75-113						
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	12.5 2.5	128 110	33-152 72-130						
Tetrachloroethene	mg/kg (ppm)	2.5	99	72-130						
Dibromochloromethane	mg/kg (ppm)	2.5	97	74-125						
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	103	74-132						
Chlorobenzene	mg/kg (ppm)	2.5	102	76-111						
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123						
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	93	69-135						
m,p-Xylene	mg/kg (ppm)	5	101	78-122						
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	99 101	77-124 74-126						
Isopropylbenzene	mg/kg (ppm)	2.5	98	76-127						
Bromoform	mg/kg (ppm)	2.5	88	56-132						
n-Propylbenzene	mg/kg (ppm)	2.5	108	74-124						
Bromobenzene	mg/kg (ppm)	2.5	108	72-122						
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	104	76-126						
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	112	56-143						
1,2,3-Trichloropropane 2-Chlorotoluene	mg/kg (ppm)	2.5 2.5	119 108	61-137						
4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2.5	108	74-121 75-122						
tert-Butylbenzene	mg/kg (ppm)	2.5	103	73-122						
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	102	76-125						
sec-Butylbenzene	mg/kg (ppm)	2.5	102	71-130						
p-Isopropyltoluene	mg/kg (ppm)	2.5	101	70-132						
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	104	75-121						
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	104	74-117						
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	106	76-121						
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	110 101	58-138 64-135						
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	89	50-153						
Naphthalene	mg/kg (ppm)	2.5	107	63-140						
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	103	63-138						
	0 0 41 /									

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

608592				SAMPLE	CHAIN C)F (CUS	бто	DY		(. 1	46	- 0	281	13	/1	6	$\leq r$
Sette Report To Jun	Son	leraga	~d	SAMPI	LERS (sign	atur	e)	1	V	4						р /т	age #	AROUND	of
Send Report To <u>Jun</u> Company <u>AES</u>					PROJECT NAME/NO. // PO#						19 Standard (2 Weeks)								
$\frac{1}{2} \frac{1}{2} \frac{1}$	n N			- Spru	Spruce Eleventary KEHO562A							R	Rush charges authorized by						
Address V	$\frac{1}{2}$	we g	8023	- REMA	RKS										-			PLE DISPO	
Address <u>911 Fifth Ave</u> City, State, ZIP <u>Kirkland</u> WA 98033			-														ifter 30 day mples	ys	
Phone #425-327-7=	*•1 Fax	x #																with instru	ctions
					.							ES RE	QU	EST	ED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS							N	otes
EB-5	01	8/30/16	1100	5		X	X	X	$\boldsymbol{\lambda}$	\mathbf{X}	-+					<u> </u>		· · · · · · · · · · · · · · · · · · ·	
		<u> </u>									-+								
																			·····
													S	am S	ien d	sei t	led ia	5 ed at	
Friedman & Bruya, Inc.			ATURE		PR	INT	'NA	ME					CO	MPA	NY			DATE	TIME
3012 16th Avenue West	Relinqui	hed by:)		~ <	•	1.)			٨						1016	

rrieuman & bruya, inc.	SIGNATURE	PRINT NAME	I COMPANY	DATE TIME
3012 16th Avenue West	Relinquighed by:	Jon Sundergaard	AESI	8/51/16
Seattle, WA 98119-2029	Received by: Bill Suasa	Bill GRASON	FEDSX	8/31/1/ 11:56
Ph. (206) 285-8282	Relinquished by:			7710
Fax (206) 283-5044	Received by: marken and	Nhan Phan	FEBT	8/31/16 1350
FORMS\COC\COC.DOC				

Permanent Stormwater Control Calculations

E-1	Phase 1	TDA C FI	ow Control	Calculations	
E-2	Phase 2	TDA A Fl	ow Control	Calculations	
			-		

E-3.....Phase 2 TDA B Flow Control Calculations

E-4.....Phase 2 TDA C Flow Control Calculations

E-5.....Phase 1 TDA C Silva Cell Water Quality Calculations

E-6.....Phase 1 TDA C CAVFS Water Quality Calculations

Project SPRUCE ES PHASE I Subject CONVERT POND \rightarrow PIPE With/To Address Date $\frac{9/8/17}{2}$	Project No. <u>2140275</u> Phone Fax # # Faxed Pages By McDo NALD	 Page of Calculations Fax Memorandum Meeting Minutes Telephone Memo 	A H B L
			Civil Engineers

CIVEN CRAN WWHM ON TOAC-PHASE | TOAC TO HAVE POND AND PIPE INTERCONNECTED CEVENTHALLY WILL NEED STAGE STORAGE AND WILL PROVIDE @ FINAL SUBMITTAL COmmunity Planners D MODELED TDAC AS POND NEED TO DETERMINE PIPE LENGTH

SOLVE
 VOLUME AVAILABLE IN POND IN TOX C PHAS
 ULIVE STORAGE BOTTOM SURFACE AREA:
 ULIVE STORAGE TOP SURFACE AREA:
 DEPTH: SFT
 USING AVERAGE END AREA TO SOLVE FOR VOLUME
 14706.7 CF

□ VOLUME REQUIRED BY WWHM MODEL -USING POND □ VOLUME @ RISER HEAD: 0.3185 AURE-FY → 35364.1 CF □ VOLUME REMAINING FOR PIPES

O USING EXCEL CALL (SEE ATTACHED) O LENGTH REQUIRED : 794 LE

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.

WWHM2012 PROJECT REPORT

```
Project Name: 20170906-Spruce ES - PH 1
Site Name: Spruce ES
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 9/8/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA C - Predeveloped Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Mod	3.11
Pervious Total	3.11
Impervious Land Use	acre
Impervious Total	0
Basin Total	3.11

Element Flows To:	
Surface	Interflow

Groundwater

MITIGATED LAND USE

Name : TDA C - Developed Bypass: No

GroundWater: No

<u>Pervious Land Use</u> C, Pasture, Mod C, Pasture, Flat	<u>acre</u> .31 .94
Pervious Total	1.25
Impervious Land Use DRIVEWAYS FLAT DRIVEWAYS MOD	<u>acre</u> 1.47 0.49
Impervious Total	1.96
Basin Total	3.21

Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1	Groundwater
Name : TDA - C Bypa Bypass: Yes	SS	
GroundWater: No		
<u>Pervious Land Use</u> C, Pasture, Steep	acre2	
Pervious Total	0.2	
Impervious Land Use	acre	
Impervious Total	0	
Basin Total	0.2	

Element Flows To: Surface Interflow

Groundwater

Name : Trapezoidal Pond 1
Bottom Length: 69.00 ft.
Bottom Width: 69.00 ft.
Depth: 6 ft.
Volume at riser head: 0.8185 acre-feet.
Side slope 1: 3 To 1
Side slope 2: 3 To 1
Side slope 3: 3 To 1
Side slope 4: 3 To 1

Discharge Structure Riser Height: 5 ft. Riser Diameter: 18 in. Notch Type: Rectangular Notch Width: 0.344 ft. Notch Height: 0.250 ft. Orifice 1 Diameter: 0.8 in. Elevation: 0 ft.

Element Flows To: Outlet 1 Outlet 2

	Pond	Hydraulic Tab	le	
Stage (feet)	Area(ac.	• • • •		Infilt(cfs)
0.0000	0.109	0.000	0.000	0.000
0.0667	0.110	0.007	0.004	0.000
0.1333	0.111	0.014	0.006	0.000
0.2000	0.113	0.022	0.007	0.000
0.2667	0.114	0.029	0.009	0.000
0.3333	0.115	0.037	0.010	0.000
0.4000	0.117	0.045	0.011	0.000
0.4667	0.118	0.053	0.011	0.000
0.5333	0.119	0.061	0.012	0.000
0.6000	0.121	0.069	0.013	0.000
0.6667	0.122	0.077	0.014	0.000
0.7333	0.123	0.085	0.014	0.000
0.8000	0.125	0.093	0.015	0.000
0.8667	0.126	0.102	0.016	0.000
0.9333	0.127	0.110	0.016	0.000
1.0000	0.129	0.119	0.017	0.000
1.0667	0.130	0.127	0.017	0.000
1.1333	0.131	0.136	0.018	0.000
1.2000	0.133	0.145	0.019	0.000
1.2667	0.134	0.154	0.019	0.000
1.3333	0.136	0.163	0.020	0.000
1.4000	0.137	0.172	0.020	0.000
1.4667	0.139	0.181	0.021	0.000
1.5333	0.140	0.190	0.021	0.000
1.6000	0.141	0.200	0.022	0.000
1.6667	0.143	0.209	0.022	0.000
1.7333	0.144	0.219	0.022	0.000
1.8000	0.146	0.229	0.023	0.000
1.8667	0.147	0.238	0.023	0.000
1.9333	0.149	0.248	0.024	0.000
2.0000	0.150	0.258	0.024	0.000
2.0667	0.152	0.268	0.025	0.000
2.1333	0.153	0.279	0.025	0.000
2.2000	0.155	0.289	0.025	0.000
2.2667	0.156	0.299	0.026	0.000
2.3333	0.158	0.310	0.026	0.000
2.4000	0.159	0.320	0.026	0.000
2.4667	0.161	0.331	0.027	0.000
2.5333	0.162	0.342	0.027	0.000
2.6000	0.164	0.353	0.028	0.000

2.6667 2.7333 2.8000 2.8667 2.9333 3.0000 3.0667 3.1333 3.2000 3.2667 3.3333 3.4000 3.4667 3.5333 3.6000 3.6667 3.7333 3.8000 3.8667 3.9333 4.0000 4.0667 4.1333 4.2000 4.2667 4.3333 4.0000 4.2667 4.3333 4.0000 4.2667 4.5333 4.0000 4.6667 4.7333 4.6000 4.6667 5.3333 5.0000 5.0667 5.1333 5.2000 5.2667 5.3333 5.2000 5.2667 5.3333 5.4000 5.4667 5.7333 5.8000 5.8667 5.7333 5.8000 5.8667 5.9333 5.0000	0.165 0.167 0.169 0.170 0.172 0.173 0.175 0.177 0.178 0.180 0.181 0.183 0.185 0.186 0.188 0.190 0.191 0.193 0.195 0.196 0.198 0.200 0.202 0.202 0.203 0.205 0.207 0.203 0.205 0.207 0.203 0.205 0.207 0.203 0.212 0.214 0.214 0.216 0.217 0.212 0.221 0.223 0.225 0.225 0.225 0.226 0.223 0.223 0.223 0.232 0.234 0.237 0.239 0.241 0.243 0.243 0.243	0.364 0.375 0.386 0.397 0.409 0.420 0.420 0.432 0.444 0.456 0.468 0.492 0.504 0.517 0.529 0.542 0.554 0.557 0.580 0.593 0.606 0.620 0.633 0.647 0.660 0.633 0.647 0.660 0.674 0.688 0.702 0.716 0.730 0.745 0.759 0.774 0.788 0.803 0.818 0.833 0.818 0.833 0.818 0.833 0.848 0.848 0.879 0.926 0.910 0.926 0.974 1.007 1.024 1.007	0.028 0.029 0.029 0.029 0.029 0.030 0.030 0.030 0.031 0.031 0.031 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.035 0.037 0.038 0.128 0	
6.0667		1.040 1.057 1.074	7.031 7.272 7.504	

ANALYSIS RESULTS

Predeveloped Landuse Totals for POC #1 Total Pervious Area:3.11 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.45 Total Impervious Area:1.96

100 year

Flow Frequency Return	rn Periods for Predeveloped.	POC #1
Return Period	Flow(cfs)	
2 year	0.069286	
5 year	0.106062	
10 year	0.1325	
25 year	0.167993	
50 year	0.195829	
100 year	0.224787	
-		

Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.042559 5 year 0.074682 10 year 0.105264 25 year 0.157824 50 year 0.209578

0.274579

Stream P	rotection Duration		
Annual P	eaks for Predevelop	ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	0.038	0.034	
1950	0.074	0.039	
1951	0.066	0.032	
1952	0.051	0.032	
1953	0.039	0.028	
1954	0.198	0.055	
1955	0.102	0.142	
1956	0.088	0.182	
1957	0.101	0.041	
1958	0.071	0.049	
1959	0.075	0.036	
1960	0.063	0.038	
1961	0.066	0.054	
1962	0.058	0.033	
1963	0.083	0.034	
1964	0.059	0.031	
1965	0.066	0.037	
1966	0.036	0.033	
1967	0.081	0.036	
1968	0.095	0.040	

1981 0.049 0.031 1982 0.063 0.041 1983 0.108 0.041 1984 0.065 0.069 1985 0.093 0.046 1986 0.221 0.387 1987 0.095 0.119 1988 0.052 0.037 1989 0.052 0.028 1990 0.069 0.040 1991 0.073 0.038 1992 0.056 0.038 1993 0.036 0.027 1994 0.034 0.037 1995 0.070 0.041 1996 0.131 0.044 1997 0.249 0.615 1998 0.044 0.037 2000 0.038 0.039 2001 0.012 0.023 2002 0.067 0.043 2003 0.049 0.322 2004 0.077 0.038 2005 0.057 0.038 2006 0.168 0.079	
20040.0770.04320050.0570.038	

Stream Protection Duration

Ranked Rank	Annual Peaks for Predeveloped	Predeveloped and Mitigated. Mitigated	POC #1
Kalik	-	2	
1	0.2490	0.6152	
2	0.2212	0.3866	
3	0.1976	0.1816	
4	0.1783	0.1733	
5	0.1677	0.1418	
6	0.1318	0.1361	
7	0.1310	0.1195	
8	0.1161	0.0789	
9	0.1154	0.0691	
10	0.1078	0.0589	
11	0.1016	0.0548	

$12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ $	0.1011 0.0952 0.0948 0.0938 0.0932 0.0883 0.0841 0.0833 0.0813 0.0771 0.0754 0.0737 0.0734 0.0715 0.0702 0.0690 0.0673 0.0664 0.0662 0.0659 0.0659 0.0659 0.0641 0.0634 0.0630 0.0641 0.0634 0.0630 0.06388 0.0575 0.0588 0.0575 0.0567 0.0567 0.0567 0.0560 0.0524 0.0523 0.0520 0.0	0.0539 0.0491 0.0462 0.0451 0.0447 0.0443 0.0427 0.0426 0.0414 0.0413 0.0409 0.0408 0.0400 0.0398 0.0392 0.0390 0.0382 0.0390 0.0382 0.0390 0.0375 0.0374 0.0375 0.0374 0.0372 0.0375 0.0375 0.0374 0.0372 0.0375 0.0375 0.0374 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0365 0.0365 0.0365 0.0365 0.0365 0.0365 0.0365 0.0365 0.0365 0.0371 0.0340 0.0331 0.0328 0.0327 0.0324 0.0319 0.0312 0.0312 0.0312
53 54	0.0443 0.0419	0.0318 0.0312

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.0346	20674	18873	91 -	Pass
0.0363	18354	11890	64	Pass
0.0379	16309	6844	41	Pass
0.0395	14429	3978	27	Pass
0.0412	12882	2543	19	Pass
0.0428	11479	2007	17	Pass
0.0444	10243	1741	16	Pass
0.0460	9137	1549	16	Pass
0.0477	8185	1421	17	Pass
0.0493	7272	1319	18	Pass
0.0509	6494	1233	18	Pass
0.0526	5831	1121	19	Pass
0.0542	5251	1010	19	Pass
0.0558	4755	963	20	Pass
0.0574	4295	925	21	Pass
0.0591	3861	895	23	Pass
0.0607	3459	874	25	Pass
0.0623	3067	851	27	Pass
0.0639	2714	830	30	Pass
0.0656	2449	809	33	Pass
0.0672	2209	786	35	Pass
0.0688	2008	760	37	Pass
0.0705	1842	740	40	Pass
0.0721	1707	720	42	Pass
0.0737	1571	694	44	Pass
0.0753	1456	673	46	Pass
0.0770	1362	639	46	Pass
0.0786	1289	601	46	Pass
0.0802	1212	581	47	Pass
0.0819	1145	563	49	Pass
0.0835	1074	548	51	Pass
0.0851	996	532	53	Pass
0.0867	934	517	55	Pass
0.0884	893	507	56	Pass
0.0900	849	499	58	Pass
0.0916	809	484	59	Pass
0.0933	761	474	62	Pass
0.0949	720	467	64	Pass
0.0965	689	458	66	Pass
0.0981	664	452	68	Pass
0.0998	641 625	439	68 60	Pass
0.1014	625	432	69 69	Pass
0.1030	603 586	416 406	68 69	Pass
0.1047 0.1063		406	69 60	Pass
0.1003	571 554	397	69 69	Pass
0.1079	554 540	383		Pass
0.1095	540 523	376 367	69 70	Pass
0.1112	525 510	361	70 70	Pass Pass
0.1128	484	345	70 71	Pass
0.1161	465	334	71	Pass
0.1177	450	320	71	Pass
0.1193	439	306	69	Pass
0.1209	424	293	69	Pass
0.1226	412	283	68	Pass

0.1242	403	274	67	Pass	
0.1258	390	264	67	Pass	
0.1274	376	255	67	Pass	
0.1291	365	245	67	Pass	
0.1307	357	236	66	Pass	
0.1323	343	229	66	Pass	
0.1340	335	222	66	Pass	
0.1356	323	216	66	Pass	
0.1372	311	208	66	Pass	
0.1388	304	202	66	Pass	
0.1405	300	194	64	Pass	
0.1421	293	186	63	Pass	
0.1437	285	179	62	Pass	
0.1454	277	172	62	Pass	
0.1470	269	170	63	Pass	
0.1486	259	166	64	Pass	
0.1502	251	159	63	Pass	
0.1519	244	158	64	Pass	
0.1535	236	152	64	Pass	
0.1551	228	148	64	Pass	
0.1568	213	141	66	Pass	
0.1584	206	136	66	Pass	
0.1600	198	133	67	Pass	
0.1616	191	130	68	Pass	
0.1633	185	126	68	Pass	
0.1649	178	125	70	Pass	
0.1665	168	119	70	Pass	
0.1682	163	115	70	Pass	
0.1698	155	113	72	Pass	
0.1714	148	108	72	Pass	
0.1730	141	105	74	Pass	
0.1747	132	100	75	Pass	
0.1763	126	98	77	Pass	
0.1779	119	96	80	Pass	
0.1795	115	90	78	Pass	
0.1812	111	87	78	Pass	
0.1828	108	85	78	Pass	
0.1844	104	81	77	Pass	
0.1861	101	81	80	Pass	
0.1877	98	79	80	Pass	
0.1893	91	78	85	Pass	
0.1909	87	75	86	Pass	
0.1926	77	72	93	Pass	
0.1942	70	71	101	Pass	
0.1958	67	70	104	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative	
Percent	Water Quality	Percent	Comment				
		Treatment?	Needs	Through	Volume	Volume	
Volume		Water Quality					
			Treatment	Facility	(ac-ft.)	Infiltrat	ion
Infiltrated		Treated					
			(ac-ft)	(ac-ft)		Credit	
Trapezoidal	Pond 1 POC	Ν	333.65			N	0.00
Total Volum	e Infiltrated		333.65	0.00	0.00		0.00
0.00	0%	No Treat. Ci	redit				
Compliance with LID Standard 8							
Duration An	alysis Result =	Passed					

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

PIPE VOLUME CALCULATION TDA-C 9/8/2017

BASE OF LIVE STORAGE TOP OF LIVE STORAGE

PIPE DIAMETER =	6	LF	
PIPE RADIUS =	3	LF	
DEAD STOR DEPTH =	0.5	LF	
FREEBOARD DEPTH =	0.5	LF	
H AT CENTER OF PIPE =	3	LF	
LENGTH OF PIPE =	794	LF	
LIVE STORAGE VOLUME =	20663	CF	
LIVE STORAGE GOAL =	20657	CF	5% BUMP
EQUIV. LENGTH OF PIPE =	794	LF	833 LF

			-		CROSS SECTIONAL
					А
H ABOVE IE	Y	Х	TRIANGLE	SECTOR	PIPE
(FT)	(LF)	(LF)	(SF)	(SF)	(SF)
0.50	2.50	1.66	4.15	5.27	1.13
5.50	-2.50	1.66	-4.15	23.00	27.15
		TOTAL LIV	E STORAGE CROSS S	ECTIONAL AREA =	26.02

E-2

Project SPRUCE ES PHASET Project No. 2146275 Pageof Subject TDA A Phone Calculations With/To Fax # Memorandum Fax Address # Faxed Pages Meeting Minutes Date \$/1/17 By J MCDon/ALDS Telephone Memo	
	Civil Engineers
JRAN WWHM ON TOA A PHASE II	
D TOR A HAS PIPE ONLY	Structural Engineers
I ASSUMED IN WWHM	Landscape Architects
H EXISTING: 70% FLAT, 15% MOD, 15%. STEEP	,
U FROPOSED	Community Planners
AIMPERV: 804. FLAT, 204. MOD	Land Surveyors
DPERV: 55%. FLAT, 40%, MOD, 5% STEEP	Land Surveyors
D BYPASS IMPERV: 30% FLAT, 20% MOD, 30% STEEP D BYPASS PERV: 40% FLAT, 20% MOD, 30% STEEP	
OPIPE DIAMETER : 6 FT	
SOLVE	
PPER WWHM REQUIRED VOLUME	
DLENGTH REQUIRED 2150 LF	
OFIFE DIAMETER @ BOTTOM ORIFICE IS LESS THAN O.S OHAD TO REDUCE 9/ZE TO MAKE WORK	
A THE TO REDUCE STER TO SUFFICE WORK	
OS AND WORKWG AT SMALLER SIZE	
If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.	

WWHM2012 PROJECT REPORT

```
Project Name: Spruce ES -TDA A - Phase II
Site Name: Spruce ES - Phase II - TDA A
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA A Phase II Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	2.64
C, Forest, Mod	.57
C, Forest, Steep	.57
Pervious Total	3.78
Impervious Land Use	acre
Impervious Total	0
Basin Total	3.78

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : Phase II TDA A Bypass: No GroundWater: No

<u>acre</u> .57 .42 .05
1.04
<u>acre</u> 1.74 0.44
2.18
3.22

Element Flows To:		
Surface	Interflow	Groundwater
TDA A - Tank	TDA A - Tank	

Name : Phase II TDA A Bypass Bypass: Yes

GroundWater: No

Pervious Land Use	acre
C, Pasture, Flat	.14
C, Pasture, Mod	.11
C, Pasture, Steep	.11
Pervious Total	0.36
Impervious Land Use	acre
DRIVEWAYS FLAT	0.16
DRIVEWAYS MOD	0.04
Impervious Total	0.2
Basin Total	0.56

Element Flows To	•:
Surface	Interflow

Groundwater

Name : TDA A - Tank Tank Name: TDA A - Tank Dimensions Depth: 6 ft. Tank Type : Circular Diameter : 6 ft. Length : 2150 ft. Discharge Structure Riser Height: 5.5 ft. Riser Diameter: 18 in. Orifice 1 Diameter: 0.05 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.7 in. Elevation: 0.75 ft. Orifice 3 Diameter: 1.5 in. Elevation: 4 ft. Element Flows To:

Outlet 1

Outlet 2

Tank Hydraulic Table

Stage (feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0667	0.062	0.002	0.000	0.000
0.1333	0.087	0.007	0.000	0.000
0.2000	0.106	0.014	0.000	0.000
0.2667	0.122	0.021	0.000	0.000
0.3333	0.135	0.030	0.000	0.000
0.4000	0.147	0.040	0.000	0.000
0.4667	0.158	0.050	0.000	0.000
0.5333	0.168	0.061	0.000	0.000
0.6000	0.177	0.072	0.000	0.000
0.6667	0.186	0.084	0.000	0.000
0.7333	0.194	0.097	0.000	0.000
0.8000	0.201	0.110	0.003	0.000
0.8667	0.208	0.124	0.004	0.000
0.9333	0.214	0.138	0.005	0.000
1.0000	0.220	0.152	0.006	0.000
1.0667	0.226	0.167	0.007	0.000
1.1333	0.231	0.183	0.008	0.000
1.2000	0.236	0.198	0.009	0.000
1.2667	0.241	0.214	0.009	0.000
1.3333	0.246	0.230	0.010	0.000
1.4000	0.250	0.247	0.010	0.000
1.4667	0.254	0.264	0.011	0.000
1.5333	0.258	0.281	0.011	0.000
1.6000	0.261	0.298	0.012	0.000
1.6667	0.265	0.316	0.012	0.000
1.7333	0.268	0.334	0.013	0.000
1.8000	0.271	0.352	0.013	0.000
1.8667	0.274	0.370	0.014	0.000
1.9333	0.276	0.388	0.014	0.000
2.0000	0.279	0.407	0.014	0.000
2.0667	0.281	0.425	0.015	0.000
2.1333	0.283	0.444	0.015	0.000
2.2000	0.285	0.463	0.016	0.000
2.2667	0.287	0.482	0.016	0.000

2.3333 2.4000 2.4667 2.5333 2.6000 2.6667 2.7333 2.8000 2.8667 2.9333 3.0000 3.0667 3.1333 3.2000 3.2667 3.3333 3.4000	0.288 0.290 0.291 0.292 0.293 0.294 0.295 0.295 0.295 0.295 0.296 0.296 0.296 0.296 0.295 0.295 0.295 0.295 0.295 0.295 0.295	0.502 0.521 0.540 0.560 0.579 0.599 0.618 0.638 0.658 0.658 0.678 0.677 0.717 0.737 0.757 0.776 0.796 0.815	0.016 0.017 0.017 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021 0.021	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.4000	0.293	0.815	0.021	0.000
3.4667	0.292	0.835	0.022	
3.5333	0.291	0.854	0.022	
3.6000	0.290	0.874	0.022	0.000
3.6667	0.288	0.893	0.022	0.000
3.7333	0.287	0.912	0.023	0.000
3.8000	0.285	0.931	0.023	0.000
3.8667	0.283	0.950	0.023	0.000
3.9333	0.281	0.969	0.023	0.000
4.0000 4.0667 4.1333	0.279 0.276 0.274 0.271	0.988 1.006 1.025	0.024 0.040 0.046	0.000 0.000 0.000
4.2000	0.271	1.043	0.052	0.000
4.2667	0.268	1.061	0.056	0.000
4.3333	0.265	1.079	0.060	0.000
4.4000	0.261	1.096	0.064	0.000
4.4667	0.258	1.114	0.067	0.000
4.5333	0.254	1.131	0.070	0.000
4.6000	0.250	1.148	0.073	0.000
4.6667	0.246	1.164	0.076	0.000
4.7333	0.241	1.180	0.079	0.000
4.8000	0.236	1.196	0.081	0.000
4.8667	0.231	1.212	0.084	0.000
4.9333	0.226	1.227	0.086	0.000
5.0000	0.220	1.242	0.088	0.000
5.0667	0.214	1.257	0.090	0.000
5.1333	0.208	1.271	0.093	0.000
5.2000	0.201	1.284	0.095	0.000
5.2667	0.194	1.298	0.097	0.000
5.3333	0.186	1.310	0.099	0.000
5.4000	0.177	1.322	0.101	0.000
5.4667	0.168	1.334	0.103	0.000
5.5333	0.158	1.345	0.201	0.000
5.6000	0.147	1.355	0.608	0.000
5.6667	0.135	1.365	1.182	0.000
5.7333	0.122	1.373	1.866	0.000
5.8000	0.106	1.381	2.613	0.000
5.8667	0.087	1.387	3.375	0.000
5.9333	0.062	1.392	4.104	0.000
6.0000	0.000	1.395	4.756	0.000
6.0667	0.000	0.000	5.297	0.000

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:3.78 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.4 Total Impervious Area:2.38

Flow Frequency	Return	Periods	for	Predevelope	d. POC #1
Return Period		Flow(cfs)		
2 year		0.0878	62		
5 year		0.1309	73		
10 year		0.1613	65		
25 year		0.2015	84		
50 year		0.2327	49		
100 year		0.2648	78		
Flow Frequency	Return	Periods	for	Mitigated.	POC #1
Flow Frequency Return Period	Return	Periods Flow(cfs		Mitigated.	POC #1
	Return)	Mitigated.	POC #1
Return Period	Return	Flow(cfs) 84	Mitigated.	POC #1
Return Period 2 year	Return	Flow(cfs 0.1127) 84 71	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year	Return	Flow(cfs 0.1127 0.1601	84 71 08	Mitigated.	POC #1
Return Period 2 year 5 year 10 year	Return	Flow(cfs 0.1127 0.1601 0.1984	9) 84 71 08 29	Mitigated.	POC #1
Return Period 2 year 5 year 10 year 25 year	Return	Flow(cfs 0.1127 0.1601 0.1984 0.2554	84 71 08 29 57	Mitigated.	POC #1

Stream Prote	ection Duration		
Annual Peaks	for Predevelop	ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	0.052	0.113	
1950	0.098	0.134	
1951	0.079	0.112	
1952	0.063	0.101	
1953	0.053	0.121	
1954	0.215	0.204	
1955	0.131	0.155	
1956	0.114	0.127	
1957	0.127	0.112	
1958	0.091	0.234	
1959	0.092	0.094	
1960	0.084	0.099	
1961	0.086	0.300	
1962	0.076	0.108	
1963	0.100	0.141	

19960.1650.11319970.3080.64519980.0580.125	19990.0810.09120000.0470.19020010.0160.07220020.0860.11520030.0630.08520040.1000.16920050.0740.08220060.1790.17020070.1520.13520080.2330.12220090.0710.096	1997	0.308	0.645
	19970.3080.64519980.0580.12519990.0810.09120000.0470.19020010.0160.07220020.0860.11520030.0630.08520040.1000.16920050.0740.08220060.1790.17020070.1520.13520080.2330.122	1994 1995	0.045 0.090	0.077 0.085

Stream	Protection Durat	ion	
Ranked	Annual Peaks for	Predeveloped and Mitigated.	POC #1
Rank	Predeveloped	Mitigated	
1	0.3075	0.6455	
2	0.2781	0.3002	
3	0.2325	0.2428	
4	0.2150	0.2343	
5	0.1790	0.2036	
6	0.1650	0.1900	

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.0439	20369	17062	83	Pass
0.0458	18296	15379	84	Pass
0.0477	16444	13890	84	Pass
0.0497	14771	12611	85	Pass
0.0516	13246	11447	86	Pass
0.0535	11944	10399	87	Pass
0.0554	10737	9490	88	Pass
0.0573	9730	8658	88	Pass
0.0592	8821	7901	89	Pass
0.0611	7948	7204	90	Pass
0.0630	7120	6566	92	Pass
0.0649	6389	5953	93	Pass
0.0668	5794	5409	93	Pass
0.0687	5238	4934	94	Pass
0.0706	4765	4519	94	Pass
0.0725	4338	4137	95	Pass
0.0744	3944	3786	95	Pass
0.0764	3593	3476	96	Pass
0.0783	3243	3148	97	Pass
0.0802	2900	2847	98	Pass
0.0821	2618	2565	97	Pass
0.0840	2361	2282	96	Pass
0.0859	2150	2032	94	Pass
0.0878	1986	1793	90	Pass
0.0897	1834	1577	85	Pass
0.0916	1674	1398	83	Pass
0.0935	1563	1245	79	Pass
0.0954	1463	1097	74	Pass
0.0973	1371	950	69	Pass
0.0992	1295	820	63	Pass
0.1011	1224	728	59	Pass
0.1031	1156	651	56	Pass
0.1050	1093	588	53	Pass
0.1069	1011	521	51	Pass
0.1088	933	467	50	Pass
0.1107	886	427	48	Pass
0.1126	846	388	45	Pass
0.1145	808	352	43	Pass
0.1164	776	315	40	Pass
0.1183	742	286	38	Pass
0.1202	711	271	38	Pass
0.1221	683	243	35	Pass
0.1240	654	232	35	Pass
0.1259	629	220	34	Pass
0.1279	605	194	32	Pass
0.1298	588	178	30	Pass
0.1317	576	167	28	Pass
0.1336	564	161	28	Pass
0.1355	548	153	27	Pass
0.1374	537	150	27	Pass

0.1393 0.1412 0.1431 0.1450 0.1469 0.1488 0.1507 0.1526 0.1546	524 513 503 489 474 453 433 419 404	143 137 135 131 126 121 115 107 106	27 26 26 26 26 26 26 25 25	Pass Pass Pass Pass Pass Pass Pass Pass
0.1565 0.1584 0.1603 0.1622	393 376 369 354	103 102 99 98	26 27 26 27	Pass Pass Pass Pass Pass
0.1641	341	95	27	Pass
0.1660	329	93	28	Pass
0.1679	323	90	27	Pass
0.1698 0.1717 0.1736 0.1755	317 310 306 297	89 86 83 80 70	28 27 27 26	Pass Pass Pass Pass Pass
0.1774	295	79	26	Pass
0.1793	286	79	27	Pass
0.1813	279	77	27	Pass
0.1832	274	75	27	Pass
0.1851	269	74	27	Pass
0.1870	264	74	28	Pass
0.1889	259	74	28	Pass
0.1908	254	72	28	Pass
0.1927	243	69	28	Pass
0.1946	236	69	29	Pass
0.1965	226	68	30	Pass
0.1984	217	66	30	Pass
0.2003	212	62	29	Pass
0.2022	208	62	29	Pass
0.2041	198	59	29	Pass
0.2060	190	58	30	Pass
0.2080	182	56	30	Pass
0.2099	178	55	30	Pass
0.2118	171	54	31	Pass
0.2137	167	54	32	Pass
0.2156	156	53	33	Pass
0.2175	152	51	33	Pass
0.2194	147	51	34	Pass
0.2213	142	50	35	Pass
0.2232	134	47	35	Pass
0.2251	128	47	36	Pass
0.2270	122	45	36	Pass
0.2289	115	45	39	Pass
0.2308	110	45	40	Pass
0.2327	105	45	42	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Techniqu	ue	Used for	Total Volume	Volume	Infiltration	Cumulative	
Percent	Water Quality	Percent	Comment				
		Treatment?	Needs	Through	Volume	Volume	
Volume		Water Quality					
			Treatment	Facility	(ac-ft.)	Infiltrati	on
Infiltrated		Treated					
			(ac-ft)	(ac-ft)		Credit	
TDA A - Tank	c POC	N	355.56			Ν	0.00
Total Volume	e Infiltrated		355.56	0.00	0.00		0.00
0 00	0.0	No Treat. C:	modit +				
0.00	0%	No freat. C.	rearc				
	u% with LID Standa		rearc				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: Spruce ES -TDA A - Phase II
Site Name: Spruce ES - Phase II - TDA A
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA A Phase II Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	2.64
C, Forest, Mod	.57
C, Forest, Steep	.57
Pervious Total	3.78
Impervious Land Use	acre
Impervious Total	0
Basin Total	3.78

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : Phase II TDA A Bypass: No GroundWater: No

<u>acre</u> .57 .42 .05
1.04
<u>acre</u> 1.74 0.44
2.18
3.22

Element Flows To:		
Surface	Interflow	Groundwater
TDA A - Tank	TDA A - Tank	

Name : Phase II TDA A Bypass Bypass: Yes

GroundWater: No

Pervious Land Use	acre
C, Pasture, Flat	.14
C, Pasture, Mod	.11
C, Pasture, Steep	.11
Pervious Total	0.36
Impervious Land Use	acre
DRIVEWAYS FLAT	0.16
DRIVEWAYS MOD	0.04
Impervious Total	0.2
Basin Total	0.56

Element Flows To:	
Surface	Interflow

Groundwater

Name : TDA A - Tank Tank Name: TDA A - Tank Dimensions Depth: 6 ft. Tank Type : Circular Diameter : 6 ft. Length : 2150 ft. Discharge Structure Riser Height: 5.5 ft. Riser Diameter: 18 in. Orifice 1 Diameter: 0.5 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.7 in. Elevation: 0.75 ft. Orifice 3 Diameter: 1.5 in. Elevation: 4 ft. Element Flows To:

Outlet 1

Outlet 2

Tank Hydraulic Table

Stage (feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0667	0.062	0.002	0.000	0.000
0.1333	0.087	0.007	0.000	0.000
0.2000	0.106	0.014	0.000	0.000
0.2667	0.122	0.021	0.000	0.000
0.3333	0.135	0.030	0.000	0.000
0.4000	0.147	0.040	0.000	0.000
0.4667	0.158	0.050	0.000	0.000
0.5333	0.168	0.061	0.001	0.000
0.6000	0.177	0.072	0.002	0.000
0.6667	0.186	0.084	0.002	0.000
0.7333	0.194	0.097	0.003	0.000
0.8000	0.201	0.110	0.006	0.000
0.8667	0.208	0.124	0.008	0.000
0.9333	0.214	0.138	0.010	0.000
1.0000	0.220	0.152	0.011	0.000
1.0667	0.226	0.167	0.012	0.000
1.1333	0.231	0.183	0.013	0.000
1.2000	0.236	0.198	0.014	0.000
1.2667	0.241	0.214	0.015	0.000
1.3333	0.246	0.230	0.016	0.000
1.4000	0.250	0.247	0.017	0.000
1.4667	0.254	0.264	0.017	0.000
1.5333	0.258	0.281	0.018	0.000
1.6000	0.261	0.298	0.019	0.000
1.6667	0.265	0.316	0.020	0.000
1.7333	0.268	0.334	0.020	0.000
1.8000	0.271	0.352	0.021	0.000
1.8667	0.274	0.370	0.022	0.000
1.9333	0.276	0.388	0.022	0.000
2.0000	0.279	0.407	0.023	0.000
2.0667	0.281	0.425	0.023	0.000
2.1333	0.283	0.444	0.024	0.000
2.2000	0.285	0.463	0.024	0.000
2.2667	0.287	0.482	0.025	0.000

2.3333	0.288	0.502	0.025	0.000
2.4000	0.290	0.521	0.026	0.000
2.4667	0.291	0.540	0.026	0.000
2.5333	0.292	0.560	0.027	0.000
2.6000	0.293	0.579	0.027	0.000
2.6667	0.294	0.599	0.028	0.000
2.7333 2.8000	0.295 0.295	0.618 0.638	0.028 0.029	0.000 0.000
2.8667	0.295	0.658	0.029	0.000
2.9333	0.296	0.678	0.030	0.000
3.0000	0.296	0.697	0.030	0.000
3.0667	0.296	0.717	0.031	0.000
3.1333	0.295	0.737	0.031	0.000
3.2000	0.295	0.757	0.032	0.000
3.2667 3.3333	0.295 0.294	0.776 0.796	0.032	0.000
3.4000	0.294	0.815	0.032 0.033	0.000 0.000
3.4667	0.292	0.835	0.033	0.000
3.5333	0.291	0.854	0.034	0.000
3.6000	0.290	0.874	0.034	0.000
3.6667	0.288	0.893	0.034	0.000
3.7333	0.287	0.912	0.035	0.000
3.8000 3.8667	0.285 0.283	0.931 0.950	0.035 0.035	0.000 0.000
3.9333	0.283	0.969	0.035	0.000
4.0000	0.279	0.988	0.036	0.000
4.0667	0.276	1.006	0.052	0.000
4.1333	0.274	1.025	0.059	0.000
4.2000	0.271	1.043	0.065	0.000
4.2667	0.268	1.061	0.069	0.000
4.3333 4.4000	0.265 0.261	1.079 1.096	0.073 0.077	0.000 0.000
4.4667	0.258	1.114	0.080	0.000
4.5333	0.254	1.131	0.084	0.000
4.6000	0.250	1.148	0.087	0.000
4.6667	0.246	1.164	0.090	0.000
4.7333	0.241	1.180	0.092	0.000
4.8000	0.236 0.231	1.196 1.212	0.095	0.000
4.8667 4.9333	0.231	1.212	0.098 0.100	0.000 0.000
5.0000	0.220	1.242	0.102	0.000
5.0667	0.214	1.257	0.105	0.000
5.1333	0.208	1.271	0.107	0.000
5.2000	0.201	1.284	0.109	0.000
5.2667	0.194	1.298	0.111	0.000
5.3333 5.4000	0.186 0.177	1.310 1.322	0.113 0.115	0.000 0.000
5.4667	0.168	1.334	0.117	0.000
5.5333	0.158	1.345	0.216	0.000
5.6000	0.147	1.355	0.624	0.000
5.6667	0.135	1.365	1.198	0.000
5.7333	0.122	1.373	1.881	0.000
5.8000 5.8667	0.106 0.087	1.381 1.387	2.628 3.390	0.000
5.9333	0.087	1.392	4.119	0.000 0.000
6.0000	0.000	1.395	4.771	0.000
6.0667	0.000	0.000	5.313	0.000

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:3.78 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.4 Total Impervious Area:2.38

Flow Frequency	Return	Periods	for	Predevelope	d. POC #1
Return Period		Flow(cfs	3)		
2 year		0.0878	362		
5 year		0.1309	973		
10 year		0.1613	365		
25 year		0.2015	584		
50 year		0.2327	749		
100 year		0.2648	378		
Flow Frequency	Return	Periods	for	Mitigated.	POC #1
Flow Frequency Return Period	Return	Periods Flow(cfs		Mitigated.	POC #1
	Return		3)	Mitigated.	POC #1
Return Period	Return	Flow(cfs	3) 594	Mitigated.	POC #1
Return Period 2 year	Return	Flow(cfs 0.1126	<u>3)</u> 594 51	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year	Return	Flow(cfs 0.1126 0.1505	5) 594 51 149	Mitigated.	POC #1
Return Period 2 year 5 year 10 year	Return	Flow(cfs 0.1126 0.1505 0.1784	594 51 449 95	Mitigated.	POC #1
Return Period 2 year 5 year 10 year 25 year	Return	Flow(cfs 0.1126 0.1505 0.1784 0.2171	594 51 149 95 562	Mitigated.	POC #1

#1

Stream Prote	ction Duration		
Annual Peaks	for Predevelop	ed and Mitigated.	POC
Year	Predeveloped	Mitigated	
1949	0.052	0.117	
1950	0.098	0.138	
1951	0.079	0.110	
1952	0.063	0.106	
1953	0.053	0.123	
1954	0.215	0.205	
1955	0.131	0.138	
1956	0.114	0.118	
1957	0.127	0.121	
1958	0.091	0.237	
1959	0.092	0.094	
1960	0.084	0.101	
1961	0.086	0.303	
1962	0.076	0.108	
1963	0.100	0.145	

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973	0.079 0.084 0.047 0.107 0.126 0.115 0.068 0.099 0.086 0.068	0.085 0.077 0.083 0.186 0.116 0.248 0.096 0.122 0.153 0.122
1974	0.129	0.144
1975 1976	0.068 0.066	0.123 0.096
1977	0.055	0.086
1978 1979	0.068 0.133	0.085 0.154
1979	0.133	0.097
1981	0.064	0.087
1982	0.083	0.091
1983	0.124	0.121
1984	0.084 0.114	0.099
1985 1986	0.278	0.132 0.158
1987	0.122	0.128
1988	0.069	0.094
1989	0.061	0.113
1990	0.088	0.086
1991 1992	0.094 0.071	0.086 0.104
1993	0.049	0.080
1994	0.045	0.083
1995	0.090	0.081
1996	0.165	0.120
1997	0.308 0.058	0.203 0.127
1998 1999	0.081	0.127
2000	0.047	0.190
2001	0.016	0.076
2002	0.086	0.073
2003 2004	0.063	0.083
2004	0.100 0.074	0.174 0.086
2006	0.179	0.164
2007	0.152	0.140
2008	0.233	0.107
2009	0.071	0.103

Stream Protection Duration						
Ranked	Annual Peaks for	Predeveloped and Mitigated.	POC #1			
Rank	Predeveloped	Mitigated				
1	0.3075	0.3035				
2	0.2781	0.2483				
3	0.2325	0.2374				
4	0.2150	0.2046				
5	0.1790	0.2029				
6	0.1650	0.1896				

560.05160.0815570.04940.0797580.04700.0774590.04690.0767600.04490.0763610.01640.0735	57	0.0494	0.0797
	58	0.0470	0.0774
	59	0.0469	0.0767
	60	0.0449	0.0763

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.0439	20369	15201	74	Pass
0.0458	18296	12735	69	Pass
0.0477	16444	10701	65	Pass
0.0497	14771	9022	61	Pass
0.0516	13246	7745	58	Pass
0.0535	11944	6699	56	Pass
0.0554	10737	5835	54	Pass
0.0573	9730	5127	52	Pass
0.0592	8821	4558	51	Pass
0.0611	7948	4057	51	Pass
0.0630	7120	3593	50	Pass
0.0649	6389	3208	50	Pass
0.0668	5794	2883	49	Pass
0.0687	5238	2541	48	Pass
0.0706	4765	2280	47	Pass
0.0725	4338	2052	47	Pass
0.0744	3944	1853	46	Pass
0.0764	3593	1689	47	Pass
0.0783	3243	1534	47	Pass
0.0802	2900	1379	47	Pass
0.0821	2618	1244	47	Pass
0.0840	2361	1121	47	Pass
0.0859	2150	1001	46	Pass
0.0878	1986	895	45	Pass
0.0897	1834	803	43	Pass
0.0916	1674	724	43	Pass
0.0935	1563	662	42	Pass
0.0954	1463	604	41	Pass
0.0973	1371	560	40	Pass
0.0992	1295	520	40	Pass
0.1011	1224	478	39	Pass
0.1031	1156	449	38	Pass
0.1050	1093	427	39	Pass
0.1069	1011	409	40	Pass
0.1088	933	381	40	Pass
0.1107	886	362	40	Pass
0.1126	846	349	41	Pass
0.1145	808	331	40	Pass
0.1164	776	317	40	Pass
0.1183	742	302	40	Pass
0.1202	711	285	40	Pass
0.1221	683	267	39	Pass
0.1240	654	242	37	Pass
0.1259	629	225	35	Pass
0.1279	605	210	34	Pass
0.1298	588	191	32	Pass
0.1317	576	175	30	Pass
0.1336	564	160	28	Pass
0.1355	548	145	26 25	Pass
0.1374	537	136	25	Pass

0.1393 0.1412 0.1431 0.1450 0.1469 0.1488 0.1507 0.1526 0.1546 0.1565 0.1584 0.1603 0.1622 0.1641 0.1660 0.1679 0.1698 0.1717 0.1736 0.1755 0.1774 0.1755 0.1774 0.1793 0.1813 0.1851 0.1851 0.1851 0.1851 0.1851 0.1984 0.1908 0.1908 0.1927 0.1946 0.1965 0.1984 0.2003 0.2022 0.2041 0.2003 0.2022 0.2041 0.2003 0.2022 0.2041 0.2003 0.2022 0.2041 0.2003 0.2022 0.2041 0.2030 0.2030 0.2118 0.2156 0.2175 0.2175 0.2194 0.2232 0.2251 0.2251 0.2230 0.2308 0.2327	524 513 503 489 474 453 419 404 393 376 369 354 323 317 306 295 286 279 264 259 264 259 264 259 264 259 264 217 212 208 190 182 171 167 156 152 147 123 105	129 114 102 92 84 77 68 53 49 40 38 429 28 422 19 16 31 8 7 7 6 6 6 6 6 6 6 6 6 6 5 4 4 4 4 4 4 4 4 4	24 22 20 18 17 16 15 13 12 10 9 8 7 7 6 6 5 5 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pass Pass Pass Pass Pass Pass Pass Pass	
--	---	--	--	--	--

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique		Used for	Total Volume	Volume	Infiltration	Cumulative	
Percent	Water Quality	Percent	Comment				
		Treatment?	Needs	Through	Volume	Volume	
Volume		Water Quality					
			Treatment	Facility	(ac-ft.)	Infiltrati	on
Infiltrated		Treated					
			(a a £+)	(Credit	
			(ac-ft)	(ac-ft)		Credit	
TDA A - Tank	< POC	N	355.57	(ac-it)		N	0.00
	< POC e Infiltrated	Ν	, ,	(ac-it)	0.00		0.00
		N No Treat. C:	355.57 355.57	. ,	0.00		
Total Volume	e Infiltrated	No Treat. C	355.57 355.57	. ,	0.00		

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

Project SPRACE ES PHASET 2140275 Page ____ of ___ Project No. Calculations Subject 7DA 13 Phone Fax With/To Fax #_ Memorandum Address # Faxed Pages Meeting Minutes By J. MCDONALA Date ____ Telephone Memo **Civil Engineers** GIVEN ERAN WWHM ON TOA & PHASE IL Structural Engineers DITDA B HAS POND ONLY DASSUMED IN WWHM Landscape Architects DEXISTING & WO' FLAT 5%. MOD, 15% STEEP Community Planners DIROPOSED : DIMPERV: 89% FLAT ZO'. MOD DEEV : 60% FLAT, 30% MOD LOY. STEEP D PERV BYISASS: 40% MOD, 60% STEEP Land Surveyors DPOND DEPTH : 6 FT (7 FT W/FREE ROARD) O SOLVE UPER WWHM REQUIRED VOLUME VOLUME @ RISER HEAD: 0.3823 ACRE-FT + 16653 FT3 DVOLUME AVAILABLE IN POND IN TOA IS PHASEI PLIVE STORAGE BOTTOM SURFACE AREA - 3382 FTS LIVE STORAGE TUP SURFACE AREA: 10192 FTS PETH: 6FT (7 FT W/FREFBUARD I USING AVERAGE END AREA TO SOLVE FOR VOLUME $\frac{1}{2} \left(\frac{3382 + 10192}{2} \right) \cdot 6 FT = 40722 FT^{3}$

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.

WWHM2012 PROJECT REPORT

Project Name: Spruce ES - Phase II - TDA B
Site Name: Spruce ES Phase II
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA B - Phase II Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	1.44
C, Forest, Mod	.09
C, Forest, Steep	.27
Pervious Total	1.8
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.8

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : TDA B - Phase II Bypass: No GroundWater: No

Pervious Land Use C, Pasture, Flat C, Pasture, Mod C, Pasture, Steep	<u>acre</u> .28 .14 .05
Pervious Total	0.47
Impervious Land Use DRIVEWAYS FLAT DRIVEWAYS MOD	<u>acre</u> 0.94 0.23
Impervious Total	1.17
Basin Total	1.64

Element Flows To:				
Surface		Interflow		Groundwater
Trapezoidal Pond	1	Trapezoidal Pond	1	

Name : TDA B - Phase II - Bypass: Yes	Bypass			
GroundWater: No				
Pervious Land Use C, Pasture, Mod C, Pasture, Steep	<u>acre</u> .06 .1			
Pervious Total	0.16			
Impervious Land Use acre				
Impervious Total	0			
Basin Total	0.16			

Element	Flows	То:	
Surface			Interflow

Groundwater

Name : Trapezoidal Pond 1
Bottom Length: 33.13 ft.
Bottom Width: 33.13 ft.
Depth: 7 ft.
Volume at riser head: 0.3823 acre-feet.

Side slope 1: 3 To 1
Side slope 2: 3 To 1
Side slope 3: 3 To 1
Side slope 4: 3 To 1
Discharge Structure
Riser Height: 6 ft.
Riser Diameter: 18 in.
Notch Type: Rectangular
Notch Width: 0.160 ft.
Notch Height: 0.229 ft.
Orifice 1 Diameter: 0.573 in. Elevation: 0 ft.

Element Flows To: Outlet 1 Outlet 2

		yurauric labi	-	
Stage(feet)	Area(ac.)		Discharge(cfs)	Infilt(cfs)
0.0000	0.025	0.000	0.000	0.000
0.0778	0.025	0.002	0.002	0.000
0.1556	0.026	0.004	0.003	0.000
0.2333	0.027	0.006	0.004	0.000
0.3111	0.028	0.008	0.005	0.000
0.3889	0.028	0.010	0.005	0.000
0.4667	0.029	0.012	0.006	0.000
0.5444	0.030	0.015	0.006	0.000
0.6222	0.031	0.017	0.007	0.000
0.7000	0.032	0.020	0.007	0.000
0.7778	0.032	0.022	0.007	0.000
0.8556	0.033	0.025	0.008	0.000
0.9333	0.034	0.027	0.008	0.000
1.0111	0.035	0.030	0.009	0.000
1.0889	0.036	0.033	0.009	0.000
1.1667	0.037	0.036	0.009	0.000
1.2444	0.037	0.039	0.009	0.000
1.3222	0.038	0.041	0.010	0.000
1.4000	0.039	0.045	0.010	0.000
1.4778	0.040	0.048	0.010	0.000
1.5556	0.041	0.051	0.011	0.000
1.6333	0.042	0.054	0.011	0.000
1.7111	0.043	0.057	0.011	0.000
1.7889	0.044	0.061	0.011	0.000
1.8667	0.045	0.064	0.012	0.000
1.9444	0.046	0.068	0.012	0.000
2.0222	0.047	0.071	0.012	0.000
2.1000	0.048	0.075	0.012	0.000
2.1778	0.049	0.079	0.013	0.000
2.2556	0.050	0.083	0.013	0.000
2.3333	0.051	0.087	0.013	0.000
2.4111	0.052	0.091	0.013	0.000
2.4889	0.053	0.095	0.014	0.000
2.5667	0.054	0.099	0.014	0.000
2.6444	0.055	0.103	0.014	0.000
2.7222	0.056	0.108	0.014	0.000

2.8000	0.057	0.112	0.014	0.000
2.8778	0.058	0.116	0.015	0.000
2.9556	0.059	0.121	0.015	0.000
3.0333	0.060	0.126	0.015	0.000
3.1111	0.061	0.130	0.015	0.000
3.1889	0.062	0.135	0.015	0.000
3.2667	0.063	0.140	0.016	0.000
3.3444	0.065	0.145	0.016	0.000
3.4222	0.066	0.150	0.016	0.000
3.5000	0.067	0.155	0.016	0.000
3.5778	0.068	0.161	0.016	0.000
3.6556	0.069	0.166	0.017	0.000
3.7333	0.070	0.172	0.017	0.000
3.8111	0.072	0.177	0.017	0.000
3.8889	0.073	0.183	0.017	0.000
3.9667	0.074	0.188	0.017	0.000
4.0444	0.075	0.194	0.017	0.000
4.1222	0.076	0.200	0.018	0.000
4.2000	0.078	0.206	0.018	0.000
4.2778	0.079	0.212	0.018	0.000
4.3556	0.080	0.219	0.018	0.000
4.4333	0.081	0.225	0.018	0.000
4.5111	0.083	0.231	0.018	0.000
4.5889 4.6667 4.7444 4.8222 4.9000	0.084 0.085 0.087 0.088 0.089	0.238 0.244 0.251 0.258 0.265	0.019 0.019 0.019 0.019 0.019 0.019	0.000 0.000 0.000 0.000 0.000
4.9778 5.0556 5.1333 5.2111 5.2889	0.091 0.092 0.093 0.095 0.096	0.272 0.279 0.286 0.294 0.301	0.019 0.020 0.020 0.020 0.020 0.020	0.000 0.000 0.000 0.000 0.000
5.3667	0.098	0.309	0.020	0.000
5.4444	0.099	0.316	0.020	0.000
5.5222	0.100	0.324	0.020	0.000
5.6000	0.102	0.332	0.021	0.000
5.6778	0.103	0.340	0.021	0.000
5.7556	0.105	0.348	0.021	0.000
5.8333	0.106	0.356	0.029	0.000
5.9111	0.108	0.365	0.049	0.000
5.9889	0.109	0.373	0.076	0.000
6.0667	0.111	0.382	0.354	0.000
6.1444	0.112	0.391	0.949	0.000
6.2222	0.114	0.399	1.717	0.000
6.3000	0.115	0.408	2.582	0.000
6.3778	0.117	0.417	3.467	0.000
6.4556	0.118	0.426	4.297	0.000
6.5333	0.120	0.436	5.005	0.000
6.6111	0.121	0.445	5.549	0.000
6.6889	0.123	0.455	5.930	0.000
6.7667	0.124	0.464	6.286	0.000
6.8444	0.126	0.474	6.594	0.000
6.9222	0.128	0.484	6.887	0.000
7.0000	0.129	0.494	7.168	0.000
7.0778	0.131	0.504	7.439	0.000

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.8 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.63 Total Impervious Area:1.17

Flow Frequency	Return	Periods f	or	Predevelope	ed. P	ос	#1
Return Period		Flow(cfs)					
2 year		0.04165					
5 year		0.06191					
10 year		0.07616	2				
25 year		0.09499	4				
50 year		0.10956	8				
100 year		0.12457	8				
Flow Frequency	Return	Periods f	or	Mitigated.	POC	#1	
Return Period		Flow(cfs)					
2 year		0.02798	8				
5 year		0.05531	4				
10 year		0.08383	3				
05							
25 year		0.13692	9				
25 year 50 year		0.13692 0.19306	-				
-			7				

Stream Protection Duration			
Annual Pe	aks for Predevelo	ped and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	0.025	0.022	
1950	0.046	0.024	
1951	0.037	0.020	
1952	0.030	0.020	
1953	0.025	0.018	
1954	0.099	0.037	
1955	0.062	0.070	
1956	0.054	0.180	
1957	0.061	0.027	
1958	0.043	0.030	
1959	0.044	0.024	
1960	0.040	0.024	
1961	0.041	0.034	
1962	0.036	0.022	
1963	0.047	0.023	
1964	0.038	0.021	

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006	0.040 0.022 0.051 0.060 0.053 0.032 0.047 0.041 0.032 0.060 0.032 0.031 0.026 0.033 0.026 0.031 0.026 0.031 0.039 0.058 0.040 0.054 0.132 0.058 0.040 0.058 0.040 0.058 0.040 0.054 0.132 0.058 0.040 0.058 0.040 0.054 0.132 0.058 0.040 0.054 0.033 0.028 0.042 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.028 0.028 0.042 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.045 0.033 0.028 0.045 0.034 0.024 0.021 0.043 0.078 0.145 0.028 0.039 0.022 0.008 0.041 0.035 0.035 0.083	0.024 0.020 0.023 0.026 0.042 0.022 0.078 0.023 0.023 0.029 0.020 0.020 0.022 0.019 0.021 0.026 0.022 0.020 0.026 0.022 0.020 0.026 0.027 0.026 0.027 0.028 0.027 0.028 0.028 0.028 0.027 0.025 0.024 0.025 0.029 0.596 0.021 0.025 0.029 0.596 0.021 0.025 0.029 0.596 0.021 0.025 0.029 0.596 0.021 0.025 0.024 0.025 0.021 0.025 0.024 0.025 0.021 0.025 0.024 0.025 0.021 0.025 0.024 0.025 0.021 0.025 0.024 0.025 0.029 0.020 0.025 0.024 0.025 0.021 0.025 0.024 0.025 0.024 0.025 0.029 0.024 0.025 0.024 0.025 0.024 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.025 0.024 0.025 0.024 0.025 0.025 0.024 0.025 0.024 0.025 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.024 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.023 0.025 0.024 0.025 0.024 0.023 0.024 0.023 0.025 0.024 0.024 0.023
2003	0.030	0.021
2004	0.048	0.027

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Mitigated Predeveloped 1 0.1455 0.5957 2 0.1319 0.3659 3 0.1107 0.2835 4 0.0994 0.1801 5 0.1642 0.0831 6 0.0780 0.0782 7 0.0711 0.0778

	0.0622 0.0620 0.0529 0.0599 0.0598 0.0580 0.0541 0.0539 0.0534 0.0511 0.0476 0.0470 0.0465 0.0465 0.0465 0.0465 0.0465 0.0446 0.0437 0.0430 0.0428 0.0411 0.0401 0.0401 0.0401 0.0401 0.0399 0.0399 0.0394 0.0374 0.0374 0.0374 0.0374 0.0374 0.0353 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0321 0.0323 0.0323 0.0322 0.0323 0.0323 0.0325 0.0278 0.0246 0.0235	0.0700 0.0419 0.0373 0.0366 0.0338 0.0293 0.0293 0.0288 0.0271 0.0271 0.0271 0.0271 0.0271 0.0264 0.0264 0.0264 0.0264 0.0254 0.0254 0.0254 0.0254 0.0254 0.0242 0.0239 0.0239 0.0239 0.0237 0.0237 0.0237 0.0237 0.0237 0.0237 0.0233 0.0232 0.0232 0.0232 0.0232 0.0231 0.0232 0.0232 0.0231 0.0232 0.0232 0.0232 0.0231 0.0232 0.0232 0.0231 0.0232 0.0231 0.0232 0.0231 0.0217 0.0217 0.0217 0.0216 0.0216 0.0216 0.0216 0.0216 0.0208 0.0208 0.0208 0.0208 0.0208
54	0.0260	0.0203
55	0.0250	0.0202

Stream Protection Duration

POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.0208	20585	18923	91	Pass
0.0217	18533	11888	64	Pass
0.0226	16688	7110	42	Pass
0.0235	14987	4502	30	Pass
0.0244	13462	2926	21	Pass
0.0253	12166	2180	17	Pass
0.0262	10934	1728	15	Pass
0.0271	9909	1459	14	Pass
0.0280	8996	1333	14	Pass
0.0289	8147	1205	14	Pass
0.0298	7311	1083	14	Pass
0.0307	6547	1023	15	Pass
0.0316	5942	968	16	Pass
0.0325	5390	923	17	Pass
0.0334	4894	887	18	Pass
0.0343	4455	856	19	
				Pass
0.0352	4064	834	20	Pass
0.0361	3696	808	21	Pass
0.0370	3347	782	23	Pass
0.0379	3016	755	25	Pass
0.0388	2712	737	27	Pass
0.0396	2451	719	29	Pass
0.0405	2224	704	31	Pass
0.0414	2048	687	33	Pass
0.0423	1892	673	35	Pass
0.0432	1740	657	37	Pass
0.0441	1609	644	40	Pass
0.0450	1512	631	41	Pass
0.0459	1410	620	43	Pass
0.0468	1330	609	45	Pass
0.0477	1255	597	47	Pass
0.0486	1184	587	49	Pass
0.0495	1129	575	50	Pass
0.0504	1050	566	53	Pass
0.0513	966	555	57	Pass
0.0522	907	545	60	Pass
0.0531	867	532	61	Pass
0.0540	828	522	63	Pass
0.0549	794	506	63	Pass
0.0558	764	500	65	Pass
0.0567	728	487	66	Pass
0.0576	698	475	68	Pass
0.0585	674	463	68	Pass
0.0594	644	448	69	Pass
0.0603	619	433	69	Pass
0.0612	601	413	68	Pass
0.0621	584	404	69	Pass
0.0630	570	389	68	Pass
0.0639	558	377	67	Pass
0.0647	545	367	67	Pass
0.0656	532	359	67	Pass

0.0665 0.0674 0.0683 0.0692 0.0701 0.0710 0.0719 0.0728 0.0737 0.0746 0.0755	519 501 488 469 447 428 416 402 388 376	348 336 329 326 313 306 287 275 270 260 254	67 65 66 66 68 67 66 67 67 67	Pass Pass Pass Pass Pass Pass Pass Pass
0.0764 0.0773 0.0782 0.0791 0.0800 0.0809 0.0818	366 354 327 323 316 310	239 230 220 209 203 199 194	65 64 65 63 62 62 62	Pass Pass Pass Pass Pass Pass Pass
0.0827	306	191	62	Pass
0.0836	297	187	62	Pass
0.0845	294	184	62	Pass
0.0854	286	180	63	Pass
0.0863	279	177	63	Pass
0.0872	274	170	62	Pass
0.0881	270	168	62	Pass
0.0890 0.0898 0.0907 0.0916 0.0925 0.0934 0.0943	264 261 254 236 227 220	164 162 159 158 156 152 150	62 62 65 66 66 68	Pass Pass Pass Pass Pass Pass Pass
0.0952	213	147	69	Pass
0.0961	208	147	70	Pass
0.0970	200	144	72	Pass
0.0979	191	143	74	Pass
0.0988	183	143	78	Pass
0.0997	178	140	78	Pass
0.1006	172	140	81	Pass
0.1015	167	138	82	Pass
0.1024	159	135	84	Pass
0.1033	153	131	85	Pass
0.1042	149	130	87	Pass
0.1051	143	128	89	Pass
0.1060	136	126	92	Pass
0.1069	130	126	96	Pass
0.1078	124	126	101	Pass
0.1087	118	124	105	Pass
0.1096	112	123	109	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

LID Report

Used for	Total Volume	Volume	Infiltration	Cumulative	
		Through	Volume	Volume	
		IIIIOugii	VOlume	VOLUME	
	Treatment	Facility	(ac-ft.)	Infiltrat	ion
Treated					
	(ac-ft)	(ac-ft)		Credit	
Ν	187.09			N	0.00
	187.09	0.00	0.00		0.00
No Treat. C	redit				
Compliance with LID Standard 8					
= Passed					
L	Percent Treatment? Water Quality Treated N No Treat. C. lard 8	Percent Comment Treatment? Needs Water Quality Treatment Treated (ac-ft) N 187.09 187.09 No Treat. Credit lard 8	Percent Comment Treatment? Needs Through Water Quality Treated (ac-ft) (ac-ft) N 187.09 187.09 0.00 No Treat. Credit lard 8	Percent Comment Treatment? Needs Through Volume Water Quality Treatment Facility (ac-ft.) Treated (ac-ft) (ac-ft) N 187.09 187.09 0.00 0.00 No Treat. Credit	Percent Comment Treatment? Needs Through Volume Volume Water Quality Treatment Facility (ac-ft.) Infiltrat. Treated (ac-ft) (ac-ft) Credit N 187.09 0.00 0.00 No Treat. Credit lard 8

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

E-4 Project SPRUCE ES PHASET 2140275 Page ____ of ___ Project No. Subject _____ TDA C Calculations Phone. Fax With/To Fax #= Memorandum Address. # Faxed Pages Meeting Minutes By J.M. DONALD Date Telephone Memo **Civil Engineers** D GIVEN ORAN WWHM ON TOA C PHASEI Structural Engineers PTOAC TO HAVE POND AND PIPE WHER CONNECTED PEVENTUALLY WILL NEED STAGE STORAGE TABLE Landscape Architects H MODELED TH U AS POND I NEED TO DETERMINE PIPE LENGTH Community Planners DASSUME EXISTING: 90% FLAT, 10% MOD Land Surveyors DASSUME DEVELOPED: D BYPASS IMPERV- 1001. FLAT D BYPAST PERV - 60%. STEEP, 40%. MOD D IMPERV - 40% FLAT, 10% MOD H PERV - 45% FLAT, 15% MOD SOLVE UVOLUME AVAILABLE IN POND IN TOA C - PHASE I DUSING CALL FROM PHASEI 14,657.5 FT3 D VOLUME REQUIRED BY WWHM MODEL - USING POND "VOLUME @ FISER HEAD: 0,7802 ALRE-FT -> 33985 FT3 VOLAME REMAINING FOR PIPES 1 33985 FT3 - 14657.5 FT3 = 19327.5 FT A LENGTH REQUIRE OF 6 \$ PIPE

> D USING EXEL CALC SEE ATTACHED D LENGTH REQUIRED: [743 LF] D 107. BUMP -> 817 = 820 LF]

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.

WWHM2012 PROJECT REPORT

Project Name: Spruce ES - Phase II - TDA C
Site Name: Spruce ES - Phase II TDA C
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/2/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Phase II - TDA c Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	2.7
C, Forest, Mod	.3
Pervious Total	3
Impervious Land Use	acre
Impervious Total	0
Basin Total	3

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : Phase II - TDA C Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Flat C, Pasture, Mod	<u>acre</u> .51 .09
Pervious Total	0.6
Impervious Land Use DRIVEWAYS FLAT DRIVEWAYS MOD	<u>acre</u> 1.95 0.22
Impervious Total	2.17
Basin Total	2.77

Element Flows To:		
Surface	Interflow	Groundwater
TDA C - Pond	TDA C - Pond	

Name : Phase II - TDA C - Bypass Bypass: Yes

GroundWater: No

Pervious Land Use	acre
C, Pasture, Steep	.13
C, Pasture, Mod	.09
Pervious Total	0.22
Impervious Land Use	acre
DRIVEWAYS FLAT	0.01
Impervious Total	0.01
Basin Total	0.23

Element Flows To: Surface Interflow

Groundwater

Name : TDA C - Pond Bottom Length: 66.99 ft. Bottom Width: 66.99 ft. Depth: 6 ft. Volume at riser head: 0.7802 acre-feet. Side slope 1: 3 To 1 Side slope 2: 3 To 1
Side slope 3: 3 To 1
Side slope 4: 3 To 1
Discharge Structure
Riser Height: 5 ft.
Riser Diameter: 18 in.
Notch Type: Rectangular
Notch Width: 0.001 ft.
Notch Height: 2.170 ft.
Orifice 1 Diameter: 0.726 in. Elevation: 0 ft.
Element Flows To:

Outlet 1 Outlet 2

Pond Hydraulic Table	ond H	ydraulic	Table
----------------------	-------	----------	-------

Stage (feet)	Area(ac.)		Discharge(cfs)	Infilt(cfs)
0.0000	0.103	0.000	0.000	0.000
0.0667	0.104	0.006	0.003	0.000
0.1333	0.105	0.013	0.005	0.000
0.2000	0.106	0.021	0.006	0.000
0.2667	0.108	0.028	0.007	0.000
0.3333	0.109	0.035	0.008	0.000
0.4000	0.110	0.042	0.009	0.000
0.4667	0.111	0.050	0.009	0.000
0.5333	0.113	0.057	0.010	0.000
0.6000	0.114	0.065	0.011	0.000
0.6667	0.115	0.072	0.011	0.000
0.7333	0.117	0.080	0.012	0.000
0.8000	0.118	0.088	0.012	0.000
0.8667	0.119	0.096	0.013	0.000
0.9333	0.121	0.104	0.013	0.000
1.0000	0.122	0.112	0.014	0.000
1.0667	0.123	0.120	0.014	0.000
1.1333	0.125	0.129	0.015	0.000
1.2000	0.126	0.137	0.015	0.000
1.2667	0.127	0.145	0.016	0.000
1.3333	0.129	0.154	0.016	0.000
1.4000	0.130	0.163	0.016	0.000
1.4667	0.131	0.171	0.017	0.000
1.5333	0.133	0.180	0.017	0.000
1.6000	0.134	0.189	0.018	0.000
1.6667	0.136	0.198	0.018	0.000
1.7333	0.137	0.207	0.018	0.000
1.8000	0.138	0.216	0.019	0.000
1.8667	0.140	0.226	0.019	0.000
1.9333	0.141	0.235	0.019	0.000
2.0000	0.143	0.245	0.020	0.000
2.0667	0.144	0.254	0.020	0.000
2.1333	0.146	0.264	0.020	0.000
2.2000	0.147	0.274	0.021	0.000
2.2667	0.149	0.284	0.021	0.000
2.3333	0.150	0.294	0.021	0.000
2.4000	0.152	0.304	0.022	0.000

	0 1 5 0			
2.4667	0.153	0.314	0.022	0.000
2.5333	0.155	0.324	0.022	0.000
2.6000	0.156	0.335	0.023	0.000
2.6667	0.158	0.345	0.023	0.000
2.7333	0.159	0.356	0.023	0.000
2.8000	0.161	0.366	0.023	0.000
2.8667	0.162	0.377	0.024	0.000
2.9333	0.164	0.388	0.024	0.000
3.0000	0.165	0.399	0.025	0.000
3.0667	0.167	0.410	0.025	0.000
3.1333	0.169	0.410	0.025	0.000
3.2000	0.170	0.433	0.026	0.000
3.2667	0.172	0.444	0.026	0.000
3.3333	0.173	0.456	0.027	0.000
3.4000	0.175	0.467	0.027	0.000
3.4667	0.176	0.479	0.028	0.000
3.5333	0.178	0.491	0.028	0.000
3.6000	0.180	0.503	0.029	0.000
3.6667	0.181	0.515	0.029	0.000
3.7333	0.183	0.527	0.030	0.000
3.8000	0.185	0.539	0.030	0.000
3.8667	0.186	0.552	0.030	0.000
3.9333	0.188	0.564	0.031	0.000
4.0000	0.100	0.577	0.032	0.000
	0.190		0.032	
4.0667		0.590		0.000
4.1333	0.193	0.602	0.033	0.000
4.2000	0.195	0.615	0.033	0.000
4.2667	0.196	0.628	0.035	0.000
4.3333	0.198	0.642	0.036	0.000
4.4000	0.200	0.655	0.036	0.000
4.4667	0.201	0.668	0.037	0.000
4.5333	0.203	0.682	0.038	0.000
4.6000	0.205	0.696	0.039	0.000
4.6667	0.207	0.709	0.039	0.000
4.7333	0.208	0.723	0.040	0.000
4.8000	0.210	0.737	0.041	0.000
4.8667	0.212	0.751	0.041	0.000
4.9333	0.214	0.765	0.042	0.000
5.0000	0.216	0.780	0.043	0.000
5.0667	0.210	0.794	0.317	0.000
5.1333	0.219	0.809	0.815	0.000
5.2000	0.221	0.824	1.448	0.000
5.2667	0.223	0.838	2.167	0.000
5.3333	0.225	0.853	2.926	0.000
5.4000	0.226	0.868	3.676	0.000
5.4667	0.228	0.884	4.370	0.000
5.5333	0.230	0.899	4.969	0.000
5.6000	0.232	0.914	5.446	0.000
5.6667	0.234	0.930	5.799	0.000
5.7333	0.236	0.945	6.059	0.000
5.8000	0.237	0.961	6.384	0.000
5.8667	0.239	0.977	6.643	0.000
5.9333	0.241	0.993	6.892	0.000
6.0000	0.243	1.009	7.132	0.000
6.0667	0.245	1.026	7.365	0.000
	-			

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:3 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.82 Total Impervious Area:2.18

Flow Frequency Re	curn Periods for Predeveloped. POC #1
Return Period	<pre>Flow(cfs)</pre>
2 year	0.064612
5 year	0.095903
10 year	0.117371
25 year	0.145099
50 year	0.166102
100 year	0.187352
Flow Frequency Re	curn Periods for Mitigated. POC #1
Return Period	Flow(cfs)
2 year	0.04467
5 year	0.093184
10 year	0.145963
25 year	0.247867
50 year	0.35914
100 year	0.511282

Stream Protection Duration Annual Peaks for Predeveloped and Mitigated. POC #1 Predeveloped Mitigated Year 1949 0.036 0.032 1950 0.039 0.071 0.030 1951 0.058 1952 0.046 0.032 1953 0.038 0.027 1954 0.147 0.061 1955 0.097 0.200 1956 0.085 0.357 1957 0.095 0.041 1958 0.064 0.048 1959 0.069 0.034 1960 0.061 0.036 1961 0.064 0.055 1962 0.056 0.030 1963 0.068 0.036 0.030 1964 0.057 1965 0.064 0.035

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	0.035 0.078 0.092 0.071 0.050 0.072 0.063 0.050 0.090 0.051 0.048 0.040 0.050 0.093 0.057 0.046 0.061 0.088 0.063 0.063 0.084 0.207 0.091 0.051 0.043 0.051 0.043 0.051 0.043 0.051 0.043 0.051 0.051 0.051 0.043 0.051 0.051 0.051 0.043 0.054 0.035 0.033 0.068 0.119 0.226 0.034 0.062 0.034 0.061 0.043 0.062 0.034 0.065 0.047 0.074 0.055	0.032 0.034 0.038 0.066 0.034 0.161 0.035 0.040 0.048 0.029 0.032 0.032 0.032 0.043 0.034 0.034 0.029 0.042 0.041 0.189 0.052 0.645 0.271 0.040 0.030 0.040 0.030 0.040 0.038 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.043 0.034 0.031 0.043 0.031 0.038 0.031 0.036
2002 2003 2004	0.065 0.047 0.074	0.048 0.031 0.043

Ranked	Annual Peaks for	Predeveloped and Mitigated	. POC #1
Rank	Predeveloped	Mitigated	
1	0.2263	0.9915	
2	0.2065	0.6453	
3	0.1721	0.4071	
4	0.1472	0.3571	
5	0.1305	0.2710	
6	0.1186	0.2001	
7	0.1101	0.1893	
8	0.0966	0.1614	

9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 555 556 57	0.0947 0.0926 0.0919 0.0915 0.0904 0.0878 0.0853 0.0840 0.0785 0.0744 0.0716 0.0711 0.0711 0.0708 0.0692 0.0684 0.0666 0.0650 0.0645 0.0666 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0612 0.0618 0.0582 0.0567 0.0567 0.0556 0.0556 0.0557 0.0556 0.0557 0.0556 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0442 0.0428 0.0404 0.0377 0.0363 0.0352	0.0661 0.0612 0.0514 0.0516 0.0483 0.0483 0.0478 0.0467 0.0438 0.0435 0.0433 0.0428 0.0427 0.0421 0.0421 0.0412 0.0411 0.0400 0.0398 0.0398 0.0390 0.0384 0.0379 0.0376 0.0373 0.0369 0.0369 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0353 0.0361 0.0353 0.0344 0.0353 0.0344 0.0343 0.0343 0.0344 0.0379 0.0316 0.0316 0.0316 0.0312 0.0304 0.0303 0.0299 0.0296 0.0296 0.0296
54	0.0404	0.0299
55	0.0377	0.0296

_

The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.0323	22415	22629	100	Pass
0.0337	20283	16976	83	Pass
0.0350	18324	13364	72	Pass
0.0364	16525	10970	66	Pass
0.0377	14906	8943	59	Pass
0.0391	13471	7219	53	Pass
0.0404	12228	5593	45	Pass
0.0418	11090	4348	39	Pass
0.0431	9999	3234	32	Pass
0.0445	9105	2436	26	Pass
0.0458	8267	1787	21	Pass
0.0472	7471	1376	18	Pass
0.0485	6757	1057	15	Pass
0.0499	6154	871	14	Pass
0.0512	5608	746	13	Pass
0.0526	5146	680	13	Pass
0.0539	4714	633	13	Pass
0.0553	4327	610	14	Pass
0.0566	3955	587	14	Pass
0.0580	3574	561	15	Pass
0.0593	3253	547	16	Pass
0.0607	2941	537	18	Pass
0.0620	2642	524	19	Pass
0.0634	2425	516	21	Pass
0.0647	2218	507	22	Pass
0.0661	2035	498	24	Pass
0.0674	1891	488	25	Pass
0.0688	1760	479	27	Pass
0.0701	1650	469	28	Pass
0.0715	1533	462	30	Pass
0.0729	1439	454	31	Pass
0.0742	1359	451	33	Pass
0.0756	1290	444	34	Pass
0.0769	1223	438	35	Pass
0.0783	1162	436	37	Pass
0.0796	1110	426	38	Pass
0.0810	1046	421	40	Pass
0.0823	979	413	42	Pass
0.0837	928	408	43	Pass
0.0850	888	401	45	Pass
0.0864	858	394	45	Pass
0.0877	822	387	47	Pass
0.0891	782	382	48	Pass
0.0904	743	370	49	Pass
0.0918	709	359	50	Pass
0.0931	679	352	51	Pass
0.0945	659	348	52	Pass
0.0958	641	345	53	Pass
0.0972	622	341	54	Pass
0.0985	606	338	55	Pass
0.0999	590	332	56	Pass
0.1012	578	331	57	Pass

0.1026 0.1039 0.1053 0.1066 0.1080 0.1093 0.1107 0.1120 0.1134 0.1147	565 551 526 516 498 475 462 448 438	328 322 319 316 314 313 311 310 305 301	58 58 60 62 65 67 68 68	Pass Pass Pass Pass Pass Pass Pass Pass
0.1161	429	299	69	Pass
0.1174	417	298	71	Pass
0.1188	404	292	72	Pass
0.1202	396	290	73	Pass
0.1215	386	285	73	Pass
0.1229	375	279	74	Pass
0.1242	362	277	76	Pass
0.1256	356	273	76	Pass
0.1269	348	266	76	Pass
0.1283	339	262	77	Pass
0.1296	329	252	76	Pass
0.1310	320	249	77	Pass
0.1323	310	248	80	Pass
0.1337	306	244	79	Pass
0.1350	298	238	79	Pass
0.1364	295	234	79	Pass
0.1377	288	230	79	Pass
0.1391	282	224	79	Pass
0.1404	274	220	80	Pass
0.1418	268	217	80	Pass
0.1431	260	213	81	Pass
0.1445	252	209	82	Pass
0.1458	245	208	84	Pass
0.1472	238	204	85	Pass
0.1485	232	202	87	Pass
0.1499	225	197	87	Pass
0.1512	212	193	91	Pass
0.1526	204	191	93	Pass
0.1539	198	188	94	Pass
0.1553	193	182	94	Pass
0.1566	188	178	94	Pass
0.1580	182	175	96	Pass
0.1593	175	173	98	Pass
0.1607	167	171	102	Pass
0.1620	162	168	103	Pass
0.1634	156	163	104	Pass
0.1648	149	159	106	Pass
0.1661	144	153	106	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated		Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volume	e Infiltrated		0.00	0.00	0.00	0.00
0.00	08	No Treat. Ci	redit			
Compliance with LID Standard 8						
Duration An	alysis Result =	Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

PIPE VOLUME CALCULATION TDA-C 8/1/2017

BASE OF LIVE STORAGE

PIPE DIAMETER =	6	LF	
PIPE RADIUS =	3	LF	
DEAD STOR DEPTH =	0.5	LF	
FREEBOARD DEPTH =	0.5	LF	
H AT CENTER OF PIPE =	3	LF	
LENGTH OF PIPE =	743	LF	
LIVE STORAGE VOLUME =	19336	CF	
LIVE STORAGE GOAL =	19328	CF	15% BUMP
EQUIV. LENGTH OF PIPE =	743	LF	817 LF

			-		CROSS SECTIONAL
					А
H ABOVE IE	Y	Х	TRIANGLE	SECTOR	PIPE
(FT)	(LF)	(LF)	(SF)	(SF)	(SF)
0.50	2.50	1.66	4.15	5.27	1.13
5.50	-2.50	1.66	-4.15	23.00	27.15
		TOTAL LIV	E STORAGE CROSS S	ECTIONAL AREA =	26.02

TOP OF LIVE STORAGE

- E-D	
Project SPRUE ES PHASEI	Project No. 21402
Subject WATER QUANTY	Phone
With/To	Fax #

1 Hollo
Fax #

DRAN WWHM DNEED WR TO PASS @ 91%.

Faxed Pages MC ONALD By

Page of Calculations Fax Memorandum Meeting Minutes Telephone Memo

Civil Engineers

Structural Engineers

Landscape Architects

Community Planners

Land Surveyors

= RESULTS

- 1

1

9/6/17

D SILVA CELL D ASSUMPTIONS

1 -

Address.

Date

" II' Y II' - PLAN VIEW D SEE WWHIM

P PROFILE:

18" BSM GRAVEL Y"

WWHM2012 PROJECT REPORT

Project Name: 20170906-Spruce ES - Silva Cells Site Name: Spruce ES Site Address: 17405 Spruce Way City : Lynnwood Report Date: 9/6/2017 Gage : Everett Data Start : 1948/10/01 Data End : 2009/09/30 Precip Scale: 1.00 Version Date: 2017/07/05 Version : 4.2.13

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA C - Predeveloped- Silva Cells Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Mod	acre .12		
Pervious Total	0.12		
Impervious Land Use	acre		
Impervious Total	0		
Basin Total	0.12		

Element	Flows	To:	
Surface			Interflow

Groundwater

MITIGATED LAND USE

Name : TDA C - Developed-Silva Cell Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use DRIVEWAYS FLAT	<u>acre</u> 0.12
Impervious Total	0.12
Basin Total	0.12

Element	Flows	To:				
Surface			Interflo	WC		
Surface	Silva	Cell	Surface	Silva	Cell	

Groundwater

Name : Silva Cell Bottom Length: 11.00 ft. Bottom Width: 11.00 ft. Material thickness of first layer: 1.5 Material type for first layer: SMMWW Material thickness of second layer: 2 Material type for second layer: GRAVEL Material thickness of third layer: 0 Material type for third layer: GRAVEL Underdrain used **Underdrain Diameter (feet):** 0.5 Orifice Diameter (in.): 6 Offset (in.): 6 Flow Through Underdrain (ac-ft.): 17.2 Total Outflow (ac-ft.): 18.73 Percent Through Underdrain; 91.83 Discharge Structure Riser Height: 0.5 ft. Riser Diameter: 24 in. TYPE 1 CB Element Flows To:

Outlet 1 Outlet 2

Silva Cell Hydraulic Table

Stage (feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.0028	0.0000	0.0000	0.0000
0.0495	0.0028	0.0001	0.000	0,0000
0:0989	0.0028	0.0001	0.0000	0.0000
0.1484	0.0028	0.0002	0.000	0.0000
0.1978	0.0028	0.0002	0.0000	0.0000
0.2473	0.0028	0.0003	0.000	0.000
0.2967	0.0028	0.0003	0.000	0.000
0.3462	0.0028	0.0004	0.0000	0.000

0.3956 0.4451 0.4945 0.5440 0.5934 0.6429	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0004 0.0005 0.0005 0.0006 0.0007 0.0007	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.6923 0.7418 0.7912 0.8407 0.8901 0.9396 0.9890	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0008 0.0009 0.0009 0.0009 0.0010 0.0010 0.0011	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0385 1.0879 1.1374 1.1868 1.2363 1.2857 1.3352	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0011 0.0012 0.0012 0.0013 0.0014 0.0014 0.0015	0.0000 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.3846 1.4341 1.4835 1.5330 1.5824 1.6319 1.6813	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0015 0.0016 0.0017 0.0017 0.0017 0.0018 0.0019	0.0009 0.0011 0.0012 0.0014 0.0016 0.0018 0.0020	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.7308 1.7802 1.8297 1.8791 1.9286 1.9780 2.0275	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0019 0.0020 0.0020 0.0021 0.0021 0.0022 0.0023	0.0022 0.0025 0.0027 0.0030 0.0033 0.0036 0.0039	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.0769 2.1264 2.1758 2.2253 2.2747 2.3242	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0023 0.0024 0.0025 0.0025 0.0025 0.0026	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.3736 2.4231 2.4725 2.5220 2.5714 2.6209 2.6703	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0027 0.0027 0.0028 0.0028 0.0029 0.0029 0.0029	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.7198 2.7692 2.8187 2.8681 2.9176 2.9670 3.0165	0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028	0.0031 0.0031 0.0032 0.0032 0.0033 0.0033 0.0034	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.0659 3.1154 3.1648	0.0028 0.0028 0.0028	0.0035 0.0035 0.0036	0.0042 0.0042 0.0042	0.0000 0.0000 0.0000

3.2143	0.0028	0.0036	0.0042	0.0000	
3.2637	0.0028	0.0037	0.0042	0.0000	
3.3132	0.0028	0.0037	0.0042	0.0000	
3.3626	0.0028	0.0038	0.0042	0.0000	
3.4121	0.0028	0.0039	0.0042	0.0000	
3.4615	0.0028	0.0039	0.0042	0.0000	
3.5000	0.0028	0.0040	0.0042	0.0000	
	Surface	e Silva Cell	Hydraulic Ta	able	
Stage (feet)	Area(ac.)			To Amended(cfs)	Wetted Surface
3.5000	0.0028	0.0040	0.000	0.0174	0.0000
3.5495	0.0028	0.0041	0.000	0.0174	0.0000
3.5989	0.0028	0.0042	0.000	0.0179	0.0000
3.6484	0.0028	0.0044	0.0000	0.0185	0.0000
3.6978	0.0028	0.0045	0.000	0.0190	0.0000
3.7473	0.0028	0.0046	0.000	0.0196	0.0000
3.7967	0.0028	0.0048	0.000	0.0201	0.0000
3.8462	0.0028	0.0049	0.000	0.0207	0.0000
3.8956	0.0028	0.0051	0.000	0.0212	0.0000
3.9451	0.0028	0.0052	0.0000	0.0218	0.0000
3.9945	0.0028	0.0053	0.0000	0.0223	0.0000
4.0440	0.0028	0.0055	0.1956	0.0229	0.0000
4.0934	0.0028	0.0056	0.6052	0.0235	0.0000
4.1429	0.0028	0.0057	1.1428	0.0240	0.0000
4.1923	0.0028	0.0059	1.7799	0.0246	0.0000
4.2418	0.0028	0.0060	2.4970	0.0251	0.0000
4.2912	0.0028	0.0062	3.2771	0.0257	0.0000
4.3407	0.0028	0.0063	4.1040	0.0262	0.0000
4.3901	0.0028	0.0064	4.9611	0.0268	0.0000
4.4396	0.0028	0.0066	5.8312	0.0273	0.0000
4.4890	0.0028	0.0067	6.6973	0.0279	0.0000
4.5000	0.0028	0.0067	7.5423	0.0280	0.0000

Name : Surface Silva Cell

Element Flows To:	
Outlet 1	Outlet 2
Silva Cell	

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.12 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0

Total Impervious Area:0.12

100 year

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs) 2 year 0.002673 5 year 0.004092 10 year 0.005113 25 year 0.006482 50 year 0.007556 100 year 0.008673 Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.039649 5 year 0.056655 10 year 0.069355 25 year 0.087106 50 year 0.101608

0.117244

Stream Protection Duration Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	0.001	0.037
1950	0.003	0.057
1951	0.003	0.046
1952	0.002	0.039
1953	0.002	0.028
1954	0.008	0.049
1955	0.004	0.043
1956	0.003	0.027
1957	0.004	0.047
1958	0.003	0.084
1959	0.003	0.044
1960	0.002	0.037
1961	0.003	0.129
1962	0.002	0.041
1963	0.003	0.070
1964	0.002	0.029
1965	0.003	0.022
1966	0.001	0.022
1967	0.003	0.085
1968	0.004	0.061
1969	0.004	0.074
1970	0.002	0.032
1971	0.003	0.044
1972	0.003	0.075
1973	0.002	0.029
1.974	0.004	0.077
1975	0.002	0.036
1976	0.002	0.040
1977	0.002	0.032
1978	0.002	0.028
1979	0.004	0.069
1980	0.002	0.024

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	0.002 0.004 0.003 0.004 0.009 0.004 0.002 0.002 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.003 0.005 0.010 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002	0.038 0.036 0.037 0.028 0.052 0.046 0.063 0.029 0.022 0.026 0.035 0.034 0.031 0.023 0.036 0.044 0.059 0.048 0.032 0.048 0.032 0.048 0.023 0.032 0.033 0.023 0.023 0.033 0.023 0.033 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.051

Stream Protection Duration

o ca com	LTOCCOCTON DUTUCI		
Ranked	Annual Peaks for	Predeveloped and Mitigated. POC #1	
Rank	Predeveloped	Mitigated	
1	0.0096	0.1291	
2	0.0085	0.0926	
3	0.0076	0.0849	
4	0.0069	0.0840	
5	0.0065	0.0766	
6	0.0051	0.0755	
7	0.0051	0.0736	
8	0.0045	0.0704	
9	0.0045	0.0686	
10	0.0042	0.0634	
11	0.0039	0.0626	
12	0.0039	0.0610	
13	0.0037	0.0591	
14	0.0037	0.0568	
15	0.0036	0.0521	
16	0.0036	0.0514	
17	0.0034	0.0491	
18	0.0032	0.0482	
19	0.0032	0.0470	
20	0.0031	0.0462	
21	0.0030	0.0458	
22	0.0029	0.0444	
23	0.0028	0.0443	

24 25 26 27 28	0.0028 0.0028 0.0027 0.0027 0.0026	0.0441 0.0427 0.0413 0.0407 0.0405
29	0.0026	0.0391
30	0.0026	0.0376
31	0.0025	0.0372
32	0.0025	0.0371
33	0.0025	0.0367
34	0.0025	0.0366
35	0.0024	0.0365
36	0.0024	0.0363
37	0.0023	0.0362
38	0.0023	0.0355
39	0.0022	0.0353
40	0.0022	0.0342
41	0.0022	0.0330
42	0.0022	0.0319
43 44	0.0020 0.0020	0.0318
45	0.0020	0.0316 0.0311
46	0.0020	0.0292
47	0.0020	0.0292
48	0.0020	0.0287
49	0.0020	0.0285
50	0.0019	0.0283
51	0.0019	0.0282
52	0.0019	0.0275
53	0.0017	0.0274
54	0.0016	0.0273
55	0.0015	0.0260
56	0.0015	0.0238
57	0.0015	0.0229
58	0.0014	0.0226
59	0.0014	0.0223
60	0.0013	0.0218
61	0.0004	0.0217

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow	(cfs)	Predev	Mit	Per	centage	Pass/Fail
0.00)13	20668	1858	37	89	Pass
0.00)14	18360	1130	8 (61	Pass
0.00)15	16294	8066	5	49	Pass
0.00)15	14429	6278	3	43	Pass
0.00)16	12876	5204	1	40	Pass
0.00)17	11486	4483	3	39	Pass
0.00)17	10243	3998	3	39	Pass
0.00	18	9133	3670)	40	Pass
0.00	18	8185	3339	9	40	Pass
0.00)19	7270	3093	3	42	Pass

10 - Br

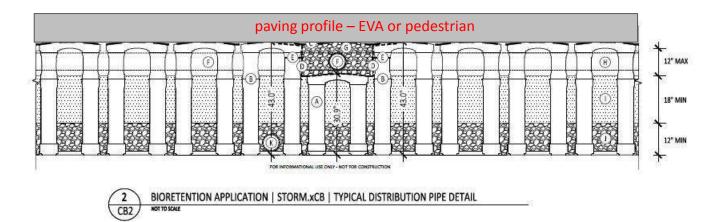
0.0055 0.0056 0.0057 0.0057 0.0058	285 277 268 259 251	245 237 233 225 217	85 85 86 86 86	Pass Pass Pass Pass Pass
0.0059	243	207	85	Pass
0.0059	236	203	86	Pass
0.0060	229	196	85	Pass
0.0060	213	190	89	Pass
0.0061 0.0062	206 198	181 176	87 88	Pass
0.0062	198	176	08 91	Pass Pass
0.0062	185	174	91 91	
0.0063	178	168	94	Pass Pass
0.0064	168	164	94 97	Pass
0.0065	163	161	98	Pass
0.0066	155	158	101	Pass
0.0066	148	151	102	Pass
0.0067	141	144	102	Pass
0.0067	132	137	103	Pass
0.0068	126	133	105	Pass
0.0069	120	130	108	Pass
0.0069	115	125	108	Pass
0.0070	110	119	108	Pass
0.0071	108	112	103	Pass
0.0071	104	107	102	Pass
0.0072	101	105	103	Pass
0.0072	98	96	97	Pass
0.0073	92	93	101	Pass
0.0074	86	89	103	Pass
0.0074	77	83	107	Pass
0.0075	70	75	107	Pass
0.0076	67	70	104	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative	
Percent	Water Quality	Percent	Comment				
		Treatment?	Needs	Through	Volume	Volume	
Volume		Water Quality					
			Treatment	Facility	(ac-ft.)	Infiltrat	ion
Infiltrated		Treated					
			(ac-ft)	(ac-ft)		Credit	
Silva Cell B	200	N	17.04			N	0.00
Total Volume	e Infiltrated		17.04	0.00	0.00		0.00
0.00	0%	No Treat. C	redit				
Compliance	with LID Standa	rd 8					
Duration An	alveia Recult -	Dagad					

Duration Analysis Result = Passed


Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

Typical Details:

- KEY PLAN
- (A) 2x SILVA CELL SYSTEM (DECK, BASE, AND POSTS) 30.9"
- (B) 3x SILVA CELL SYSTEM (DECK, BASE, AND POSTS) 43.0"
- C GEOTEXTILE FABRIC
- (D) GEOGRID. ATTACH TO CELL FRAMES WITH CABLE TIES.
- (E) CABLE TIE, ATTACHING GEOGRID TO SILVA CELL LEG
- (F) DISTRIBUTION PIPE ASSEMBLY PER ENGINEER
- (G) CLEAR STONE AGGREGATE PER ENGINEER
- (H) AVAILABLE PONDING DEPTH
- (1) 18" BIORETENTION MEDIA
- (J) 12" MINIMUM GRAVEL
- (K) UNDERDRAIN; SIZING AND ELEVATION PER ENGINEER

NOTES

- DETAIL TO BE USED IN CONJUNCTION WITH SILVA CELL STANDARD DETAILS, IN ACCORDANCE WITH ALL MANUFACTURER'S SPECIFICATIONS
- 2. DEEPROOT ACCEPTS NO LIABILITY FOR PROJECT APPLICATION OF DETAILS SHOWN

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

May 14, 2013

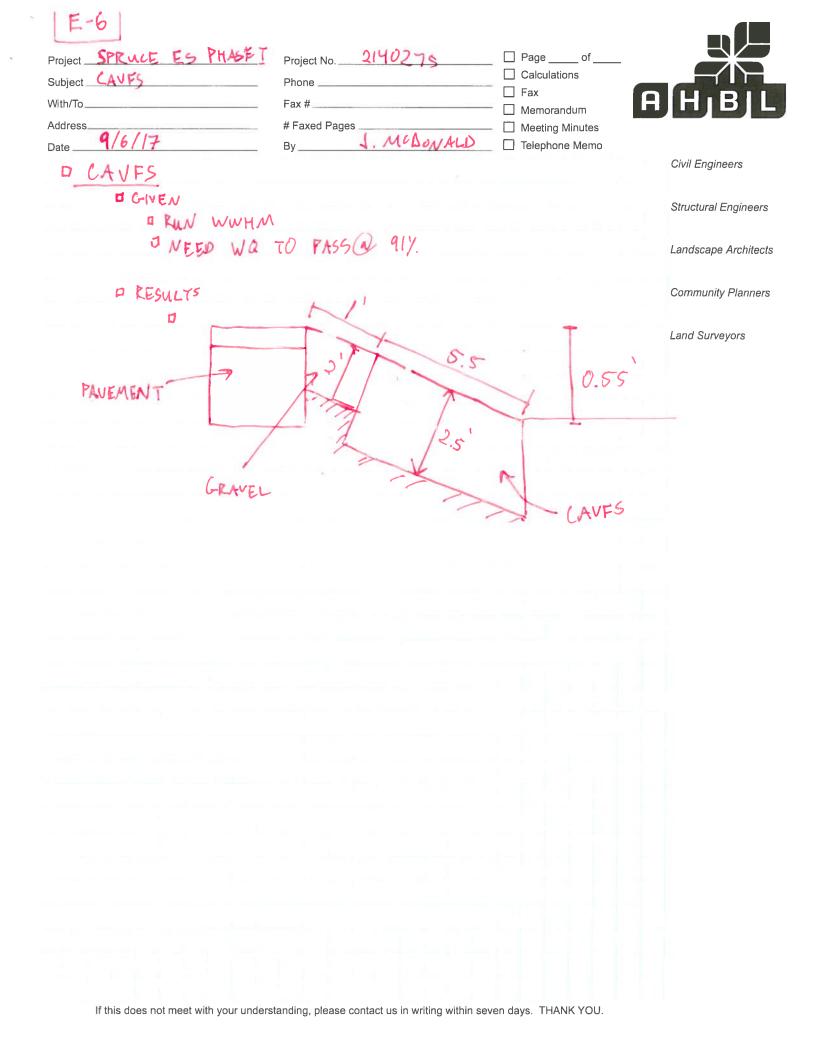
Brenda Guglielmina DeepRoot Partners 530 Washington Street San Francisco, CA 94111

RE: Silva Cells for Stormwater Runoff Filtration

Dear Ms. Guglielmina:

The Washington State Department of Ecology (Ecology) finds the Silva Cells functionally equivalent to a bioretention facility. The media specifications for Silva Cells must adhere to the guidelines for Bioretention areas, found in Appendix C, Volume III, in the 2005 Stormwater Management Manual for Western Washington (SWMMWW); or BMP T7.30 in the 2012 SWMMWW. The sizing procedure must also adhere to the procedure outlined in the Bioretention area of the manuals mentioned above or the procedure DeepRoot submitted to Ecology for design of the Silva Cells using WWHM dated March 2013.

Contractors may use the Silva Cells BMP at project sites without seeking additional Ecology approval though Ecology cannot endorse this product or its manufacturer. Manufacturer installation recommendations must be followed.


For more information, contact Doug Howie at douglas.howie@ecy.wa.gov, or (360) 407-6444.

Sincerely

Sulla

Douglas C. Howie, P.E. Stormwater Engineer Program Development Services Water Quality Program

cc: Kathleen Emmett, Ecology Ed O'Brien, Ecology

WWHM2012 PROJECT REPORT

Project Name: 20170906-Spruce ES - CAVFS Site Name: Spruce ES Site Address: 17405 Spruce Way City : Lynnwood Report Date: 9/6/2017 Gage : Everett Data Start : 1948/10/01 Data End : 2009/09/30 Precip Scale: 1.00 Version Date: 2017/07/05 Version : 4.2.13

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year PREDEVELOPED LAND USE : TDA C - Predeveloped- CAVFS Name Bypass: No GroundWater: No Pervious Land Use acre C, Forest, Mod . 43 Pervious Total 0.43 Impervious Land Use acre Impervious Total 0 Basin Total 0.43

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : TDA C - Developed-CAVFS Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use DRIVEWAYS FLAT	<u>acre</u> 0.43
Impervious Total	0.43
Basin Total	0.43

Element Flo	ows To:			
Surface		Interflow		Groundwater
SPRUCE ES	SurfaceS	SPRUCE ES	SurfaceS	

Name : SPRUCE ES - CAVFS CAVFS Length: 315.00 ft. CAVFS Width: 5.50 ft. Gravel thickness: 2 Material thickness of CAVFS layer: 2.5 Slope of CAVFS layer: 0.1 Outlet Control Overflow Height: 0.5 ft. Overflow width: 157.5 in.

Element Flows To: Outlet 1 Outlet 2

	SPRUCE	ES - CAVFS	Hydraulic Ta	able
Stage (feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.0181	0.0000	0.0000	0.0000
0.0890	0.0181	0.0007	0.0000	0.0000
0.1780	0.0181	0.0013	0.000	0.000
0.2670	0.0181	0.0020	0.000	0.000
0.3560	0.0181	0.0027	0.0000	0.0000
0.4451	0.0181	0.0033	0.0000	0.0000
0.5341	0.0181	0.0040	0.0000	0.0000
0.6231	0.0181	0.0047	0.0000	0.0000
0.7121	0.0181	0.0053	0.0000	0.0000
0.8011	0.0181	0.0060	0.0000	0.0000
0.8901	0.0181	0.0067	0.000	0.0000
0.9791	0.0181	0.0073	0.0000	0.0000
1.0681	0.0181	0.0080	0.0000	0.0000
1.1571	0.0181	0.0087	0.0001	0.0000
1.2462	0.0181	0.0093	0.0001	0.0000
1.3352	0.0181	0.0100	0.0001	0.0000
1.4242	0.0181	0.0107	0.0001	0.0000
1.5132	0.0181	0.0114	0.0002	0.0000

1.6022 1.6912 1.7802 1.8692 1.9582 2.0473 2.1363 2.2253 2.3143 2.4033 2.4033 2.4923 2.5813 2.6703 2.7593 2.8484 2.9374 3.0264 3.1154 3.2044 3.2934 3.4714 3.2044 3.2934 3.8244 3.3824 3.4714 3.5604 3.6495 3.7385 3.8275 3.9165 4.00555 4.00555 4.00555 4.00555 4.00555 4.00555 4.00555 4.00555 4.62866 4.71766 4.80666 4.98466 5.073665 5.16266 5.25166 5.34077 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.69677 5.78577 5.696377 6.05277 6.14188 6.23088 6.31988	0.0181 0.0181	0.0120 0.0127 0.0134 0.0140 0.0147 0.0153 0.0160 0.0160 0.0172 0.0179 0.0185 0.0191 0.0204 0.0210 0.0217 0.0230 0.0230 0.0230 0.0236 0.0242 0.0242 0.0249 0.0249 0.0249 0.0242 0.0249 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0255 0.0261 0.0287 0.0287 0.0293 0.0299 0.0312 0.0312 0.0312 0.0312 0.0312 0.0331 0.0325 0.0312 0.0357 0.0357 0.0363 0.0357 0.0363 0.0369 0.0357 0.0363 0.0369 0.0376 0.0388 0.0395 0.0401 0.0408 0.0414 0.0420 0.0433 0.0439 0.0446 0.0452 0.0458	0.0002 0.0003 0.0004 0.0004 0.0005 0.0005 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014 0.0015 0.0016 0.0018 0.0019 0.0021 0.0021 0.0024 0.0028 0.0024 0.0028 0.0024 0.0028 0.0032 0.0032 0.0035 0.0032 0.0035 0.0037 0.0032 0.0035 0.0037 0.0032 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0055 0.0055 0.0055 0.0055 0.0058 0.0055 0.0055 0.0055 0.0055 0.0058 0.0055 0.0055 0.0058 0.0072 0.0055 0.0079 0.0082 0.0082 0.0090 0.0094 0.0094 0.0094 0.00911 0.0361 0.0361 0.0361	
6.0527 6.1418	0.0181 0.0181	0.0439 0.0446	0.0361 0.0361	0.0000

6.6758	0.0181	0.0484	0.0361	0.0000
6.7648	0.0181	0.0490	0.0361	0.0000
6.8538	0.0181	0.0497	0.0361	0.0000
6.9429	0.0181	0.0503	0.0361	0.0000
7.0319	0.0181	0.0509	0.0361	0.0000
7.1209	0.0181	0.0516	0.0361	0.0000
7.2099	0.0181	0.0522	0.0361	0.0000
7.2989	0.0181	0.0528	0.0361	0.0000
7.3879	0.0181	0.0535	0.0361	0.0000
7.4769	0.0181	0.0541	0.0361	0.0000
7.5000	0.0181	0.0543	0.0361	0.0000

	SPRUCE	ES SurfaceS	Hydraulic	Table	
Stage (feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	To Amended (cfs)	Wetted Surface
7.5000	0.0181	0.0543	0.0000	0.0361	0.0000
7.5890	0.0181	0.0559	0.0000	0.0361	0.0000
7.6780	0.0181	0.0575	0.0000	0.0361	0.0000
7.7670	0.0181	0.0591	0.0000	0.0361	0.0000
7.8560	0.0181	0.0607	0.0000	0.0361	0.0000
7.9451	0.0181	0.0623	0.0000	0.0361	0.0000
8.0341	0.0181	0.0639	0.000	0.0361	0.0000
8.1000	0.0181	0.0651	0.0000	0.0361	0.0000

Name : SPRUCE ES SurfaceS

Element Flows To: Outlet 1 Outlet 2 SPRUCE ES - CAVFS

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.43 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.43

Flow Frequency ReturnPeriods for Predeveloped.POC #1Return PeriodFlow(cfs)2 year0.009585 year0.01466410 year0.0183225 year0.02322750 year0.027076

100 year

0.03108

 Flow Frequency Return Periods for Mitigated.
 POC #1

 Return Period
 Flow(cfs)

 2 year
 0.159391

 5 year
 0.225782

 10 year
 0.276079

 25 year
 0.347256

 50 year
 0.406089

 100 year
 0.470138

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #1

Amual	reaks	TOT FIEGEVEIG	spea and Millig
Year		Predeveloped	Mitigated
1949		0.005	0.161
1950		0.010	0.195
1951		0.009	0.191
1952		0.007	0.146
1953		0.005	0.201
1954		0.027	0.261
1955		0.014	0.189
1956		0.012	0.091
1957		0.014	0.171
1958		0.010	0.400
1959		0.010	0.143
1960		0.009	0.137
1961		0.009	0.523
1962		0.008	0.181
1963		0.012	0.211
1964		0.008	0.099
1965		0.009	0.121
1966		0.005	0.123
1967		0.011	0.347
1968		0.013	0.174
1969		0.013	0.353
1970		0.007	0.122
1971		0.012	0.179
1972		0.009	0.241
1973		0.007	0.190
1974		0.016	0.244
1975		0.007	0.182
1976		0.007	0.152
1977		0.006	0.120
1978		0.007	0.093
1979		0.016	0.227
1980		0.008	0.106
1981		0.007	0.118
1982		0.009	0.124
1983		0.015	0.169
1984		0.009	0.154
1985		0.013	0.233
1986		0.031	0.216
1987		0.013	0.198
1988		0.007	0.136
1989		0.007	0.152
1990		0.010	0.110

1991	0:010	0.144
1992	0.008	0.142
1993	0.005	0.107
1994	0.005	0.106
1995	0.010	0.109
1996	0.018	0.164
1997	0.034	0.216
1998	0.006	0.213
1999	0.009	0.085
2000	0.005	0.357
2001	0.002	0.105
2002	0.009	0.094
2003	0.007	0.140
2004	0.011	0.310
2005	0.008	0.123
2006	0.023	0.158
2007	0.018	0.168
2008	0.025	0.149
2009	0.008	0.129

Stream Protection Duration Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank	Predeveloped	Mitigated	
1	0.0344	0.5233	
2	0.0306	0.3997	
3	0.0273	0.3573	
4	0.0247	0.3532	
5	0.0232	0.3466	
6	0.0182	0.3102	
7	0.0181	0.2607	
8	0.0160	0.2435	
9	0.0160	0.2410	
10	0.0149	0.2333	
11	0.0140	0.2267	
12	0.0140	0.2159	
13	0.0132	0.2155	
14	0.0131	0.2128	
15	0.0130	0.2109	
16	0.0129	0.2008	
17	0.0122	0.1979	
18	0.0116	0.1945	
19	0.0115	0.1907	
20	0.0112	0.1902	
21	0.0107	0.1887	
22	0.0104	0.1824	
23	0.0102	0.1812	
24	0.0101	0.1788	
25	0.0099	0.1745	
26	0.0097	0.1707	
27	0.0095	0.1694	
28	0.0093	0.1676	
29	0.0092	0.1638	
30	0.0092	0.1609	
31	0.0091	0.1578	
32	0.0091	0.1542	
33	0.0090	0.1518	

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentage	e Pass/Fail
0.0048	20668	18587	89	Pass
0.0050	18360	11308	61	Pass
0.0052	16294	8066	49	Pass
0.0055	14429	6278	43	Pass
0.0057	12876	5204	40	Pass
0.0059	11486	4483	39	Pass
0.0061	10243	3998	39	Pass
0.0064	9133	3670	40	Pass
0.0066	8185	3339	40	Pass
0.0068	7270	3093	42	Pass
0.0070	6498	2851	43	Pass
0.0073	5831	2684	46	Pass
0.0075	5251	2509	47	Pass
0.0077	4753	2374	49	Pass
0.0079	4295	2160	50	Pass
0.0082	3863	2060	53	Pass
0.0084	3459	1950	56	Pass
0.0086	3069	1868	60	Pass
0.0088	2714	1775	65	Pass
0.0091	2449	1689	68	Pass

0.0093 0.0095 0.0097 0.0100 0.0102 0.0104 0.0106 0.0109 0.0111 0.0113 0.0115 0.0118 0.0120 0.0122 0.0124 0.0127 0.0129 0.0131 0.0133 0.0136 0.0138 0.0140 0.0142 0.0145 0.0147 0.0145 0.0147 0.0145 0.0147 0.0145 0.0145 0.0147 0.0151 0.0154 0.0153 0.0165 0.0165 0.0163 0.0165 0.0163 0.0163 0.0165 0.0167 0.0163 0.0172 0.0212 0.0211 0.0213 0.0213 0.0213 0.0213 0.0214 0.0217 0.0219 0.02	2209 2008 1844 1707 1569 1456 1362 1212 1145 1074 996 934 893 849 809 761 720 689 664 623 603 570 554 524 524 510 484 466 439 424 412 403 376 357 343 325 321 300 285 277 268 259 213 206	$\begin{array}{c} 1622\\ 1552\\ 1486\\ 1419\\ 1360\\ 1308\\ 1241\\ 1178\\ 1134\\ 1088\\ 1050\\ 996\\ 952\\ 913\\ 882\\ 792\\ 756\\ 724\\ 697\\ 756\\ 724\\ 697\\ 756\\ 724\\ 697\\ 756\\ 724\\ 697\\ 579\\ 561\\ 545\\ 524\\ 697\\ 756\\ 490\\ 476\\ 449\\ 429\\ 408\\ 385\\ 330\\ 318\\ 307\\ 298\\ 287\\ 281\\ 264\\ 258\\ 237\\ 233\\ 225\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 237\\ 233\\ 235\\ 2357\\ 233225\\ 237\\ 233225\\ 237\\ 233235\\ 233235\\ 2333235\\ 23333333333333333333$	73 77 80 83 86 89 91 93 95 97 100 101 102 103 104 104 104 104 104 104 104 104 104 104	Pass Pass Pass Pass Pass Pass Pass Pass
--	--	---	--	--

.

0.0221	198	176	88	Pass
0.0223	191	174	91	Pass
0.0226	185	170	91	Pass
0.0228	178	168	94	Pass
0.0230	168	164	97	Pass
0.0232	163	161	98	Pass
0.0235	155	158	101	Pass
0.0237	148	151	102	Pass
0.0239	141	144	102	Pass
0.0241	132	137	103	Pass
0.0244	126	133	105	Pass
0.0246	120	130	108	Pass
0.0248	115	125	108	Pass
0.0251	110	119	108	Pass
0.0253	108	112	103	Pass
0.0255	104	107	102	Pass
0.0257	101	105	103	Pass
0.0260	98	96	97	Pass
0.0262	92	93	101	Pass
0.0264	86	89	103	Pass
0.0266	77	83	107	Pass
0.0269	70	75	107	Pass
0.0271	67	70	104	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality		Comment	_, ,		
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated	S.	0.00	0.00	0.00	0.00
0.00 0%	No Treat. Ci	redit			
Compliance with LID Standa	rd 8				
Duration Analysis Result =	Passed				

Perlnd and Implnd Changes

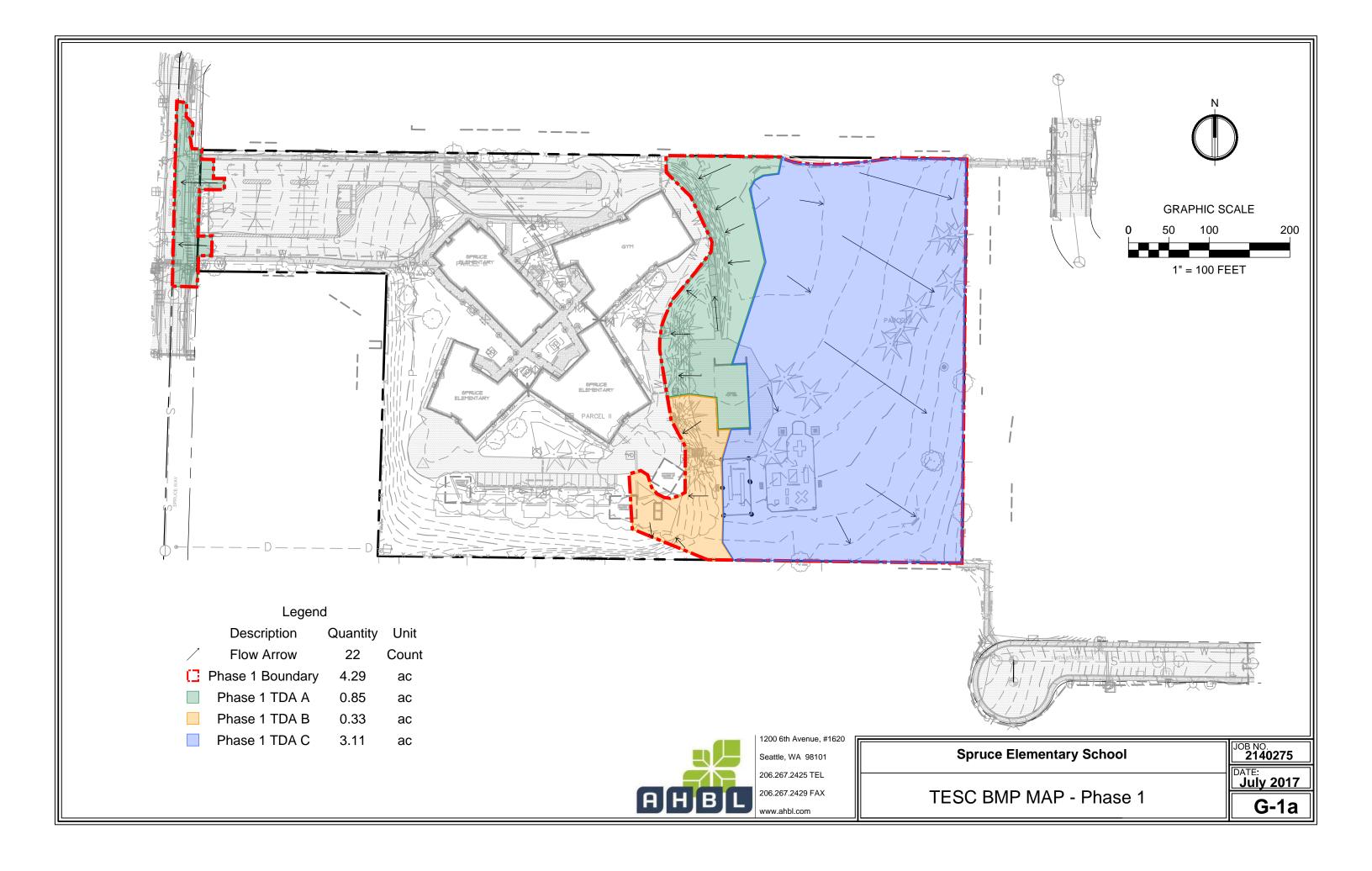
No changes have been made.

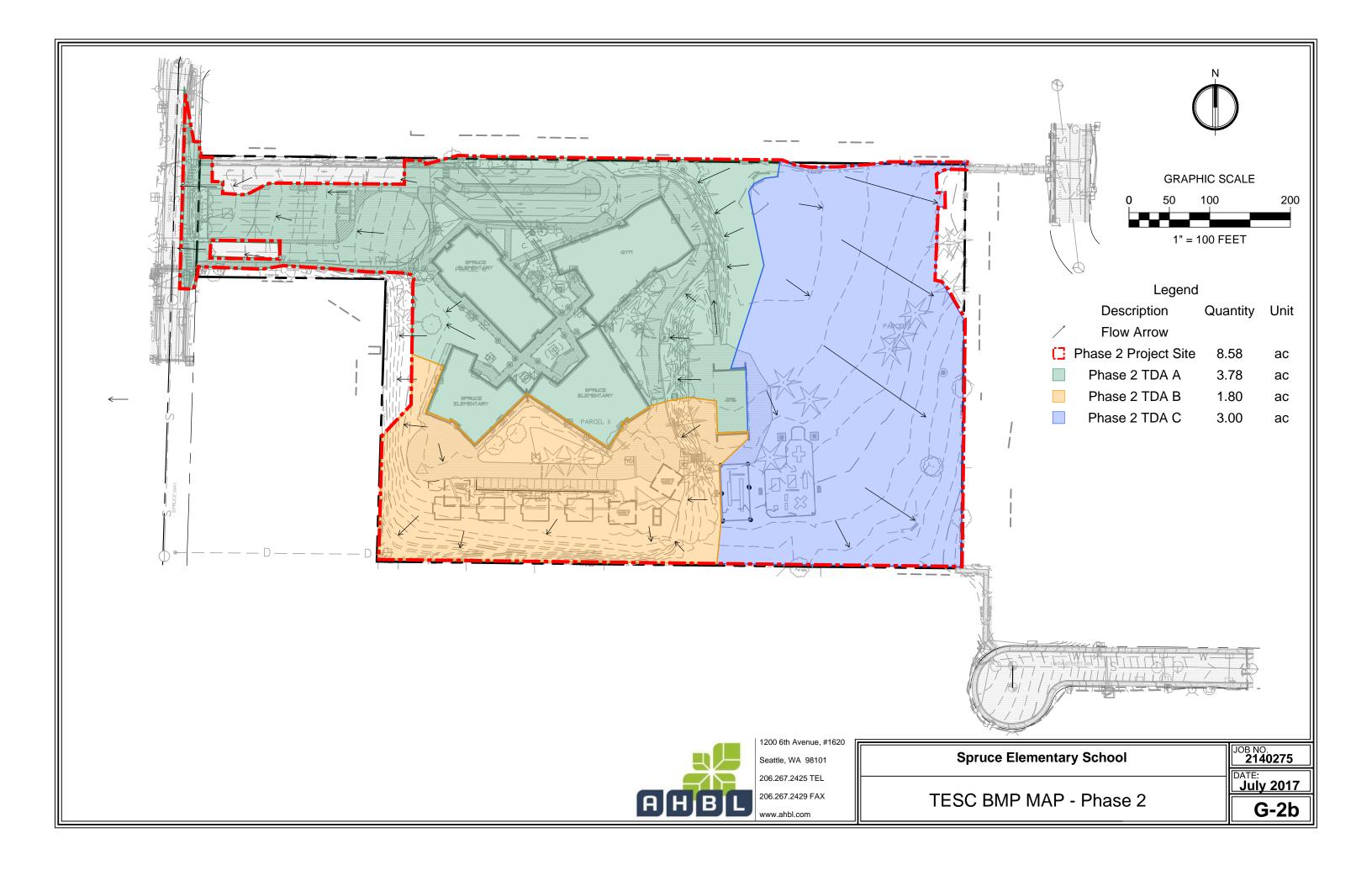
This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business

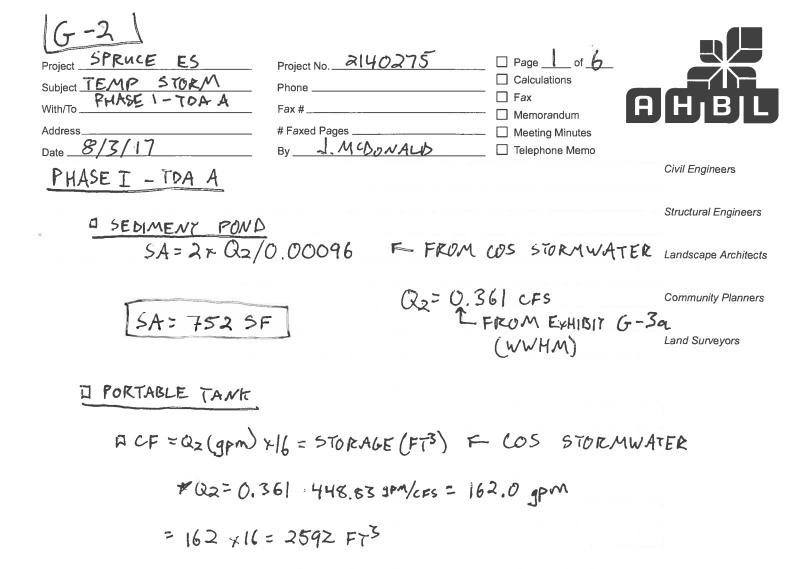
interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

.

Conveyance Calculations and Exhibit


To be provided with final report submission.




TESC Exhibits and Calculations

G-1a	TESC Basin Map – Phase 1
G-1b	TESC Basin Map – Phase 2
G-2	TESC Hand Calculations
G-3a	TDA A – Phase 1 – WWHM TESC
G-3b	TDA A – Phase 2 – WWHM TESC
G-4a	TDA B – Phase 1 – WWHM TESC
G-4b	TDA B – Phase 2 – WWHM TESC
G-5a	TDA C – Phase 1 – WWHM TESC
G-5b	TDA C – Phase 2 – WWHM TESC

D BAKER TANKS R D CAPACITY OF	EQUIRED BAKER:	17,640 G	AL => 2	52 FT3
HOF TANKS	REQUIRED			
2592	FT3 2352	= 1.1	BAKER	TANKS
		= 2	BAKER	TANKS

Project SPRUCE ES Subject TEMP STORM PHASE - TOA B With/To Address Date 8/3/17	Project No. <u>2:46275</u> Phone Fax # # Faxed Pages By J. М. Долд-Д	Page 2 of 6 Calculations Fax Memorandum Meeting Minutes Telephone Memo	AHBL
PHASE I - TOA B			Civil Engineers
SA= 2 × 1	ND 1000091		Structural Engineers
SH - Q Y I	22/000016		Landscape Architects
SA= 292	SF	2=0,140 CFS LEX. G-4a	Community Planners
		(WWHM)	Land Surveyors

D PORTABLE TANK D CF = Q2×16 = 1005.4 FT³ Q2= 0.140 CFS -> 62.8 gpm

DISAKER TANKS REQUIRED $D \neq 0F$ TANKS 1005.4/2352 = 0.43 BAKER TANKS

1 BAKER TANK

Project <u>SPRULE ES</u> Subject <u>TEMP STORM</u> With/To <u>PHASE I-TDA A</u> Address Date <u>9/7/17</u> <u>PhASE I - TDA C</u> <u>PhASE I - TDA C</u> <u>SEDMENT POND</u> $SA = 2 \times Q_2/0.00096$	Civil Engineers Structural Engineers
$S_{A} = 2,752 \text{ sF}$ $Q_2 = 1.321 \text{ cFs} \rightarrow 592.9$ L = 2,752 sF (wwHM)	Land Surveyors
PORTABLE TANE	
$\Box CF = Q_2 \times 16$	
$= 9487 FT^{3}$	
DAKER TANKS REQUIRED D# OF TANKS	
9487 FT \$ 2352= 4. D3 BAILER TANKS	
5 BAKER TANKS	

Project SPRACE ES Subject TEMP STORM PHASE IF -TOA A With/To Address Date 8/3/17	Project No. 2140275 Phone Fax # # Faxed Pages ByMOONALD	Page <u>4</u> of <u>6</u> Calculations Fax Memorandum Meeting Minutes Telephone Memo	A H B L
PHASE I - TDA A			Civil Engineers
OSEDIMENT PU	ND		Structural Engineers

UNENI	FUI	VD	
SAZZ			096

5A= 3344 SF

Q₂ = 1.605 CFS → 720.99 Community Planners F Ex. G-36 (WWHM) Land Surveyors

Landscape Architects

D PORTABLE TANK

D CF= Q2+16 = 11526 FT3

DHOF TANKS REQUIREP

1526/2352 = 4.9 BAKER TANKS

Project SPRUCE ES Subject TEMP STORM With/To PHASE IL- TOA 5 Address Date 8/3/17	Project No Phone Fax # # Faxed Pages ByJ. McDonALP	 Page 5 of 6 Calculations Fax Memorandum Meeting Minutes Telephone Memo 	A H B L
PHASE I - TDA B			Civil Engineers
D SEDIMENT FOR	<u>VP</u> Q2/0.00096		Structural Engineers
24/2017	~2/ 0.000 18		Landscape Architects

SA= 1592 SF

(R2 = 0.764 cFS → 342.9 gppmmunity Planners 1 Ex G-46 (WWHM) Land Surveyors

DPORTABLE TANK

OCF=Q27/16

= 5486.4 FT3

O BAKER TANKS REQUIREP

5486/2352=2.3 BAKER TANKS

3 BAKER TANKS

Project SPRUCE ES Subject TEMP STORM PHASE I ~ TOA C With/To Address Date 8/3/17	Project No. 2140275 Phone Fax # # Faxed Pages By J. McDoNALD	 Page <u>6</u> of <u>6</u> Calculations Fax Memorandum Meeting Minutes Telephone Memo 	A H B L
PHASE I - TOA C			Civil Engineers
			Structural Engineers

D <u>SEDIMENT</u> POND SA= 2 × 00/0.00096

SA=2654 SF

	Landscape Architects
Q2=1,274 UFS-> 571.1	Bapm
2 Ex G-55	Community Planners
(WWHM	
C	Land Surveyors

PORTABLE TANK

0 CF= Q2 x16

= 9149 F73

O BAKER TANK REQUIRED

9149/2352 = 3.9 BAKER TANKS 4 BARER TANKS

WWHM2012 PROJECT REPORT

```
Project Name: TDA A - TESC
Site Name: Phase I - TDA A - TESC
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

0

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA A - Phase I - TESC Bypass: No

GroundWater: No

Pervious	Land	Use	acre

Pervious Total

Impervious 1	Land Use	acre
DRIVEWAYS	FLAT	0.85
Impervious !	Total	0.85
Basin Total		0.85

Element Flows To:	
Surface	Interflow

Groundwater

MITIGATED LAND USE

Name : TDA A - Phase I - TESC Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use DRIVEWAYS FLAT	<u>acre</u> 0.85
Impervious Total	0.85
Basin Total	0.85

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.85

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.85

Flow Frequency Ret	urn Periods for Predeveloped. POC #1	
Return Period	Flow(cfs)	
2 year	0.360914	
5 year	0.488303	
10 year	0.581457	
25 year	0.709577	
50 year	0.812848	
100 year	0.923056	
Flow Frequency Ret	urn Periods for Mitigated. POC #1	
Flow Frequency Ret Return Period	urn Periods for Mitigated. POC #1 <u>Flow(cfs)</u>	
Return Period	Flow(cfs)	
<u>Return Period</u> 2 year	Flow(cfs) 0.360914	
<u>Return Period</u> 2 year 5 year	Flow(cfs) 0.360914 0.488303	
<u>Return Period</u> 2 year 5 year 10 year	Flow(cfs) 0.360914 0.488303 0.581457	
Return Period 2 year 5 year 10 year 25 year	Flow(cfs) 0.360914 0.488303 0.581457 0.709577	

Annual	Peaks for Predeveloped and Mitigated.			
Year	Predeveloped			
1949	0.370	0.370		
1950	0.431	0.431		
1951	0.422	0.422		
1952	0.339	0.339		
1953	0.444	0.444		
1954	0.552	0.552		
1955	0.421	0.421		
1956	0.191	0.191		
1957	0.324	0.324		
1958	0.816	0.816		
1959	0.337	0.337		
1960	0.318	0.318		
1961	1.063	1.063		
1962	0.412	0.412		
1963	0.464	0.464		
1964	0.253	0.253		
1965	0.295	0.295		
1966	0.298	0.298		
1967	0.723	0.723		
1968	0.385	0.385		
1969	0.723	0.723		
1970	0.286	0.286		
1971	0.404	0.404		
1972	0.514	0.514		
1973	0.423	0.423		
1974	0.522	0.522		
1975	0.403	0.403		
1976 1977	0.281 0.285	0.281		
1978	0.216	0.285 0.216		
1979	0.475	0.475		
1980	0.277	0.277		
1981	0.285	0.285		
1982	0.288	0.288		
1983	0.381	0.381		
1984	0.356	0.356		
1985	0.512	0.512		
1986	0.468	0.468		
1987	0.419	0.419		
1988	0.337	0.337		
1989	0.349	0.349		
1990	0.265	0.265		
1991	0.346	0.346		
1992	0.332	0.332		
1993	0.260	0.260		
1994	0.284	0.284		
1995	0.267	0.267		
1996	0.382	0.382		
1997	0.408	0.408		
1998	0.461	0.461		
1999	0.213	0.213		
2000	0.722	0.722		
2001	0.260	0.260		
2002	0.249	0.249		

Stream Protection Duration

POC #1

2003	0.336	0.336
2004	0.639	0.639
2005	0.300	0.300
2006	0.361	0.361
2007	0.358	0.358
2008	0.282	0.282
2009	0.304	0.304

	Protection Durat	
Ranked	Annual Peaks for	Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	1.0628	1.0628
2	0.8158	0.8158
3	0.7235	0.7235
4	0.7233	0.7233
5	0.7218	0.7218
6	0.6387	0.6387
7	0.5521	0.5521
8	0.5216	0.5216
9	0.5137	0.5137
10	0.5124	0.5124
11	0.4747	0.4747
12	0.4681	0.4681
13	0.4643	0.4643
14	0.4609	0.4609
15	0.4444	0.4444
16	0.4305	0.4305
17	0.4232	0.4232
18	0.4221	0.4221
19	0.4213	0.4213
20	0.4194	0.4194
21	0.4117	0.4117
22	0.4080	0.4080
23	0.4036	0.4036
24	0.4031	0.4031
25	0.3849	0.3849
26	0.3824	0.3824
27	0.3810	0.3810
28	0.3696	0.3696
29	0.3610	0.3610
30	0.3576	0.3576
31	0.3556	0.3556
32	0.3488	0.3488
33	0.3463	0.3463
34	0.3387	0.3387
35	0.3369	0.3369
36	0.3366	0.3366
37	0.3355	0.3355
38	0.3316	0.3316
39	0.3244	0.3244
40	0.3182	0.3182
41	0.3044	0.3044
42	0.2995	0.2995
43	0.2976	0.2976
44	0.2949	0.2949
45	0.2884	0.2884
- J	0.2001	0.2001

46	0.2865	0.2865
47	0.2855	0.2855
48	0.2850	0.2850
49	0.2838	0.2838
50	0.2822	0.2822
51	0.2813	0.2813
52	0.2769	0.2769
53	0.2666	0.2666
54	0.2650	0.2650
55	0.2602	0.2602
56	0.2601	0.2601
57	0.2528	0.2528
58	0.2494	0.2494
59	0.2162	0.2162
60	0.2127	0.2127
61	0.1907	0.1907

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.1805	1185	1185	100	Pass
0.1868	1053	1053	100	Pass
0.1932	919	919	100	Pass
0.1996	813	813	100	Pass
0.2060	726	726	100	Pass
0.2124	650	650	100	Pass
0.2188	581	581	100	Pass
0.2252	506	506	100	Pass
0.2316	465	465	100	Pass
0.2379	413	413	100	Pass
0.2443	365	365	100	Pass
0.2507	333	333	100	Pass
0.2571	300	300	100	Pass
0.2635	277	277	100	Pass
0.2699	264	264	100	Pass
0.2763	243	243	100	Pass
0.2827	219	219	100	Pass
0.2890	195	195	100	Pass
0.2954	177	177	100	Pass
0.3018	165	165	100	Pass
0.3082	145	145	100	Pass
0.3146	134	134	100	Pass
0.3210	126	126	100	Pass
0.3274	116	116	100	Pass
0.3338	107	107	100	Pass
0.3402	97	97	100	Pass
0.3465	92	92	100	Pass
0.3529	84	84	100	Pass
0.3593	82	82	100	Pass
0.3657	76	76	100	Pass
0.3721	74	74	100	Pass
0.3785	70	70	100	Pass

0.3849	64	64	100	Pass
0.3913	62	62	100	Pass
0.3976	58	58	100	Pass
0.4040	55	55	100	Pass
0.4104	50	50	100	Pass
0.4168	47	47	100	Pass
0.4232	43	43	100	Pass
0.4296	41	41	100	Pass
0.4360	38	38	100	Pass
0.4424	37	37	100	Pass
0.4487	32	32	100	Pass
0.4551	28	28	100	Pass
0.4615	25	25	100	Pass
0.4679	23	23	100	Pass
0.4743	22	22	100	Pass
0.4807	20	20	100	Pass
0.4871	20	20	100	Pass
0.4935	20	20	100	Pass
0.4998	20	20	100	Pass
0.5062	16	16	100	Pass
0.5126	14	14	100	Pass
0.5190	12	12	100	Pass
0.5254	11	11	100	Pass
0.5318	11	11	100	Pass
0.5382	11	11	100	Pass
0.5446	11	11	100	Pass
0.5509	11	11	100	Pass
0.5573	10	10	100	Pass
0.5637	10	10	100	Pass
0.5701	10	10	100	Pass
0.5765	10	10	100	Pass
0.5829	9	9	100	Pass
0.5893	9	9	100	Pass
0.5957	9	9	100	Pass
0.6021	9	9	100	Pass
0.6084	9	9	100	Pass
0.6148	8	8	100	Pass
0.6212	8	8	100	Pass
0.6212 0.6276 0.6340 0.6404	8 8 7	8 8 7	100 100 100	Pass Pass Pass
0.6468	7	7	100	Pass
0.6532	6	6	100	Pass
0.6595	6	6	100	Pass
0.6659	6	6	100	Pass
0.6723	6	6	100	Pass
0.6787	6	6	100	Pass
0.6851	6	6	100	Pass
0.6915	6	6	100	Pass
0.6979	6	6	100	Pass
0.7043 0.7106 0.7170 0.7234	6 6 5	6 6 5	100 100 100 100	Pass Pass Pass Pass
0.7298	3	3	100	Pass
0.7362	3	3	100	Pass
0.7426	3	3	100	Pass

0.7490	3	3	100	Pass	
0.7554	3	3	100	Pass	
0.7617	3	3	100	Pass	
0.7681	3	3	100	Pass	
0.7745	3	3	100	Pass	
0.7809	3	3	100	Pass	
0.7873	3	3	100	Pass	
0.7937	3	3	100	Pass	
0.8001	3	3	100	Pass	
0.8065	3	3	100	Pass	
0.8128	3	3	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: TDA A - TESC
Site Name: Phase II - TDA A - TESC
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

0

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA A - Phase II - TESC Bypass: No

GroundWater: No

Pervious	Land	Use	acre

|--|

Impervious	Land Use	acre
DRIVEWAYS	FLAT	3.78
Impervious	Total	3.78
Basin Total	-	3.78

Element Flows To:	
Surface	Interflow

Groundwater

MITIGATED LAND USE

Name : TDA A - Phase II - TESC Bypass: No

GroundWater: No

Pervious Land Use	acre	
Pervious Total	0	
Impervious Land Use DRIVEWAYS FLAT	<u>acre</u> 3.78	
Impervious Total	3.78	
Basin Total	3.78	

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:3.78

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:3.78

Flow Frequency Return	Periods for Predeveloped. POC #1	
Return Period	Flow(cfs)	
2 year	1.605005	
5 year	2.171515	
10 year	2.585776	
25 year	3.155534	
50 year	3.614786	
100 year	4.104885	
Flow Frequency Return	Periods for Mitigated. POC #1	
Flow Frequency Return Return Period	Periods for Mitigated. POC #1 Flow(cfs)	
Return Period	Flow(cfs)	
<u>Return Period</u> 2 year	Flow(cfs) 1.605005	
<u>Return Period</u> 2 year 5 year	Flow(cfs) 1.605005 2.171515	
<u>Return Period</u> 2 year 5 year 10 year	Flow(cfs) 1.605005 2.171515 2.585776	
<u>Return Period</u> 2 year 5 year 10 year 25 year	Flow(cfs) 1.605005 2.171515 2.585776 3.155534	

Annual	Peaks for Predevelop	ed and Mitigated.
Year	Predeveloped	
1949	1.644	1.644
1950	1.915	1.915
1951	1.877	1.877
1952	1.506	1.506
1953	1.976	1.976
1954	2.455	2.455
1955	1.874	1.874
1956	0.848	0.848
1957	1.443	1.443
1958	3.628	3.628
1959	1.497	1.497
1960	1.415	1.415
1961	4.726	4.726
1962	1.831	1.831
1963	2.065	2.065
1964	1.124	1.124
1965	1.311	1.311
1966	1.323	1.323
1967	3.217	3.217
1968	1.712	1.712
1969	3.217	3.217
1970	1.274	1.274
1971	1.795	1.795
1972	2.284	2.284
1973	1.882	1.882
1974	2.320	2.320
1975	1.792	1.792
1976	1.251	1.251
1977	1.269	1.269
1978	0.962	0.962
1979	2.111	2.111
1980	1.232	1.232
1981	1.268	1.268
1982	1.283	1.283
1983	1.694	1.694
1984	1.581	1.581
1985	2.279	2.279
1986	2.082	2.082
1987	1.865	1.865
1988	1.498	1.498
1989	1.551	1.551
1990	1.179	1.179
1991	1.540	1.540
1992	1.474	1.474
1993	1.157	1.157
1994	1.262	1.262
1995	1.185	1.185
1996	1.700	1.700
1997	1.814	1.814
1998	2.049	2.049
1999	0.946	0.946
2000	3.210	3.210
2001	1.157	1.157
2002	1.109	1.109

POC #1

2003	1.492	1.492
2004	2.840	2.840
2005	1.332	1.332
2006	1.605	1.605
2007	1.590	1.590
2008	1.255	1.255
2009	1.354	1.354

	Protection Durat	
	Annual Peaks for	Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	4.7264	4.7264
2	3.6279	3.6279
3	3.2173	3.2173
4	3.2168	3.2168
5	3.2097	3.2097
6		
	2.8404	2.8404
7	2.4553	2.4553
8	2.3196	2.3196
9	2.2843	2.2843
10	2.2787	2.2787
11	2.1109	2.1109
12	2.0816	2.0816
13	2.0649	2.0649
14	2.0494	2.0494
15	1.9761	1.9761
16	1.9145	1.9145
17	1.8821	1.8821
18	1.8773	1.8773
19	1.8736	1.8736
20	1.8651	1.8651
21	1.8308	1.8308
22	1.8143	1.8143
23	1.7947	1.7947
24	1.7924	1.7924
25	1.7117	1.7117
26	1.7005	1.7005
27	1.6945	1.6945
28	1.6436	1.6436
29	1.6054	1.6054
30	1.5902	1.5902
31	1.5814	1.5814
32	1.5513	1.5513
33		
	1.5399	1.5399
34	1.5061	1.5061
35	1.4981	1.4981
36	1.4969	1.4969
37	1.4920	1.4920
38	1.4745	1.4745
39	1.4428	1.4428
40	1.4152	1.4152
41	1.3537	1.3537
42	1.3320	1.3320
43	1.3232	1.3232
44	1.3112	1.3112
44 45		
40	1.2827	1.2827

46	1.2740	1.2740
47	1.2695	1.2695
48	1.2675	1.2675
49	1.2620	1.2620
50	1.2552	1.2552
51	1.2508	1.2508
52	1.2315	1.2315
53	1.1854	1.1854
54	1.1786	1.1786
55	1.1570	1.1570
56	1.1567	1.1567
57	1.1244	1.1244
58	1.1090	1.1090
59	0.9616	0.9616
60	0.9459	0.9459
61	0.8481	0.8481

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.8025	1181	1181	100	Pass
0.8309	1044	1044	100	Pass
0.8593	916	916	100	Pass
0.8877	807	807	100	Pass
0.9161	726	726	100	Pass
0.9445	648	648	100	Pass
0.9729	576	576	100	Pass
1.0014	506	506	100	Pass
1.0298	458	458	100	Pass
1.0582	408	408	100	Pass
1.0866	365	365	100	Pass
1.1150	328	328	100	Pass
1.1434	300	300	100	Pass
1.1718	276	276	100	Pass
1.2002	262	262	100	Pass
1.2286	243	243	100	Pass
1.2570	214	214	100	Pass
1.2854	195	195	100	Pass
1.3138	177	177	100	Pass
1.3422	164	164	100	Pass
1.3706	145	145	100	Pass
1.3990	132	132	100	Pass
1.4275	126	126	100	Pass
1.4559	116	116	100	Pass
1.4843	104	104	100	Pass
1.5127	97	97	100	Pass
1.5411	91	91	100	Pass
1.5695	84	84	100	Pass
1.5979	81	81	100	Pass
1.6263	76	76	100	Pass
1.6547	74	74	100	Pass
1.6831	70	70	100	Pass

1.7115 1.7399 1.7683 1.7967 1.8252 1.8536 1.9904 1.9388 1.9672 1.9956 2.0240 2.0524 2.0808 2.1092 2.1376 2.1660 2.1944 2.2228 2.2513 2.2797 2.3081 2.3365 2.3649 2.3933 2.4217 2.3081 2.365 2.3649 2.3933 2.4217 2.4501 2.4785 2.5069 2.5353 2.5637 2.5921 2.6205 2.6490 2.6774 2.7970 2.5921 2.6205 2.6490 2.6774 2.7920 2.7970 2.5921 2.6205 2.6490 2.6774 2.7920 2.7910 2.8194 2.8478 2.9046 2.9046 2.9330	64 62 58 55 50 47 43 41 38 36 32 28 25 20 20 20 20 20 20 20 20 20 20 20 10 13 22 11 11 11 11 10 10 9 9 9 9 9 9 9 8 8 8 8 8 7 7 6 6	64 62 58 55 50 47 43 41 38 36 32 20 20 20 20 20 20 20 20 20 20 20 20 20	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
2.7626 2.7910 2.8194 2.8478	8 8 8 7	8 8 8 7	100 100 100 100	Pass Pass Pass Pass
2.9046 2.9330 2.9614 2.9898	6 6 6	6 6 6	100 100 100 100	
3.0182 3.0466 3.0751 3.1035 3.1319	6 6 6 6	6 6 6 6	100 100 100 100 100	Pass Pass Pass Pass Pass
3.1603 3.1887 3.2171 3.2455 3.2739	6 6 4 3 3	6 6 4 3 3	100 100 100 100 100	Pass Pass Pass Pass Pass
3.3023	3	3	100	Pass

3.3307	3	3	100	Pass	
3.3591	3	3	100	Pass	
3.3875	3	3	100	Pass	
3.4159	3	3	100	Pass	
3.4443	3	3	100	Pass	
3.4728	3	3	100	Pass	
3.5012	3	3	100	Pass	
3.5296	3	3	100	Pass	
3.5580	3	3	100	Pass	
3.5864	3	3	100	Pass	
3.6148	3	3	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: TDA B - TESC
Site Name: Phase I - TDA B - TESC
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

0

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA B - Phase I - TESC Bypass: No

GroundWater: No

Pervious	Land	Use	acre

<i>r</i> ious Total

Impervious	Land Use	acre
DRIVEWAYS	FLAT	0.33
Impervious	Total	0.33
Basin Total	L	0.33

Element	Flows	То:		
Surface			Interflow	¢

Groundwater

MITIGATED LAND USE

Name : TDA B - Phase I - TESC Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use DRIVEWAYS FLAT	<u>acre</u> 0.33
Impervious Total	0.33
Basin Total	0.33

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.33

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.33

Flow Frequency Retur	n Periods for Predeveloped. POC #1
Return Period	Flow(cfs)
2 year	0.140119
5 year	0.189577
10 year	0.225742
25 year	0.275483
50 year	0.315577
100 year	0.358363
Flow Frequency Retur	n Periods for Mitigated. POC #1
Flow Frequency Retur Return Period	n Periods for Mitigated. POC #1 Flow(cfs)
	-
Return Period	Flow(cfs)
<u>Return Period</u> 2 year	Flow(cfs) 0.140119
<u>Return Period</u> 2 year 5 year	<u>Flow(cfs)</u> 0.140119 0.189577
<u>Return Period</u> 2 year 5 year 10 year	Flow(cfs) 0.140119 0.189577 0.225742
<u>Return Period</u> 2 year 5 year 10 year 25 year	Flow(cfs) 0.140119 0.189577 0.225742 0.275483

	Peaks for Predevelo	
Year	Predeveloped	Mitigated
1949	0.143	0.143
1950	0.167	0.167
1951	0.164	0.164
1952	0.131	0.131
1953	0.173	0.173
1954	0.214	0.214
1955	0.164	0.164
1955	0.074	0.074
1957	0.126	0.126
1958	0.317	0.317
1959	0.131	0.131
1960 1961	0.124 0.413	0.124 0.413
1962	0.160 0.180	0.160 0.180
1963		
1964 1065	0.098	0.098
1965	0.114	0.114
1966	0.116	0.116
1967	0.281	0.281
1968	0.149	0.149
1969	0.281	0.281
1970	0.111	0.111
1971	0.157	0.157
1972	0.199	0.199
1973	0.164 0.203	0.164 0.203
1974 1975	0.156	0.156
1975	0.109	0.109
1970	0.111	0.111
1978	0.084	0.084
1979	0.184	0.184
1980	0.104	0.108
1981	0.111	0.111
1982	0.112	0.112
1983	0.148	0.148
1984	0.138	0.138
1985	0.199	0.199
1986	0.182	0.182
1987	0.163	0.163
1988	0.131	0.131
1989	0.135	0.135
1990	0.103	0.103
1991	0.134	0.134
1992	0.129	0.129
1993	0.101	0.101
1994	0.110	0.110
1995	0.103	0.103
1996	0.148	0.148
1997	0.158	0.158
1998	0.179	0.179
1999	0.083	0.083
2000	0.280	0.280
2001	0.101	0.101
2002	0.097	0.097

POC #1

2003	0.130	0.130
2004	0.248	0.248
2005	0.116	0.116
2006	0.140	0.140
2007	0.139	0.139
2008	0.110	0.110
2009	0.118	0.118

	Protection Durat	
Ranked		Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	0.4126	0.4126
2	0.3167	0.3167
3	0.2809	0.2809
4	0.2808	0.2808
5	0.2802	0.2802
6	0.2480	0.2480
7	0.2144	0.2144
8	0.2025	0.2025
9	0.1994	0.1994
10	0.1989	0.1989
11	0.1843	0.1843
12	0.1817	0.1817
13	0.1803	0.1803
14	0.1789	0.1789
15	0.1725	0.1725
16	0.1671	0.1671
17	0.1643	0.1643
18	0.1639	0.1639
19	0.1636	0.1636
20	0.1628	0.1628
21	0.1598	0.1598
22	0.1584	0.1584
23	0.1567	0.1567
24	0.1565	0.1565
25	0.1494	0.1494
26	0.1485	0.1485
27	0.1479	0.1479
28	0.1435	0.1435
29	0.1402	0.1402
30	0.1388	0.1388
31	0.1381	0.1381
32	0.1354	0.1354
33	0.1344	0.1344
34	0.1315	0.1315
35	0.1308	0.1313
36	0.1307	0.1307
37	0.1303	0.1303
		0.1287
38	0.1287	0.1260
39 40	0.1260 0.1235	0.1235
41	0.1182	0.1182
42	0.1163	0.1163
43	0.1155	0.1155
44	0.1145	0.1145
45	0.1120	0.1120

46	0.1112	0.1112
47	0.1108	0.1108
48	0.1107	0.1107
49	0.1102	0.1102
50	0.1096	0.1096
51	0.1092	0.1092
52	0.1075	0.1075
53	0.1035	0.1035
54	0.1029	0.1029
55	0.1010	0.1010
56	0.1010	0.1010
57	0.0982	0.0982
58	0.0968	0.0968
59	0.0839	0.0839
60	0.0826	0.0826
61	0.0740	0.0740

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.0701	1179	1179	100	Pass
0.0725	1042	1042	100	Pass
0.0750	916	916	100	Pass
0.0775	806	806	100	Pass
0.0800	726	726	100	Pass
0.0825	646	646	100	Pass
0.0849	574	574	100	Pass
0.0874	506	506	100	Pass
0.0899	457	457	100	Pass
0.0924	408	408	100	Pass
0.0949	365	365	100	Pass
0.0973	328	328	100	Pass
0.0998	299	299	100	Pass
0.1023	277	277	100	Pass
0.1048	262	262	100	Pass
0.1073	243	243	100	Pass
0.1097	214	214	100	Pass
0.1122	195	195	100	Pass
0.1147	177	177	100	Pass
0.1172	164	164	100	Pass
0.1197	145	145	100	Pass
0.1221	132	132	100	Pass
0.1246	126	126	100	Pass
0.1271	116	116	100	Pass
0.1296	105	105	100	Pass
0.1321	97	97	100	Pass
0.1345	91	91	100	Pass
0.1370	84	84	100	Pass
0.1395	81	81	100	Pass
0.1420	76	76	100	Pass
0.1445	74	74	100	Pass
0.1469	70	70	100	Pass

0.20891111100Pass0.21141111100Pass0.21391111100Pass0.21641010100Pass0.21891010100Pass0.22131010100Pass	0.20891111100Pass0.21141111100Pass0.21391111100Pass0.21641010100Pass0.21891010100Pass0.22131010100Pass0.22381010100Pass0.226399100Pass0.228899100Pass0.231399100Pass0.233799100Pass	0.20891111100Pass0.21141111100Pass0.21391111100Pass0.21641010100Pass0.21891010100Pass0.22131010100Pass0.22381010100Pass0.226399100Pass0.228899100Pass0.231399100Pass	0.20891111100Pass0.21141111100Pass0.21391111100Pass0.21641010100Pass0.21891010100Pass0.22131010100Pass0.22381010100Pass0.226399100Pass0.228899100Pass0.231399100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.241288100Pass0.246186100Pass0.251177100Pass0.253666100Pass0.256166100Pass	0.20891111100Pass0.21141111100Pass0.21391111100Pass0.21641010100Pass0.21891010100Pass0.22131010100Pass0.22381010100Pass0.226399100Pass0.228899100Pass0.231399100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.241288100Pass0.246188100Pass0.253666100Pass0.258566100Pass0.258566100Pass0.261066100Pass0.263566100Pass0.263566100Pass0.268566100Pass	0.20891111100Pass0.21141111100Pass0.21391111100Pass0.21641010100Pass0.21891010100Pass0.22131010100Pass0.22381010100Pass0.226399100Pass0.228899100Pass0.231399100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.241288100Pass0.246188100Pass0.253666100Pass0.253566100Pass0.258566100Pass0.261066100Pass0.263566100Pass0.263566100Pass0.266066100Pass	0.1494 0.1519 0.1544 0.1569 0.1593 0.1618 0.1643 0.1668 0.1693 0.1717 0.1742 0.1767 0.1792 0.1817 0.1841 0.1866 0.1891 0.1916 0.1941 0.1965 0.1990 0.2015 0.2040 0.2065	64 62 58 55 50 47 43 41 38 36 32 28 25 23 20 20 20 20 20 20 19 16 13 12 11	64 62 58 55 50 47 43 41 38 36 32 28 25 23 22 20 20 20 20 20 19 16 13 12 11	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
	0.226399100Pass0.228899100Pass0.231399100Pass0.233799100Pass	0.226399100Pass0.228899100Pass0.231399100Pass0.233799100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.243788100Pass	0.226399100Pass0.228899100Pass0.231399100Pass0.233799100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.243788100Pass0.246188100Pass0.246177100Pass0.251177100Pass0.253666100Pass0.256166100Pass	0.226399100Pass0.228899100Pass0.231399100Pass0.233799100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.243788100Pass0.246188100Pass0.246186100Pass0.251177100Pass0.253666100Pass0.258566100Pass0.261066100Pass0.263566100Pass0.266066100Pass0.268566100Pass	0.226399100Pass0.228899100Pass0.231399100Pass0.233799100Pass0.236299100Pass0.238788100Pass0.241288100Pass0.243788100Pass0.246188100Pass0.246188100Pass0.246166100Pass0.253666100Pass0.253666100Pass0.258566100Pass0.261066100Pass0.263566100Pass0.266066100Pass0.270966100Pass0.273466100Pass0.278466100Pass	0.2139 0.2164 0.2189 0.2213	11 10 10 10	11 10 10 10	100 100 100 100	Pass Pass Pass Pass

0.2908	3	3	100	Pass	
0.2933	3	3	100	Pass	
0.2957	3	3	100	Pass	
0.2982	3	3	100	Pass	
0.3007	3	3	100	Pass	
0.3032	3	3	100	Pass	
0.3057	3	3	100	Pass	
0.3081	3	3	100	Pass	
0.3106	3	3	100	Pass	
0.3131	3	3	100	Pass	
0.3156	3	3	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: TDA B - TESC
Site Name: Phase II - TDA B - TESC
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA B - Phase II - TESC Bypass: No

GroundWater: No

Pervious	Land	Use	acre

Pervious Total	0
Impervious Land Use	acre
DRIVEWAYS FLAT	1.8
Impervious Total	1.8
Basin Total	1.8

Element	Flows	To:		
Surface			Interflow	G

Groundwater

MITIGATED LAND USE

Name : TDA B - Phase II - TESC Bypass: No

GroundWater: No

acre	
0	
acre 1.8	
1.8	
1.8	
	0 <u>acre</u> 1.8 1.8

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:1.8

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:1.8

Flow Frequency Return	Periods for	Predeveloped	. POC #1
Return Period	Flow(cfs)		
2 year	0.764288		
5 year	1.034054		
10 year	1.231321		
25 year	1.502634		
50 year	1.721325		
100 year	1.954705		
Flow Frequency Return	Periods for	Mitigated.	POC #1
Flow Frequency Return Return Period	Periods for <u>Flow(cfs)</u>	Mitigated.	POC #1
		Mitigated.	POC #1
Return Period	Flow(cfs)	Mitigated.	POC #1
<u>Return Period</u> 2 year	<u>Flow(cfs)</u> 0.764288	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year	Flow(cfs) 0.764288 1.034054	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year 10 year	Flow(cfs) 0.764288 1.034054 1.231321	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year 10 year 25 year	Flow(cfs) 0.764288 1.034054 1.231321 1.502634	Mitigated.	POC # 1

Annual	Peaks	for Predevelop	ped and Mitigated.
Year		Predeveloped	
1949		0.783	0.783
1950		0.912	0.912
1951		0.894	0.894
1952		0.717	0.717
1953		0.941	0.941
1954		1.169	1.169
1955		0.892	0.892
1956		0.404	0.404
1957		0.687	0.687
1958		1.728	1.728
1959		0.713	0.713
1960		0.674	0.674
1961		2.251	2.251
1962		0.872	0.872
1963		0.983	0.983
1964		0.535	0.535
1965		0.624	0.624
1966		0.630	0.630
1967		1.532	1.532
1968		0.815	0.815
1969		1.532	1.532
1970		0.607	0.607
1971		0.855	0.855
1972		1.088	1.088
1973		0.896	0.896
1974		1.105	1.105
1975		0.854	0.854
1976		0.596	0.596
1977		0.605	0.605
1978		0.458	0.458
1979		1.005	1.005
1980		0.586	0.586
1981		0.604	0.604
1982		0.611	0.611
1983		0.807	0.807
1984		0.753	0.753
1985		1.085	1.085
1986		0.991	0.991
1987		0.888	0.888
1988		0.713	0.713
1989		0.739	0.739
1990		0.561	0.561
1991		0.733	0.733
1992		0.702	0.702
1993		0.551	0.551
1994		0.601	0.601
1995		0.564	0.564
1996		0.810	0.810
1997		0.864	0.864
1998		0.976	0.976
1999		0.450	0.450
2000		1.528	1.528
2001		0.551	0.551
2002		0.528	0.528

POC #1

2003	0.710	0.710
2004	1.353	1.353
2005	0.634	0.634
2006	0.764	0.764
2007	0.757	0.757
2008	0.598	0.598
2009	0.645	0.645

	Protection Durat	
		Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	2.2507	2.2507
2	1.7276	1.7276
3	1.5320	1.5320
4	1.5318	1.5318
5	1.5284	1.5284
6	1.3526	1.3526
7	1.1692	1.1692
8	1.1046	1.1046
9	1.0878	1.0878
10	1.0851	1.0851
11	1.0052	1.0052
12	0.9912	0.9912
13	0.9833	0.9833
14	0.9759	0.9759
15	0.9410	0.9410
16	0.9117	0.9117
17	0.8962	0.8962
18	0.8939	0.8939
19	0.8922	0.8922
20	0.8881	0.8881
21	0.8718	0.8718
22	0.8639	0.8639
23	0.8546	0.8546
24	0.8535	0.8535
25	0.8151	0.8151
26	0.8097	0.8097
27	0.8069	0.8069
28	0.7827	0.7827
29	0.7645	0.7645
30	0.7572	0.7572
31	0.7530	0.7530
32	0.7387	0.7387
33	0.7333	0.7333
34	0.7172	0.7172
35	0.7134	0.7134
36	0.7128	0.7128
37	0.7105	0.7105
38	0.7021	0.7021
39	0.6871	0.6871
40	0.6739	0.6739
41	0.6446	0.6446
42	0.6343	0.6343
43	0.6301	0.6301
44	0.6244	0.6244
45	0.6108	0.6108

46	0.6067	0.6067
47	0.6045	0.6045
48	0.6036	0.6036
49	0.6009	0.6009
50	0.5977	0.5977
51	0.5956	0.5956
52	0.5865	0.5865
53	0.5645	0.5645
54	0.5612	0.5612
55	0.5509	0.5509
56	0.5508	0.5508
57	0.5354	0.5354
58	0.5281	0.5281
59	0.4579	0.4579
60	0.4504	0.4504
61	0.4039	0.4039

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.3821	1180	1180	100	Pass
0.3957	1045	1045	100	Pass
0.4092	916	916	100	Pass
0.4227	812	812	100	Pass
0.4363	726	726	100	Pass
0.4498	650	650	100	Pass
0.4633	575	575	100	Pass
0.4768	509	509	100	Pass
0.4904	458	458	100	Pass
0.5039	411	411	100	Pass
0.5174	365	365	100	Pass
0.5309	332	332	100	Pass
0.5445	302	302	100	Pass
0.5580	277	277	100	Pass
0.5715	262	262	100	Pass
0.5851	243	243	100	Pass
0.5986	215	215	100	Pass
0.6121	195	195	100	Pass
0.6256	177	177	100	Pass
0.6392	164	164	100	Pass
0.6527	146	146	100	Pass
0.6662	132	132	100	Pass
0.6797	126	126	100	Pass
0.6933	116	116	100	Pass
0.7068	106	106	100	Pass
0.7203	97	97	100	Pass
0.7338	92	92	100	Pass
0.7474	84	84	100	Pass
0.7609	82	82	100	Pass
0.7744	76	76	100	Pass
0.7880	74	74	100	Pass
0.8015	70	70	100	Pass

0.8150 0.8285 0.8421 0.8556 0.8691 0.8826 0.9097 0.9232 0.9368 0.9503 0.9638 0.9773 0.9909 1.0044 1.0179 1.0314 1.0450 1.0585 1.0720 1.0856 1.0991 1.1126 1.1261 1.1261 1.1261 1.1261 1.1261 1.1261 1.1532 1.1667 1.1802 1.1802 1.1938 1.2073 1.2208 1.2344 1.2479 1.2614 1.2749 1.2614 1.2749 1.2614 1.2749 1.2885 1.3020 1.3155 1.3290 1.3426 1.3561 1.3696 1.3831 1.3967	64 62 58 55 50 47 43 41 38 37 28 52 20 20 20 20 20 20 20 20 20 20 20 20 20	64 62 58 55 50 47 43 41 38 37 32 28 23 20 20 20 20 20 20 20 20 20 20 20 20 20	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
1.3155 1.3290 1.3426 1.3561	8 8 8 7	8 8 8 7	100 100 100 100	Pass Pass Pass Pass
1.4508 1.4643 1.4778 1.4914 1.5049 1.5184	6 6 6 6 6	6 6 6 6 6	100 100 100 100 100	Pass Pass Pass Pass Pass Pass
1.5319 1.5455 1.5590 1.5725	5 3 3 3	5 3 3 3	100 100 100 100	Pass Pass Pass Pass

1.5861	3	3	100	Pass	
	-	0			
1.5996	3	3	100	Pass	
1.6131	3	3	100	Pass	
1.6266	3	3	100	Pass	
1.6402	3	3	100	Pass	
1.6537	3	3	100	Pass	
1.6672	3	3	100	Pass	
1.6807	3	3	100	Pass	
1.6943	3	3	100	Pass	
1.7078	3	3	100	Pass	
1.7213	3	3	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: TDA C - TESC
Site Name: Phase I - TDA C - TESC
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 9/7/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

0

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA C - Phase I - TESC Bypass: No

GroundWater: No

Pervious	Land	Use	acre

Pervious Total

Impervious	Land Use	acre
DRIVEWAYS	FLAT	3.11
Impervious	Total	3.11
Basin Total	L	3.11

Element Flows T	'o:	
Surface	Interflow	Gro

Groundwater

MITIGATED LAND USE

Name : TDA C - Phase I - TESC Bypass: No

GroundWater: No

acre
0
<u>acre</u> 3.11
3.11
3.11

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:3.11

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:3.11

Flow Frequency Retur	n Periods for Predeveloped. POC #1
<u>Return Period</u>	Flow(cfs)
2 year	1.320519
5 year	1.786615
10 year	2.127448
25 year	2.596217
50 year	2.974066
100 year	3.377295
Flow Frequency Retur	n Periods for Mitigated. POC #1
Flow Frequency Retur Return Period	rn Periods for Mitigated. POC #1 Flow(cfs)
	2
Return Period	Flow(cfs)
<u>Return Period</u> 2 year	Flow(cfs) 1.320519
<u>Return Period</u> 2 year 5 year	Flow(cfs) 1.320519 1.786615
<u>Return Period</u> 2 year 5 year 10 year	Flow(cfs) 1.320519 1.786615 2.127448
<u>Return Period</u> 2 year 5 year 10 year 25 year	Flow(cfs) 1.320519 1.786615 2.127448 2.596217

Annual	Peaks	for Predevelo	ped and Mitigated.
Year		Predeveloped	
1949		1.352	1.352
1950		1.575	1.575
1951		1.545	1.545
1952		1.239	1.239
1953		1.626	1.626
1954		2.020	2.020
1955		1.542	1.542
1956		0.698	0.698
1957		1.187	1.187
1958		2.985	2.985
1959		1.232	1.232
1960		1.164	1.164
1961 1962		3.889 1.506	3.889 1.506
1963		1.699	1.699
1964		0.925	0.925
1965		1.079	1.079
1966		1.089	1.089
1967		2.647	2.647
1968		1.408	1.408
1969		2.647	2.647
1970		1.048	1.048
1971		1.477	1.477
1972		1.879	1.879
1973		1.548	1.548
1974		1.908	1.908
1975		1.475	1.475
1976		1.029	1.029
1977 1978		1.044 0.791	1.044 0.791
1979		1.737	1.737
1980		1.013	1.013
1981		1.043	1.043
1982		1.055	1.055
1983		1.394	1.394
1984		1.301	1.301
1985		1.875	1.875
1986		1.713	1.713
1987		1.534	1.534
1988		1.233 1.276	1.233 1.276
1989 1990		0.970	0.970
1991		1.267	1.267
1992		1.213	1.213
1993		0.952	0.952
1994		1.038	1.038
1995		0.975	0.975
1996		1.399	1.399
1997		1.493	1.493
1998		1.686	1.686
1999		0.778	0.778
2000		2.641	2.641
2001 2002		0.952 0.912	0.952 0.912
2002		0.712	0.712

POC #1

2003	1.228	1.228
2004	2.337	2.337
2005	1.096	1.096
2006	1.321	1.321
2007	1.308	1.308
2008	1.033	1.033
2009	1.114	1.114

	Protection Durat	
Ranked		Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	3.8887	3.8887
2	2.9848	2.9848
3	2.6470	2.6470
4	2.6466	2.6466
5	2.6408	2.6408
6	2.3370	2.3370
7	2.0201	2.0201
8	1.9084	1.9084
9	1.8794	1.8794
10	1.8748	1.8748
11	1.7367	1.7367
12	1.7126	1.7126
13	1.6989	1.6989
14	1.6862	1.6862
15	1.6258	1.6258
16	1.5752	1.5752
17	1.5485	1.5485
18	1.5445	1.5445
19	1.5415	1.5415
20	1.5345	1.5345
21	1.5063	1.5063
22	1.4927	1.4927
23	1.4766	1.4766
24	1.4747	1.4747
25	1.4083	1.4083
26	1.3991	1.3991
27	1.3941	1.3941
28	1.3523	1.3523
29	1.3208	1.3208
30	1.3083	1.3083
31	1.3011	1.3011
32	1.2763	1.2763
33	1.2670	1.2670
34	1.2391	1.2391
35	1.2325	1.2325
36	1.2316	1.2316
37	1.2276	1.2276
38	1.2131	1.2131
39	1.1871	1.1871
40	1.1643	1.1643
40	1.1138	1.1138
41 42	1.0959	1.0959
42	1.0887	1.0887
43 44	1.0788	1.0788
44 45	1.0553	1.0553
40	T.0000	T.0333

46	1.0482	1.0482
47	1.0445	1.0445
48	1.0429	1.0429
49	1.0383	1.0383
50	1.0327	1.0327
51	1.0291	1.0291
52	1.0133	1.0133
53	0.9753	0.9753
54	0.9697	0.9697
55	0.9519	0.9519
56	0.9517	0.9517
57	0.9251	0.9251
58	0.9125	0.9125
59	0.7911	0.7911
60	0.7783	0.7783
61	0.6978	0.6978

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.6603	1179	1179	100	Pass
0.6836	1045	1045	100	Pass
0.7070	921	921	100	Pass
0.7304	811	811	100	Pass
0.7537	726	726	100	Pass
0.7771	649	649	100	Pass
0.8005	576	576	100	Pass
0.8239	506	506	100	Pass
0.8472	458	458	100	Pass
0.8706	410	410	100	Pass
0.8940	365	365	100	Pass
0.9173	328	328	100	Pass
0.9407	300	300	100	Pass
0.9641	276	276	100	Pass
0.9875	262	262	100	Pass
1.0108	243	243	100	Pass
1.0342	214	214	100	Pass
1.0576	195	195	100	Pass
1.0810	177	177	100	Pass
1.1043	164	164	100	Pass
1.1277	146	146	100	Pass
1.1511	133	133	100	Pass
1.1744	126	126	100	Pass
1.1978	116	116	100	Pass
1.2212	105	105	100	Pass
1.2446	97	97	100	Pass
1.2679	91	91	100	Pass
1.2913	84	84	100	Pass
1.3147	81	81	100	Pass
1.3380	76	76	100	Pass
1.3614	74	74	100	Pass
1.3848	70	70	100	Pass

1.4082 1.4315 1.4549 1.4783 1.5016 1.5250 1.5484 1.5718 1.5951 1.6185 1.6419 1.6652 1.6886 1.7120 1.7354 1.7587 1.7821 1.8055 1.8288 1.8522	64 62 58 55 50 47 43 41 38 36 32 28 25 23 22 20 20 20 20 19 16	64 62 58 55 50 47 43 41 38 36 32 28 25 23 22 20 20 20 20 19 16	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
1.8756 1.8990 1.9223 1.9457 1.9691 1.9925 2.0158 2.0392 2.0626 2.0859 2.1093 2.1327 2.1561 2.1794 2.2028 2.2262 2.2495 2.2729	16 14 12 11 11 11 10 10 10 10 9 9 9 9 9 9 9 9 8 8 8	16 14 12 11 11 11 11 10 10 10 10 9 9 9 9 9 9 9 9	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
2.2963 2.3197 2.3430 2.3664 2.3898 2.4131 2.4365 2.4599 2.4833 2.5066 2.5300 2.5534 2.5767 2.6001 2.6235 2.6469 2.6702 2.6936 2.7170	8 7 7 6 6 6 6 6 6 6 6 6 5 3 3 3 3	8 7 7 6 6 6 6 6 6 6 6 6 5 3 3 3	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass

2.7403	3	3	100	Pass	
2.7637	3	3	100	Pass	
2.7871	3	3	100	Pass	
2.8105	3	3	100	Pass	
2.8338	3	3	100	Pass	
2.8572	3	3	100	Pass	
2.8806	3	3	100	Pass	
2.9040	3	3	100	Pass	
2.9273	3	3	100	Pass	
2.9507	3	3	100	Pass	
2.9741	3	3	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: TDA C - TESC
Site Name: Phase II - TDA C - TESC
Site Address: 17405 Spruce Way
City : Lynnwood
Report Date: 8/3/2017
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.00
Version Date: 2017/07/05
Version : 4.2.13
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : TDA C - Phase II - TESC Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total

Impervious Land Us	e acre
DRIVEWAYS FLAT	3
Impervious Total	3
Basin Total	3

Element	Flows	To:			
Surface			Interflow	,	Groundwater

0

MITIGATED LAND USE

Name : TDA C - Phase II - TESC Bypass: No

GroundWater: No

Pervious Land Use	acre	
Pervious Total	0	
Impervious Land Use DRIVEWAYS FLAT	acre3	
Impervious Total	3	
Basin Total	3	

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:3

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:3

Flow Frequency Return	Periods for Predeveloped.	POC #1
Return Period	Flow(cfs)	
2 year	1.273813	
5 year	1.723424	
10 year	2.052202	
25 year	2.504391	
50 year	2.868876	
100 year	3.257843	
Flow Frequency Return	Periods for Mitigated. POC	: #1
Flow Frequency Return Return Period	Periods for Mitigated. POC Flow(cfs)	: #1
	-	: #1
Return Period	Flow(cfs)	: #1
<u>Return Period</u> 2 year	Flow(cfs) 1.273813	: #1
<u>Return Period</u> 2 year 5 year	Flow(cfs) 1.273813 1.723424	: #1
<u>Return Period</u> 2 year 5 year 10 year	<u>Flow(cfs)</u> 1.273813 1.723424 2.052202	: #1
<u>Return Period</u> 2 year 5 year 10 year 25 year	Flow(cfs) 1.273813 1.723424 2.052202 2.504391	: #1

Annual	Peaks for Predevelop	ed and Mitigated.
Year	Predeveloped	
1949	1.304	1.304
1950	1.519	1.519
1951	1.490	1.490
1952	1.195	1.195
1953	1.568	1.568
1954	1.949	1.949
1955	1.487	1.487
1956	0.673	0.673
1957	1.145	1.145
1958	2.879	2.879
1959	1.188	1.188
1960	1.123	1.123
1961	3.751	3.751
1962	1.453	1.453
1963	1.639	1.639
1964	0.892	0.892
1965	1.041	1.041
1966	1.050	1.050
1967	2.553	2.553
1968	1.358	1.358
1969	2.553	2.553
1970	1.011	1.011
1971	1.424	1.424
1972	1.813	1.813
1973	1.494	1.494
1974 1975	1.841	1.841
1975	1.423 0.993	1.423 0.993
1970	1.008	1.008
1978	0.763	0.763
1979	1.675	1.675
1980	0.977	0.977
1981	1.006	1.006
1982	1.018	1.018
1983	1.345	1.345
1984	1.255	1.255
1985	1.809	1.809
1986	1.652	1.652
1987	1.480	1.480
1988	1.189	1.189
1989	1.231	1.231
1990	0.935	0.935
1991	1.222	1.222
1992	1.170	1.170
1993	0.918	0.918
1994	1.002	1.002
1995	0.941	0.941
1996	1.350	1.350
1997	1.440	1.440
1998	1.627	1.627
1999	0.751	0.751
2000	2.547	2.547
2001	0.918	0.918
2002	0.880	0.880

POC #1

2003	1.184	1.184
2004	2.254	2.254
2005	1.057	1.057
2006	1.274	1.274
2007	1.262	1.262
2008	0.996	0.996
2009	1.074	1.074

	Protection Durat	
Ranked	Annual Peaks for	Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	3.7511	3.7511
2	2.8793	2.8793
3	2.5534	2.5534
4	2.5530	
		2.5530
5	2.5474	2.5474
6	2.2543	2.2543
7	1.9487	1.9487
8	1.8409	1.8409
9	1.8129	1.8129
10	1.8085	1.8085
11	1.6753	1.6753
12	1.6521	1.6521
13	1.6388	1.6388
14	1.6265	1.6265
15	1.5683	1.5683
16	1.5195	1.5195
17	1.4937	1.4937
18	1.4899	1.4899
19	1.4870	1.4870
20	1.4802	1.4802
21	1.4530	1.4530
22	1.4399	1.4399
23	1.4243	1.4243
24	1.4226	1.4226
25	1.3585	1.3585
26		
	1.3496	1.3496
27	1.3448	1.3448
28	1.3044	1.3044
29	1.2741	1.2741
30	1.2620	1.2620
31	1.2551	1.2551
32	1.2312	1.2312
33	1.2222	1.2222
34	1.1953	1.1953
35	1.1889	1.1889
36	1.1880	1.1880
37	1.1841	1.1841
38	1.1702	1.1702
39	1.1451	1.1451
40	1.1232	1.1232
41	1.0744	1.0744
42	1.0572	1.0572
43	1.0502	1.0502
44	1.0407	1.0407
45	1.0180	1.0180

46	1.0111	1.0111
47	1.0075	1.0075
48	1.0060	1.0060
49	1.0016	1.0016
50	0.9962	0.9962
51	0.9927	0.9927
52	0.9774	0.9774
53	0.9408	0.9408
54	0.9354	0.9354
55	0.9182	0.9182
56	0.9180	0.9180
57	0.8923	0.8923
58	0.8802	0.8802
59	0.7632	0.7632
60	0.7507	0.7507
61	0.6731	0.6731

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.6369	1184	1184	100	Pass
0.6595	1044	1044	100	Pass
0.6820	921	921	100	Pass
0.7045	807	807	100	Pass
0.7271	726	726	100	Pass
0.7496	648	648	100	Pass
0.7722	574	574	100	Pass
0.7947	508	508	100	Pass
0.8173	457	457	100	Pass
0.8398	411	411	100	Pass
0.8624	365	365	100	Pass
0.8849	328	328	100	Pass
0.9074	300	300	100	Pass
0.9300	277	277	100	Pass
0.9525	262	262	100	Pass
0.9751	243	243	100	Pass
0.9976	214	214	100	Pass
1.0202	195	195	100	Pass
1.0427	177	177	100	Pass
1.0653	164	164	100	Pass
1.0878	145	145	100	Pass
1.1104	132	132	100	Pass
1.1329	126	126	100	Pass
1.1554	116	116	100	Pass
1.1780	105	105	100	Pass
1.2005	97	97	100	Pass
1.2231	91	91	100	Pass
1.2456	84	84	100	Pass
1.2682	81	81	100	Pass
1.2907	76	76	100	Pass
1.3133	74	74	100	Pass
1.3358	70	70	100	Pass

1.3584 1.3809 1.4034 1.4260 1.4485 1.4711 1.4936 1.5162 1.5387 1.5613 1.5838 1.6063 1.6289 1.6514 1.6740 1.6965 1.7191 1.7416 1.7642	64 62 58 55 47 43 41 38 36 32 28 25 23 22 20 20 20 20 19	64 62 58 55 50 47 43 41 38 36 32 28 25 23 22 20 20 20 20 19	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
1.7867 1.8093 1.8318 1.8543 1.8769 1.8994 1.9220 1.9445 1.9671 1.9896 2.0122 2.0347 2.0573 2.0798 2.1023 2.1249 2.1474 2.1700 2.1925 2.2151	16 13 12 11 11 11 11 10 10 10 10 9 9 9 9 9 9 9 9	16 13 12 11 11 11 11 10 10 10 10 9 9 9 9 9 9 9 9	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
2.2376 2.2602 2.2827 2.3052 2.3278 2.3503 2.3729 2.3954 2.4180 2.4405 2.4631 2.4856 2.5082 2.5307 2.5532 2.5758 2.5983 2.6209	8 7 6 6 6 6 6 6 6 6 6 6 4 3 3 3	8 7 7 6 6 6 6 6 6 6 6 6 6 4 3 3 3	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass

2.6434	3	3	100	Pass	
2.6660	3	3	100	Pass	
2.6885	3	3	100	Pass	
2.7111	3	3	100	Pass	
2.7336	3	3	100	Pass	
2.7562	3	3	100	Pass	
2.7787	3	3	100	Pass	
2.8012	3	3	100	Pass	
2.8238	3	3	100	Pass	
2.8463	3	3	100	Pass	
2.8689	3	3	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

Operation and Maintenance Manual

Source Controls

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
Storage Area	Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.
	Debris and Sediment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter.	All sediment and debris removed from storage area.
		(Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)	
	Joints Between Tank/Pipe Section	Any openings or voids allowing material to be transported into facility. (Will require engineering analysis to determine structural stability).	All joint between tank/pipe sections are sealed.
	Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.
	Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determines that the vault is not structurally sound.	Vault replaced or repaired to design specifications and is structurally sound.
		Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence of soil particles entering the vault through the walls.	No cracks more than 1/4-inch wide at the joint of the inlet/outlet pipe.
Manhole	Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.
Catch Basins	See "Catch Basins" (No. 5)	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 3 - Closed Detention Systems (Tanks/Vaults)

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
	Structural Damage	Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
		Connections to outlet pipe are not watertight and show signs of rust.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
		Any holesother than designed holesin the structure.	Structure has no holes other than designed holes.
Cleanout Gate	Damaged or Missing	Cleanout gate is not watertight or is missing.	Gate is watertight and works as designed.
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
General	Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
		Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

No. 6 – Debris Barriers (e.g., Trash Racks)

Maintenance Components	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
Metal	Damaged/ Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
		Bars are missing or entire barrier missing.	Bars in place according to design.
		Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
	Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe	Barrier firmly attached to pipe

No. 7 – Energy Dissipaters

Maintenance Components	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
External:	1	T	
Rock Pad	Missing or Moved Rock	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil.	Rock pad replaced to design standards.
	Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.
Dispersion Trench	Pipe Plugged with Sediment	Accumulated sediment that exceeds 20% of the design depth.	Pipe cleaned/flushed so that it matches design.
	Not Discharging Water Properly	Visual evidence of water discharging at concentrated points along trench (normal condition is a "sheet flow" of water along trench). Intent is to prevent erosion damage.	Trench redesigned or rebuilt to standards.
	Perforations Plugged.	Over 1/2 of perforations in pipe are plugged with debris and sediment.	Perforated pipe cleaned or replaced.
	Water Flows Out Top of "Distributor" Catch Basin.	Maintenance person observes or receives credible report of water flowing out during any storm less than the design storm or its causing or appears likely to cause damage.	Facility rebuilt or redesigned to standards.
	Receiving Area Over- Saturated	Water in receiving area is causing or has potential of causing landslide problems.	No danger of landslides.
Internal:			
Manhole/Chamber	Worn or Damaged Post, Baffles, Side of Chamber	Structure dissipating flow deteriorates to 1/2 of original size or any concentrated worn spot exceeding one square foot which would make structure unsound.	Structure replaced to design standards.
	Other Defects	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Below Ground Vault	Sediment Accumulation on Media.	Sediment depth exceeds 0.25-inches.	No sediment deposits which would impede permeability of the compost media.
	Sediment Accumulation in Vault	Sediment depth exceeds 6-inches in first chamber.	No sediment deposits in vault bottom of first chamber.
	Trash/Debris Accumulation	Trash and debris accumulated on compost filter bed.	Trash and debris removed from the compost filter bed.
	Sediment in Drain Pipes/Clean- Outs	When drain pipes, clean-outs, become full with sediment and/or debris.	Sediment and debris removed.
	Damaged Pipes	Any part of the pipes that are crushed or damaged due to corrosion and/or settlement.	Pipe repaired and/or replaced.
	Access Cover Damaged/Not Working	Cover cannot be opened; one person cannot open the cover using normal lifting pressure, corrosion/deformation of cover.	Cover repaired to proper working specifications or replaced.
	Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch or evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determine that the vault is not structurally sound.	Vault replaced or repairs made so that vault meets design specifications and is structurally sound.
		Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or evidence of soil particles entering through the cracks.	Vault repaired so that no cracks exist wider than 1/4-inch at the joint of the inlet/outlet pipe.
	Baffles	Baffles corroding, cracking warping, and/or showing signs of failure as determined by maintenance/inspection person.	Baffles repaired or replaced to specifications.
	Access Ladder Damaged	Ladder is corroded or deteriorated, not functioning properly, not securely attached to structure wall, missing rungs, cracks, and misaligned.	Ladder replaced or repaired and meets specifications, and is safe to use as determined by inspection personnel.
Below Ground Cartridge Type	Media	Drawdown of water through the media takes longer than 1 hour, and/or overflow occurs frequently.	Media cartridges replaced.
	Short Circuiting	Flows do not properly enter filter cartridges.	Filter cartridges replaced.

No. 15 – Manufactured Media Filters)

Note that the inspection and routine maintenance frequencies listed below are recommended by Ecology. They do not supersede or replace the municipal stormwater permit requirement municipal stormwater treatment and flow control BMPs/facilities."

Maintenance Component	Recommended Frequency a		Condition when Maintenance is Needed	Action Needed
	Inspection	Routine Maintenance	(Standards)	(Procedures)
Facility Footprint				
Earthen side slopes and berms	B, S		Erosion (gullies/ rills) greater than 2 inches deep around inlets, outlet, and alongside slopes	 Eliminate cause of erosion and stabilize damaged area (regrade, rock, vegetati For deep channels or cuts (over 3 inches in ponding depth), temporary erosion permanent repairs can be made. Properly designed, constructed and established facilities with appropriate flow vexcept perhaps in extreme events. If erosion problems persist, the following shou contributing areas and bioretention facility sizing; (2) flow velocities and gradients and erosion protection strategies at the facility inlet.
	A		Erosion of sides causes slope to become a hazard	Take actions to eliminate the hazard and stabilize slopes
	A, S		Settlement greater than 3 inches (relative to undisturbed sections of berm)	Restore to design height
	A, S		Downstream face of berm wet, seeps or leaks evident	Plug any holes and compact berm (may require consultation with engineer, partic
	A		Any evidence of rodent holes or water piping in berm	 Eradicate rodents (see "Pest control") Fill holes and compact (may require consultation with engineer, particularly for
Concrete sidewalls	A		Cracks or failure of concrete sidewalls	Repair/ seal cracksReplace if repair is insufficient
Rockery sidewalls	A		Rockery side walls are insecure	Stabilize rockery sidewalls (may require consultation with engineer, particularly fo
Facility area		All maintenance visits (at least biannually)	Trash and debris present	Clean out trash and debris
Facility bottom area	A, S		Accumulated sediment to extent that infiltration rate is reduced (see "Ponded water") or surface storage capacity significantly impacted	 Remove excess sediment Replace any vegetation damaged or destroyed by sediment accumulation and Mulch newly planted vegetation Identify and control the sediment source (if feasible) If accumulated sediment is recurrent, consider adding presettlement or installin
		During/after fall leaf drop	Accumulated leaves in facility	Remove leaves if there is a risk to clogging outlet structure or water flow is imped
Low permeability check dams and weirs	A, S		Sediment, vegetation, or debris accumulated at or blocking (or having the potential to block) check dam, flow control weir or orifice	Clear the blockage
	A, S		Erosion and/or undercutting present	Repair and take preventative measures to prevent future erosion and/or undercut
	A		Grade board or top of weir damaged or not level	Restore to level position

a Frequency: A = Annually; B = Biannually (twice per year); M = Monthly; W = At least one visit should occur during the wet season (for debris/clog related maintenance, this inspection/maintenance visit should occur in the early fall, after deciduous trees have lost their leaves); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

IPM - Integrated Pest Management

ents for inspection frequency required of
ation, erosion control matting) n control measures should be put in place until
v velocities should not have erosion problems buld be reassessed: (1) flow volumes from ts within the facility; and (3) flow dissipation
icularly for larger berms)
r larger berms)
for walls 4 feet or greater in height)
d removal
ing berms to create a forebay at the inlet
eded
utting

Maintenance	Recommended Frequency a		Condition when Maintenance is Needed	Action Needed
Component	Inspection	Routine Maintenance	(Standards)	(Procedures)
Facility Footprint (co	ont'd)			
Ponded water	B, S		Excessive ponding water: Water overflows during storms smaller than the design event or ponded water remains in the basin 48 hours or longer after the end of a storm.	 Determine cause and resolve in the following order: 1) Confirm leaf or debris buildup in the bottom of the facility is not impeding infiltra 2) Ensure that underdrain (if present) is not clogged. If necessary, clear underdrai 3) Check for other water inputs (e.g., groundwater, illicit connections). 4) Verify that the facility is sized appropriately for the contributing area. Confirm the solve the problem, the bioretention soil is likely clogged by see become overly compacted. Dig a small hole to observe soil profile and identify condetermine the soil depth to be removed or otherwise rehabilitated (e.g., tilled). Cordinates and the soil depth to be removed or otherwise rehabilitated (e.g., tilled).
Bioretention soil media	As needed		Bioretention soil media protection is needed when performing maintenance requiring entrance into the facility footprint	 Minimize all loading in the facility footprint (foot traffic and other loads) to the depoint bioretention soils. Never drive equipment or apply heavy loads in facility footprint. Because the risk of compaction is higher during saturated soil conditions, any ty should be minimized during wet conditions. Consider measures to distribute loading if heavy foot traffic is required or equipmer example, boards may be placed across soil to distribute loads and minimize comp If compaction occurs, soil must be loosened or otherwise rehabilitated to original
Inlets/Outlets/Pipes				
Splash block inlet	A		Water is not being directed properly to the facility and away from the inlet structure	Reconfigure/ repair blocks to direct water to facility and away from structure
Curb cut inlet/outlet	M during the wet season and before severe storm is forecasted	Weekly during fall leaf drop	Accumulated leaves at curb cuts	Clear leaves (particularly important for key inlets and low points along long, linear
Pipe inlet/outlet	A		Pipe is damaged	Repair/ replace
	W		Pipe is clogged	Remove roots or debris
	A, S		Sediment, debris, trash, or mulch reducing capacity of inlet/outlet	 Clear the blockage Identify the source of the blockage and take actions to prevent future blockages
		Weekly during fall leaf drop	Accumulated leaves at inlets/outlets	Clear leaves (particularly important for key inlets and low points along long, linear
		A	Maintain access for inspections	 Clear vegetation (transplant vegetation when possible) within 1 foot of inlets and Consultation with a landscape architect is recommended for removal, transplant
Erosion control at inlet	A		Concentrated flows are causing erosion	Maintain a cover of rock or cobbles or other erosion protection measure (e.g., mat concentrated water enters the facility (e.g., a pipe, curb cut or swale)

tration. If necessary, remove leaf litter/debris. rain.
that the contributing area has not increas ed. ediment accumulation at the surface or has compaction depth or clogging front to help consultation with an engineer is recommended.
degree feasible in order to prevent compaction
type of loading in the cell (including foot traffic)
oment must be placed in facility. As an npaction. nal design state.
ar facilities)
es
ar facilities)
nd outlets, maintain access pathways ant, or substitution of plants
atting) to protect the ground where

Maintenance Component	Recommended Frequency a		Condition when Maintenance is Needed	Action Needed
	Inspection	Routine Maintenance	(Standards)	(Procedures)
Inlets/Outlets/Pipes (conťd)			
Trash rack	S		Trash or other debris present on trash rack	Remove/dispose
	A		Bar screen damaged or missing	Repair/replace
Overflow	A, S		Capacity reduced by sediment or debris	Remove sediment or debris/dispose
Underdrain pipe	Clean pipe as needed	Clean orifice at least biannually (may need more frequent cleaning during wet season)	 Plant roots, sediment or debris reducing capacity of underdrain Prolonged surface ponding (see "Ponded water") 	 Jet clean or rotary cut debris/roots from underdrain(s) If underdrains are equipped with a flow restrictor (e.g., orifice) to attenuate flows,
Vegetation	•			
Facility bottom area and upland slope vegetation	Fall and Spring		Vegetation survival rate falls below 75% within first two years of establishment (unless project O&M manual or record drawing stipulates more or less than 75% survival rate).	 Determine cause of poor vegetation growth and correct condition Replant as necessary to obtain 75% survival rate or greater. Refer to original plat species list for appropriate plant replacements (See Appendix 3 - Bioretention Plan Manual for Puget Sound). Confirm that plant selection is appropriate for site growing conditions Consultation with a landscape architect is recommended for removal, transplant,
Vegetation (general)	As needed		Presence of diseased plants and plant material	 Remove any diseased plants or plant parts and dispose of in an approved location spreading the disease to other plants Disinfect gardening tools after pruning to prevent the spread of disease See Pacific Northwest Plant Disease Management Handbook for information on resources Replant as necessary according to recommendations provided for "facility bottom
Trees and shrubs		All pruning seasons (timing varies by species)	Pruning as needed	 Prune trees and shrubs in a manner appropriate for each species. Pruning shoul familiar with proper pruning techniques All pruning of mature trees should be performed by or under the direct guidance
	A		Large trees and shrubs interfere with operation of the facility or access for maintenance	 Prune trees and shrubs using most current ANSI A300 standards and ISA BMPs Remove trees and shrubs, if necessary.
	Fall and Spring		Standing dead vegetation is present	 Remove standing dead vegetation Replace dead vegetation within 30 days of reported dead and dying plants (as preseason) If vegetation replacement is not feasible within 30 days, and absence of vegetatit temporary erosion control measures should be put in place immediately. Determine cause of dead vegetation and address issue, if possible If specific plants have a high mortality rate, assess the cause and replace with a landscape architect is recommended.
	Fall and Spring		Planting beneath mature trees	 When working around and below mature trees, follow the most current ANSI A30 practicable (e.g., take care to minimize any damage to tree roots and avoid compa Planting of small shrubs or groundcovers beneath mature trees may be desirable mainly plants that come as bulbs, bare root or in 4-inch pots; plants should be in no larger than 1-gall

flows, the orifice must be cleaned regularly.
al planting plan, or approved jurisdictional Plant List, in the LID Technical Guidance
plant, or substitution of plants
ocation (e.g., commercial landfill) to avoid risk of
on on disease recognition and for additional
pottom area and upland slope vegetation".
should be performed by landscape professionals
ance of an ISA certified arborist
BMPs.
(as practical depending on weather/planting
getation may result in erosion problems,
vith appropriate species. Consultation with a
SI A300 standards and ISA BMPs to the extent ompaction of soil). sirable in some cases; such plantings should use
1-gallon containers.

Maintenance	Recomme	nded Frequency a	Condition when Maintenance is Needed	Action Needed
Component	Inspection	Routine Maintenance	(Standards)	(Procedures)
Vegetation (cont'd)				
Trees and shrubs (cont'd)	Fall and Spring		Planting beneath mature trees	 When working around and below mature trees, follow the most current ANSI A3 practicable (e.g., take care to minimize any damage to tree roots and avoid compa Planting of small shrubs or groundcovers beneath mature trees may be desirable mainly plants that come as bulbs, bare root or in 4-inch pots; plants should be in mainly plants that come as bulbs.
	Fall and Spring		Presence of or need for stakes and guys (tree growth, maturation, and support needs)	 Verify location of facility liners and underdrain (if any) prior to stake installation in damage Monitor tree support systems: Repair and adjust as needed to provide support a Remove tree supports (stakes, guys, etc.) after one growing season or maximut Backfill stake holes after removal.
Trees and shrubs adjacent to vehicle travel areas (or areas where visibility needs to be maintained)	A		Vegetation causes some visibility (line of sight) or driver safety issues	 Maintain appropriate height for sight clearance When continued, regular pruning (more than one time/ growing season) is require clearance along a walk or drive, consider relocating the plant to a more appropriate Remove or transplant if continual safety hazard Consultation with a landscape architect is recommended for removal, transplant
Flowering plants		A	Dead or spent flowers present	Remove spent flowers (deadhead)
Perennials		Fall	Spent plants	Cut back dying or dead and fallen foliage and stems
Emergent vegetation		Spring	Vegetation compromises conveyance	Hand rake sedges and rushes with a small rake or fingers to remove dead foliage earlier only if the foliage is blocking water flow (sedges and rushes do not responded)
Ornamental grasses (perennial)		Winter and Spring	Dead material from previous year's growing cycle or dead collapsed foliage	 Leave dry foliage for winter interest Hand rake with a small rake or fingers to remove dead foliage back to within sevenerges in spring or earlier if the foliage collapses and is blocking water flow
Ornamental grasses (evergreen)		Fall and Spring	Dead growth present in spring	 Hand rake with a small rake or fingers to remove dead growth before new growt Clean, rake, and comb grasses when they become too tall Cut back to ground or thin every 2-3 years as needed
Noxious weeds		M (March – October, preceding seed dispersal)	Listed noxious vegetation is present (refer to current county noxious weed list)	 By law, class A & B noxious weeds must be removed, bagged and disposed as Reasonable attempts must be made to remove and dispose of class C noxious It is strongly encouraged that herbicides and pesticides not be used in order to pesticides may be prohibited in some jurisdictions Apply mulch after weed removal (see "Mulch")
	1		Monthly, W. At least one visit should ensur during the wet	 t cases (for debric (also related maintenance, this inspection (maintenance visit ab

a Frequency: A = Annually; B = Biannually (twice per year); M = Monthly; W = At least one visit should occur during the wet season (for debris/clog related maintenance, this inspection/maintenance visit should occur in the early fall, after deciduous trees have lost their leaves); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

IPM - Integrated Pest Management

A300 standards and ISA BMPs to the extent apaction of soil). able in some cases; such plantings should use a no larger than 1-gallon containers.
n in order to prevent liner puncture or pipe
rt and prevent damage to tree. hum of 1 year.
quired to maintain visual sight lines for safety or iate location.
ant, or substitution of plants
iage before new growth emerges in spring or nd well to pruning)
several inches from the soil before new growth
wth emerges in spring
as garbage immediately us weeds o protect water quality; use of herbicides and

Maintenance	Recomme	ended Frequency a	Condition when Maintenance is Needed (Standards)	Action Needed (Procedures)
Component	Inspection	Routine Maintenance		
Vegetation (cont'd)				
Weeds		M (March – October, preceding seed dispersal)	Weeds are present	 Remove weeds with their roots manually with pincer-type weeding tools, flame vappropriate Follow IPM protocols for weed management (see "Additional Maintenance Reso protocols)
Excessive vegetation		Once in early to mid- May and once in early- to mid- September	Low-lying vegetation growing beyond facility edge onto sidewalks, paths, or street edge poses pedestrian safety hazard or may clog adjacent permeable pavement surfaces due to associated leaf litter, mulch, and soil	 Edge or trim groundcovers and shrubs at facility edge Avoid mechanical blade-type edger and do not use edger or trimmer within 2 fee While some clippings can be left in the facility to replenish organic material in the soil clogging
	As needed		Excessive vegetation density inhibits stormwater flow beyond design ponding or becomes a hazard for pedestrian and vehicular circulation and safety	 Determine whether pruning or other routine maintenance is adequate to maintai Determine if planting type should be replaced to avoid ongoing maintenance iss growing conditions should be transplanted to a location where it will not impact flo Remove plants that are weak, broken or not true to form; replace in-kind Thin grass or plants impacting facility function without leaving visual holes or ba Consultation with a landscape architect is recommended for removal, transplant
	As needed		Vegetation blocking curb cuts, causing excessive sediment buildup and flow bypass	Remove vegetation and sediment buildup
Mulch	1			
Mulch		Following weeding	Bare spots (without mulch cover) are present or mulch depth less than 2 inches	 Supplement mulch with hand tools to a depth of 2 to 3 inches Replenish mulch per O&M manual. Often coarse compost is used in the bottom used on side slopes and rim (above typical water levels) Keep all mulch away from woody stems
Watering		1		
Irrigation system (if any)		Based on manufacturer's instructions	Irrigation system present	Follow manufacturer's instructions for O&M
	A		Sprinklers or drip irrigation not directed/located to properly water plants	Redirect sprinklers or move drip irrigation to desired areas
Summer watering (first year)		Once every 1-2 weeks or as needed during prolonged dry periods	Trees, shrubs and groundcovers in first year of establishment period	 10 to 15 gallons per tree 3 to 5 gallons per shrub 2 gallons water per square foot for groundcover areas Water deeply, but infrequently, so that the top 6 to 12 inches of the root zone is Use soaker hoses or spot water with a shower type wand when irrigation system Pulse water to enhance soil absorption, when feasible Pre-moisten soil to break surface tension of dry or hydrophobic soils/mulch, follor method, each pass increases soil absorption and allows more water to infiltrate p Add a tree bag or slow-release watering device (e.g., bucket with a perforated b when irrigation system is not present

a Frequency: A = Annually; B = Biannually (twice per year); M = Monthly; W = At least one visit should occur during the wet season (for debris/clog related maintenance, this inspection/maintenance visit should occur in the early fall, after deciduous trees have lost their leaves); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

IPM – Integrated Pest Management

Maintenance	Recommended Frequency a		Condition when Maintenance is Needed	Action Needed (Procedures)	
Component	Inspection Routine Maintenance		(Standards)		
Watering (cont'd)					
Summer watering (second and third years)		Once every 2-4 weeks or as needed during prolonged dry periods	Trees, shrubs and groundcovers in second or third year of establishment period	 10 to 15 gallons per tree 3 to 5 gallons per shrub 2 gallons water per square foot for groundcover areas Water deeply, but infrequently, so that the top 6 to 12 inches of the root zone is Use soaker hoses or spot water with a shower type wand when irrigation system Pulse water to enhance soil absorption, when feasible Pre-moisten soil to break surface tension of dry or hydrophobic soils/mulch, fol method , each pass increases soil absorption and allows more water to infiltrate pass 	
Summer watering (after establishment)		As needed	Established vegetation (after 3 years)	 Plants are typically selected to be drought tolerant and not require regular wate take up to 5 years of watering to become fully established Identify trigger mechanisms for drought-stress (e.g., leaf wilt, leaf senescence, immediately after initial signs of stress appear Water during drought conditions or more often if necessary to maintain plant conditions 	
Pest Control					
Mosquitoes	B, S		Standing water remains for more than 3 days after the end of a storm	 Identify the cause of the standing water and take appropriate actions to address. To facilitate maintenance, manually remove standing water and direct to the stopollution-generating surfaces) or sanitary sewer system (if runoff is from pollution from sanitary sewer authority. Use of pesticides or <i>Bacillus thuringiensis israelensis</i> (Bti)may be considered of the standing water cause. If overflow to a surface water will occur within 2 weeks the Aquatic Mosquito Control NPDES General Permit. 	
Nuisance animals	As needed		Nuisance animals causing erosion, damaging plants, or depositing large volumes of feces	 Reduce site conditions that attract nuisance species where possible (e.g., plant areas for geese, etc.) Place predator decoys Follow IPM protocols for specific nuisance animal issues (see "Additional Maint information on IPM protocols) Remove pet waste regularly For public and right-of-way sites consider adding garbage cans with dog bags f 	
Insect pests	Every site visit associated with vegetation management		Signs of pests, such as wilting leaves, chewed leaves and bark, spotting or other indicators	Reduce hiding places for pests by removing diseased and dead plants For infestations, follow IPM protocols (see "Additional Maintenance Resources" protocols) season (for debris/clog related maintenance, this inspection/maintenance visit si	

a Frequency: A = Annually; B = Biannually (twice per year); M = Monthly; W = At least one visit should occur during the wet season (for debris/clog related maintenance, this inspection/maintenance visit should occur in the early fall, after deciduous trees have lost their leaves); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

IPM - Integrated Pest Management

is moist em is not present
ollowed by several more passes. With this prior to runoff
tering after establishment; however, trees may
e, etc.) of different species and water
cover
ess the problem (see "Ponded water") storm drainage system (if runoff is from non n-generating surfaces) after getting approval
torm drainage system (if runoff is from non
torm drainage system (if runoff is from non n-generating surfaces) after getting approval only as a temporary measure while addressing
atorm drainage system (if runoff is from non n-generating surfaces) after getting approval only as a temporary measure while addressing after pesticide use, apply for coverage under
atorm drainage system (if runoff is from non n-generating surfaces) after getting approval only as a temporary measure while addressing a fter pesticide use, apply for coverage under nt shrubs and tall grasses to reduce open
atorm drainage system (if runoff is from non n-generating surfaces) after getting approval only as a temporary measure while addressing as after pesticide use, apply for coverage under nt shrubs and tall grasses to reduce open ntenance Resources" section for more

No. 22 - Maintenance Standards and Procedures for Permeable Pavement.

Note that the inspection and routine maintenance frequencies listed below are recommended by Ecology. They do not supersede or replace the municipal stormwater permit requirements for inspection frequency required of municipal stormwater permittees for "stormwater treatment and flow control BMPs/facilities."

	Recommen	ded Frequency a	Opendition when Maintenance is Norda	Action Needed	
Component	Inspection Routine Maintenance		 Condition when Maintenance is Needed (Standards) 	Action Needed (Procedures)	
Surface/Wearing Co	ourse				
Permeable Pavements, all	A, S		Runoff from adjacent pervious areas deposits soil, mulch or sediment on paving	 Clean deposited soil or other materials from permeable pavement or other adja Check if surface elevation of planted area is too high, or slopes towards pavem protect permeable pavement by covering with temporary plastic and secure cove Mulch and/or plant all exposed soils that may erode to pavement surface 	
Porous asphalt or pervious concrete		A or B	None (routine maintenance)	 Clean surface debris from pavement surface using one or a combination of the for Remove sediment, debris, trash, vegetation, and other debris deposited onto p for removing leaves) Vacuum/sweep permeable paving installation using: Walk-behind vacuum (sidewalks) High efficiency regenerative air or vacuum sweeper (roadways, parking lots) ShopVac or brush brooms (small areas) Hand held pressure washer or power washer with rotating brushes Follow equipment manufacturer guidelines for when equipment is most effective for some equipment. 	
	Ab		Surface is clogged: Ponding on surface or water flows off the permeable pavement surface during a rain event (does not infiltrate)	 Review the overall performance of the facility (note that small clogged areas m Test the surface infiltration rate using ASTM C1701 as a corrective maintenance up to 2,500 square feet. Perform an additional test for each additional 2,500 square feet, add one test for every 10,000 square feet. If the results indicate an infiltration rate of 10 inches per hour or less, then perfor permeability. To clean clogged pavement surfaces, use one or combination of th Combined pressure wash and vacuum system calibrated to not dislodge wearine. Hand held pressure washer or power washer with rotating brushes Pure vacuum sweepers Note: If the annual/biannual routine maintenance standard to clean the pavement the list above, corrective maintenance may not be needed. 	
	A		Sediment present at the surface of the pavement	 Assess the overall performance of the pavement system during a rain event. If ponding then see above. Determine source of sediment loading and evaluate whether or not the source cannot be addressed, consider increasing frequency of routine cleaning (e.g., twice) 	
	Summer		Moss growth inhibits infiltration or poses slip safety hazard	 Sidewalks: Use a stiff broom to remove moss in the summer when it is dry Parking lots and roadways: Pressure wash, vacuum sweep, or use a combinat pavement surface. May require stiff broom or power brush in areas of heavy most pavement surface. 	
	A		Major cracks or trip hazards and concrete spalling and raveling	 Fill potholes or small cracks with patching mixes Large cracks and settlement may require cutting and replacing the pavement s Replacing porous asphalt with conventional asphalt is acceptable if it is a small p not impact the overall facility function. Take appropriate precautions during pavement repair and replacement efforts materials 	

a Frequency: A= Annually; B= Biannually (twice per year); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

Inspection should occur during storm event.

djacent surfacing ement, and can be regraded (prior to regrading, vering in place)
following methods:
pavement (rakes and leaf blowers can be used
e for cleaning permeable pavement. Dry
may not reduce overall performance of facility) nce indicator. Perform one test per installation, uare feet up to 15,000 square feet total. Above
rform corrective maintenance to restore the following methods: aring course aggregate.
ent surface is conducted using equipment from
If water runs off the pavement and/or there is
e can be reduced/eliminated. If the source wice per year instead of once per year).
ation of the two for cleaning moss from oss.
t section. Replace in-kind where feasible. percentage of the total facility area and does s to prevent clogging of adjacent porous

	Recommended Frequency a		Condition when Maintenance is Nacita I	Action Needed (Procedures)	
Component	Inspection Routine Maintenance		 Condition when Maintenance is Needed (Standards) 		
Surface/Wearing Cou	ırse (cont'd)				
Interlocking concrete paver blocks and aggregate pavers		A or B	None (routine maintenance)	 Clean pavement surface using one or a combination of the following methods: Remove sediment, debris, trash, vegetation, and other debris deposited onto pa for removing leaves) Vacuum/sweep permeable paving installation using: Walk-behind vacuum (sidewalks) High efficiency regenerative air or vacuum sweeper (roadways, parking lots) ShopVac or brush brooms (small areas) Note: Vacuum settings may have to be adjusted to prevent excess uptake of ag Vacuum surface openings in dry weather to remove dry, encrusted sediment. 	
	Аь		Surface is clogged: Ponding on surface or water flows off the permeable pavement surface during a rain event (does not infiltrate)]	 Review the overall performance of the facility (note that small clogged areas mathematical end of the surface infiltration rate using ASTM C1701 as a corrective maintenance up to 2,500 square feet. Perform an additional test for each additional 2,500 square 15,000 square feet, add one test for every 10,000 square feet. If the results indicate an infiltration rate of 10 inches per hour or less, then perfor permeability. Clogging is usually an issue in the upper 2 to 3 centimeters of aggregate. Remother and fines, and/or vegetation from openings and joints between the pavers by mec (e.g., pure vacuum sweeper). Replace aggregate in paver cells, joints, or openings per manufacturer's recommendation. 	
	A		Sediment present at the surface of the pavement	 Assess the overall performance of the pavement system during a rain event. If y ponding, then see above. Determine source of sediment loading and evaluate whether or not the source of cannot be addressed, consider increasing frequency of routine cleaning (e.g., twice) 	
	Summer		Moss growth inhibits infiltration or poses slip safety hazard	 Sidewalks: Use a stiff broom to remove moss in the summer when it is dry Parking lots and roadways: Vacuum sweep or stiff broom/power brush for clean 	
	A		Paver block missing or damaged	Remove individual damaged paver blocks by hand and replace or repair per man	
	A		Loss of aggregate material between paver blocks	Refill per manufacturer's recommendations for interlocking paver sections	
	A		Settlement of surface	May require resetting	
Open-celled paving grid with gravel		A or B	None (routine maintenance)	 Remove sediment, debris, trash, vegetation, and other debris deposited onto pa for removing leaves) Follow equipment manufacturer guidelines for cleaning surface. 	
	Аь		Aggregate is clogged: Ponding on surface or water flows off the permeable pavement surface during a rain event (does not infiltrate)]	 Use vacuum truck to remove and replace top course aggregate Replace aggregate in paving grid per manufacturer's recommendations 	
	A		Paving grid missing or damaged	 Remove pins, pry up grid segments, and replace gravel Replace grid segments where three or more adjacent rings are broken or dama Follow manufacturer guidelines for repairing surface. 	
	A		Settlement of surface	May require resetting	
	A		Loss of aggregate material in paving grid	Replenish aggregate material by spreading gravel with a rake (gravel level should plastic rings or no more than 1/4 inch above the top of rings). See manufacturer's recommendations.	
		A	Weeds present	 Manually remove weeds Presence of weeds may indicate that too many fines are present (refer to Action address this issue) 	

No. 22 (continued) - Maintenance Standards and Procedures for Permeable Pavement.

a Frequency: A= Annually; B= Biannually (twice per year); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

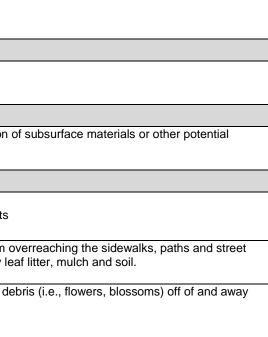
b Inspection should occur during storm event.

pavement (rakes and leaf blowers can be used
aggregate from paver openings or joints.
may not reduce overall performance of facility) nce indicator. Perform one test per installation, uare feet up to 15,000 square feet total. Above
rform corrective maintenance to restore
move the upper layer of encrusted sediment, echanical means and/or suction equipment
ommendations
If water runs off the pavement and/or there is
e can be reduced/eliminated. If the source wice per year instead of once per year).
aning moss from pavement surface
anufacturer's recommendations
pavement (rakes and leaf blowers can be used
naged
uld be maintained at the same level as the
ions Needed under "Aggregate is clogged" to

	Recommended Frequency a			Action Needed (Procedures)	
Component	Inspection Routine Maintenance		Condition when Maintenance is Needed (Standards)		
Surface/Wearing Co	urse (cont'd)	·	·		
Open-celled paving grid with grass		A or B	None (routine maintenance)	 Remove sediment, debris, trash, vegetation, and other debris deposited onto participation for removing leaves) Follow equipment manufacturer guidelines for cleaning surface. 	
	A b		Aggregate is clogged: Ponding on surface or water flows off the permeable pavement surface during a rain event (does not infiltrate)]	Rehabilitate per manufacturer's recommendations.	
	A		Paving grid missing or damaged	 Remove pins, pry up grid segments, and replace grass Replace grid segments where three or more adjacent rings are broken or dama Follow manufacturer guidelines for repairing surface. 	
	A		Settlement of surface	May require resetting	
	A		Poor grass coverage in paving grid	 Restore growing medium, reseed or plant, aerate, and/or amend vegetated are Traffic loading may be inhibiting grass growth; reconsider traffic loading if feasil 	
		As needed	None (routine maintenance)	Use a mulch mower to mow grass	
		A	None (routine maintenance)	 Sprinkle a thin layer of compost on top of grass surface (1/2" top dressing) and Do not use fertilizer 	
		A	Weeds present	 Manually remove weeds Mow, torch, or inoculate and replace with preferred vegetation 	
Inlets/Outlets/Pipes					
Inlet/outlet pipe	A		Pipe is damaged	Repair/replace	
	A		Pipe is clogged	Remove roots or debris	
Underdrain pipe	Clean pipe as needed	Clean orifice at least biannually (may need more frequent cleaning during wet season)	Plant roots, sediment or debris reducing capacity of underdrain (may cause prolonged drawdown period)	 Jet clean or rotary cut debris/roots from underdrain(s) If underdrains are equipped with a flow restrictor (e.g., orifice) to attenuate flow. 	
Raised subsurface overflow pipe	Clean pipe as needed	Clean orifice at least biannually (may need more frequent cleaning during wet season)	Plant roots, sediment or debris reducing capacity of underdrain	 Jet clean or rotary cut debris/roots from underdrain(s) If underdrains are equipped with a flow restrictor (e.g., orifice) to attenuate flow: 	
Outlet structure	A, S		Sediment, vegetation, or debris reducing capacity of outlet structure	 Clear the blockage Identify the source of the blockage and take actions to prevent future blockages 	
E	I D Diamouall	L (twice per year).	Derform inspections after major storm events (24 hour storm	a count with a 10 year or graater requirement interval)	

a Frequency: A= Annually; B= Biannually (twice per year); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

b Inspection should occur during storm event.


pavement (rakes and leaf blowers can be used
naged
rea as needed sible
nd sweep it in
ws, the orifice must be cleaned regularly
ws, the orifice must be cleaned regularly
es

No. 22 (continued) - Maintenance Standards and Procedures for Permeable Pavement.

	Recommended Frequency a		Condition when Maintenance is Needed	Action Needed (Procedures)	
Component	Inspection Routine Maintenance		(Standards)		
Inlets/Outlets/Pipes (cont'd)		·		
Overflow	В		Native soil is exposed or other signs of erosion damage are present at discharge point	Repair erosion and stabilize surface	
Aggregate Storage Re	eservoir				
Observation port	A, S		Water remains in the storage aggregate longer than anticipated by design after the end of a storm	If immediate cause of extended ponding is not identified, schedule investigation of causes of system failure.	
Vegetation					
Adjacent large shrubs or trees		As needed	Vegetation related fallout clogs or will potentially clog voids	 Sweep leaf litter and sediment to prevent surface clogging and ponding Prevent large root systems from damaging subsurface structural components 	
		Once in May and Once in September	Vegetation growing beyond facility edge onto sidewalks, paths, and street edge	Edging and trimming of planted areas to control groundcovers and shrubs from o edge improves appearance and reduces clogging of permeable pavements by lease	
Leaves, needles, and organic debris		In fall (October to December) after leaf drop (1-3 times, depending on canopy cover)	Accumulation of organic debris and leaf litter	Use leaf blower or vacuum to blow or remove leaves, evergreen needles, and de from permeable pavement	

a Frequency: A= Annually; B= Biannually (twice per year); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

Inspection should occur during storm event.

VIII. Inspection and Maintenance

The BayFilter system requires periodic maintenance to continue operating at the design efficiency. The maintenance process comprises the removal and replacement of each BayFilter cartridge and the cleaning of the vault or manhole with a vacuum truck.

The maintenance cycle of the BayFilter system will be driven mostly by the actual solids load on the filter. The system should be periodically monitored to be certain it is operating correctly. Since stormwater solids loads can be variable, it is possible that the maintenance cycle could be more or less than the projected duration.

BayFilter systems in volume-based applications are designed to treat the WQv in 24 hours initially. Late in the operational cycle of the BayFilter, the flow rate will diminish as a result of occlusion. When the drain down exceeds the regulated standard, maintenance should be performed.

When a BayFilter system is first installed, it is recommended that it be inspected every six (6) months. When the filter system exhibits flows below design levels the system should be maintained. Filter cartridge replacement should also be considered when sediment levels are at or above the level of the manifold system. Please contact the BaySaver Technologies Engineering Department for maintenance cycle estimations or assistance at **1.800.229.7283**.

Maintenance Procedures

1. Remove the manhole covers and open all access hatches.

2. Before entering the system make sure the air is safe per OSHA Standards or use a breathing apparatus. Use low O2, high CO, or other applicable warning devices per regulatory requirements.

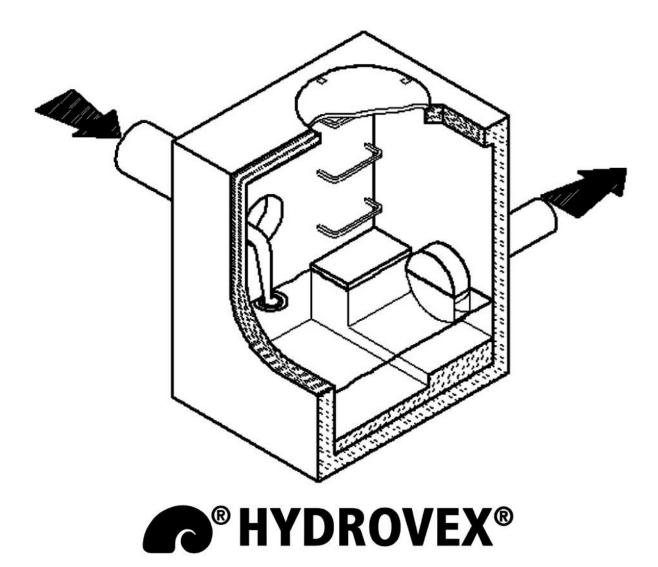
3. Using a vacuum truck remove any liquid and sediments that can be removed prior to entry.

4. Using a small lift or the boom of the vacuum truck, remove the used cartridges by lifting them out.

5. Any BayFilters that cannot be readily lifted directly out of the vault should be removed from their location and carried to the lifting point using the Trolley system installed in the Vault (if applicable).

6. When all BayFilters are removed, remove the balance of the solids and water; then loosen the stainless clamps on the Fernco couplings in the pipe manifold; remove the drain pipes as well. Carefully cap the manifold and the Ferncos and rinse the floor removing the balance of the collected solids.

- 7. Clean the manifold pipes, inspect, and reinstall.
- 8. Install the exchange BayFilters and close all covers.



9. The used BayFilters must be sent back to BaySaver Technologies for exchange/ recycling and credit on undamaged units.

10. Contact BaySaver Technologies for Exchange Filter pricing and availability at **1.800.229.7283**.

PROJECT	:	
EQUIPMENT LOCATION	:	
DESCRIPTION	:	VORTEX FLOW REGULATOR
ТҮРЕ	:	HYDROVEX [®]
REFERENCE N° OF THE SUPPLIER	:	
MODEL N°	:	
SERIAL N°	:	
UNIT WEIGHT	:	
DATE OF FABRICATION	:	
DATE OF DELIVERY	:	
SUPPLIER	:	Veolia Water Technologies Canada Inc. 4105 Sartelon Montreal, Quebec H4S 2B3 Tel.: (514) 334-7230 Fax: (514) 334-5070 E-Mail: <u>cso@veolia.com</u> ISO 9001:2000

WARRANTY

CLIENT NAME	:		
OUR REFERENCE N°	:		
PROJECT NAME	:		
PROJECT LOCATION	:		
REGULATOR MODEL	:		
SERIAL NUMBER	:		
DELIVERY DATE	:		

The manufacturer, **Veolia Water Technologies Canada Inc.** warrants for a period of 5 years, starting from the delivery date, its "Vortex Flow Regulators" against workmanship defects and failure to perform, once installed and used in conditions for which it had been originally designed and sold.

Veolia Water Technologies Canada Inc. warrants that the actual flow as measured under the original installation conditions will not exceed plus or minus 5% of the flow shown on the certified curve provided with the regulating valve.

HYDROVEX[®] Vortex Flow Regulators shall be installed in accordance with **Veolia Water Technologies Canada Inc.** recommendations.

This warranty shall be void if repairs and/or alterations are made without **Veolia Water Technologies Canada Inc.** authorization.

TABLE OF CONTENTS

1.0	GENERAL INFORMATION				
2.0	APPROVED SHOP DRAWINGS AND DISCHARGE CURVES				
3.0	INSTALLATION PROCEDURES				
	3.1	UNIT DESCRIPTION			
	3.2	PREPARATION FOR INSTALLATION			
	3.3	INSTALLING THE HYDROVEX [®] REGULATOR8			
4.0	OPERATION 9				
5.0	MAINTENANCE				
	5.1	INSPECTION10			
	5.2	EQUIPMENT TESTING11			

Page

Section 1.0 GENERAL INFORMATION

The **HYDROVEX**[®] vortex flow regulator is a static device, which controls discharge without the aid of moving parts. The control is accomplished as a result of the unit's geometric shape and depends solely on the upstream water level.

THE **HYDROVEX**[®] VORTEX FLOW REGULATOR CAN ONLY WORK EFFECTIVELY IF THE INSTALLATION IS PROPERLY CARRIED OUT.

Prior to installation, it is recommended that the installation procedure be followed carefully and that:

- The contractor or subcontractor is familiar with the installation procedures of the HYDROVEX[®] regulator.
- The various elevations, as shown on the approval drawings, have been verified and respected.
- The access hatch to the regulator chamber has a sufficiently large opening for allowing the passage of the **HYDROVEX**.
- That you acquire all the necessary components of the **HYDROVEX**[®] valve required for installation.

If you have any problems or questions concerning the installation procedure, **DO NOT HESITATE** to contact the **HYDROVEX**[®] division at:

Veolia Water Technologies Canada Inc. 4105 Sartelon Montreal, Quebec H4S 2B3 Tel.: (514) 334-7230 Fax: (514) 334-5070 E-Mail: cso@veolia.com

Section 2.0 APPROVED SHOP DRAWINGS AND DISCHARGE CURVES

The approved drawings and discharge curves included hereafter have been approved by the consultant. This information was used for fabrication and to evaluate the performances of the equipment.

Section 3.0 INSTALLATION PROCEDURES

3.1 UNIT DESCRIPTION

The model number provides important details required for installation of the **HYDROVEX**[®] regulator, for example: **100 SVHV-2.**

Number **100** indicates the inlet width of the **HYDROVEX**[®] flow regulator in millimeters. To obtain the exact inlet width of the flow regulator, you divide by 25.4 (100 mm = 3.15/16 inches).

Letter **S** indicates the presence of a spoiler the regulator inlet.

Number **1** indicates the calculation ratio of the unit.

3.2 **PREPARATION FOR INSTALLATION**

The regulator outlet pipe should be cleared and properly cleaned prior to installation. It should be noted for easier installation and reduce the weight of the regulator that it's possible to remove the stainless steel part by sliding it upward with the handle. In order to carry out the installation, it may be necessary to have lifting equipment available.

The **HYDROVEX**[®] regulator is delivered complete with its cover. It is lowered into position either by hand (using ropes or cables attached to the main orifice).

3.3 INSTALLING THE HYDROVEX[®] REGULATOR

Alignment of the **HYDROVEX**[®] regulator is made by placing the back plate orifice in the center of the outlet chamber pipe and making sure that the back plate is leveled and that the track can be pull upward.

The back plate bolts are installed and hand tightened, but not locked in place. Install the rubber-packing rings to seal the joint between the concrete and the back plate.

NOTE: Proper operation of the **HYDROVEX**[®] vortex flow regulator is ensured only if the correct mounting leveling of the device is respected

ANCHOR INSTALLATION PROCEDURE

- 1. Using a proper diameter bit, drill a hole into the base material to a depth of at least 1/2" or one anchor diameter deeper than the embedment required.
- 2. Blow the hole clean of dust and other material.
- 3. Position the washer on the anchor and thread on the nut.
- **4.** Drive the anchor through the fixture into the anchor hole until the nut and washer are firmly seated against the fixture. Be sure the anchor is driven to the required embedment depth.
- **5.** Tighten the anchor by turning the nut 3 to 4 turns.

Size	Drill Bit Diam.	Minimum Embedment	Thread Length
3/8" x 5"	3/8"	1 5/8"	3 3/4"

Section 4.0 OPERATION

The basic operating principle governing the **HYDROVEX**[®] regulator is the use of vortex flow to regulate the discharge through the outlet orifice of the regulator while maximizing the flow area. The flow area for the **HYDROVEX**[®] regulator may be up to 6 times larger than the flow area of an orifice plate operating under the same design conditions.

The **HYDROVEX**[®] flow regulator controls the discharge without moving parts. It does not require any external signals or electricity. The discharge curve for a given **HYDROVEX**[®] regulator depends entirely on the geometry of the valve itself, the water level and the installation parameters.

The **HYDROVEX**[®] regulator does not allow for flow modulation; however certain parameters may be changed, such as the outlet orifice diameter, to obtain a new discharge curve.

The hole located on the top part of the **HYDROVEX**[®] flow regulator is only used to equalize the internal pressure of the unit and does not serve to control the discharge.

Section 5 <u>MAINTENANCE</u>

5.1 INSPECTION

The **HYDROVEX**[®] regulator switches automatically between orifice and vortex flow mode depending on the water level in the chamber, therefore manual operation is not required. It is recommended that a regular visual inspection be carried out, particularly during start-up period or after construction works are completed upstream from the chamber. The attached "Maintenance Schedule" provides information on the recommended maintenance intervals. Please refer to the Table below.

MAINTENANCE INTERVAL	MAINTENANCE PROCEDURE
Three (3) months after start of operation and after first heavy rainfall	 Visual check Inspect valve inlet and outlet; open housing, remove coarse debris (if any)
Then every six (6) months	As above

The **HYDROVEX**[®] regulator is not a waste grinder unit. Debris bigger than outlet orifice may enter in the valve body and not exit due to their length. Such debris must be manually removed when detected. This debris may also cause unit to malfunction.

Once every year, a full inspection of the unit is recommended, including removal of the sliding gate regulator, cleaning of the area, visual inspection for abnormalities like leaks and cracks in the unit.

5.2 EQUIPMENT TESTING

Trial runs of a newly installed valve are recommended. The testing is the responsibility of the owner; however **Veolia Water Technologies Canada Inc.** will be pleased to give any advice concerning the tests. The recommended procedure is to allow the water level to rise in the chamber to its maximum level by blocking the outlet pipe with a blocking balloon, then quickly deflating the balloon. At that point, the **HYDROVEX**[®] vortex valve should turn into full vortex flow. In some cases, the unit does not operate in vortex mode even at the maximum head in the chamber. In this case, check the water flow coming out of the unit. If the blockage is removed, the flow should be important and fast. If you still feel that the unit is blocked, check the inlet and the valve housing for any obstructions. If any obstruction is found, remove it and repeat the procedure.

BMPs for Landscaping and Lawn/ Vegetation Management

Description of Pollutant Sources: Landscaping can include grading, soil transfer, vegetation removal, pesticide and fertilizer applications, and watering. Stormwater contaminants include toxic organic compounds, heavy metals, oils, total suspended solids, coliform bacteria, fertilizers, and pesticides.

Lawn and vegetation management can include control of objectionable weeds, insects, mold, bacteria and other pests with chemical pesticides and is conducted commercially at commercial, industrial, and residential sites. Examples include weed control on golf course lawns, access roads, and utility corridors and during landscaping; sap stain and insect control on lumber and logs; rooftop moss removal; killing nuisance rodents; fungicide application to patio decks, and residential lawn/plant care. Toxic pesticides such as pentachlorophenol, carbamates, and organometallics can be released to the environment by leaching and dripping from treated parts, container leaks, product misuse, and outside storage of pesticide contaminated materials and equipment. Poor management of the vegetation and poor application of pesticides or fertilizers can cause appreciable stormwater contamination.

Pollutant Control Approach: Control of fertilizer and pesticide applications, soil erosion, and site debris to prevent contamination of stormwater.

Develop and implement an Integrated Pest Management Plan (IPM) and use pesticides only as a last resort. If pesticides/herbicides are used they must be carefully applied in accordance with label instructions on U.S. Environmental Protection Agency (EPA) registered materials. Maintain appropriate vegetation, with proper fertilizer application where practicable, to control erosion and the discharge of stormwater pollutants. Where practicable grow plant species appropriate for the site, or adjust the soil properties of the subject site to grow desired plant species.

Applicable Operational BMPs for Landscaping:

- Install engineered soil/landscape systems to improve the infiltration and regulation of stormwater in landscaped areas.
- Do not dispose of collected vegetation into waterways or storm drainage systems.

Recommended Additional Operational BMPs for Landscaping:

- Conduct mulch-mowing whenever practicable
- Dispose of grass clippings, leaves, sticks, or other collected vegetation, by composting, if feasible.

- Use mulch or other erosion control measures when soils are exposed for more than one week during the dry season or two days during the rainy season.
- If oil or other chemicals are handled, store and maintain appropriate oil and chemical spill cleanup materials in readily accessible locations. Ensure that employees are familiar with proper spill cleanup procedures.
- Till fertilizers into the soil rather than dumping or broadcasting onto the surface. Determine the proper fertilizer application for the types of soil and vegetation encountered.
- Till a topsoil mix or composted organic material into the soil to create a well-mixed transition layer that encourages deeper root systems and drought-resistant plants.
- Use manual and/or mechanical methods of vegetation removal rather than applying herbicides, where practical.

Applicable Operational BMPs for the Use of Pesticides:

- Develop and implement an IPM (See section on IPM at end of BMP) and use pesticides only as a last resort.
- Implement a pesticide-use plan and include at a minimum: a list of selected pesticides and their specific uses; brands, formulations, application methods and quantities to be used; equipment use and maintenance procedures; safety, storage, and disposal methods; and monitoring, record keeping, and public notice procedures. All procedures shall conform to the requirements of Chapter 17.21 RCW and Chapter 16-228 WAC (Appendix IV-D R.7).
- Choose the least toxic pesticide available that is capable of reducing the infestation to acceptable levels. The pesticide should readily degrade in the environment and/or have properties that strongly bind it to the soil. Any pest control used should be conducted at the life stage when the pest is most vulnerable. For example, if it is necessary to use a <u>Bacillus thuringiens is</u> application to control tent caterpillars, it must be applied before the caterpillars cocoon or it will be ineffective. Any method used should be site-specific and not used wholesale over a wide area.
- Apply the pesticide according to label directions. Under no conditions shall pesticides be applied in quantities that exceed manufacturer's instructions.
- Mix the pesticides and clean the application equipment in an area where accidental spills will not enter surface or ground waters, and will not contaminate the soil.

- Store pesticides in enclosed areas or in covered impervious containment. Ensure that pesticide contaminated stormwater or spills/leaks of pesticides are not discharged to storm drains. Do not hose down the paved areas to a storm drain or conveyance ditch. Store and maintain appropriate spill cleanup materials in a location known to all near the storage area.
- Clean up any spilled pesticides and ensure that the pesticide contaminated waste materials are kept in designated covered and contained areas.
- The pesticide application equipment must be capable of immediate shutoff in the event of an emergency.
- Do not spray pesticides within 100 feet of open waters including wetlands, ponds, and streams, sloughs and any drainage ditch or channel that leads to open water except when approved by Ecology or the local jurisdiction. All sensitive areas including wells, creeks and wetlands must be flagged prior to spraying.
- As required by the local government or by Ecology, complete public posting of the area to be sprayed prior to the application.
- Spray applications should only be conducted during weather conditions as specified in the label direction and applicable local and state regulations. Do not apply during rain or immediately before expected rain.

Recommended Additional Operational BMPs for the use of pesticides:

- Consider alternatives to the use of pesticides such as covering or harvesting weeds, substitute vegetative growth, and manual weed control/moss removal.
- Consider the use of soil amendments, such as compost, that are known to control some common diseases in plants, such as Pythium root rot, ashy stem blight, and parasitic nematodes. The following are three possible mechanisms for disease control by compost addition (USEPA Publication 530-F-9-044):
 - 1. Successful competition for nutrients by antibiotic production;
 - 2. Successful predation against pathogens by beneficial microorganism; and
 - 3. Activation of disease-resistant genes in plants by composts.

Installing an amended soil/landscape system can preserve both the plant system and the soil system more effectively. This type of approach provides a soil/landscape system with adequate depth, permeability, and organic matter to sustain itself and continue working as an effective stormwater infiltration system and a sustainable nutrient cycle.

- Once a pesticide is applied, its effectiveness should be evaluated for possible improvement. Records should be kept showing the applicability and inapplicability of the pesticides considered.
- An annual evaluation procedure should be developed including a review of the effectiveness of pesticide applications, impact on buffers and sensitive areas (including potable wells), public concerns, and recent toxicological information on pesticides used/proposed for use. If individual or public potable wells are located in the proximity of commercial pesticide applications contact the regional Ecology hydrogeologist to determine if additional pesticide application control measures are necessary.
- Rinseate from equipment cleaning and/or triple-rinsing of pesticide containers should be used as product or recycled into product.
- The application equipment used should be capable of immediate shutoff in the event of an emergency.

For more information, contact the WSU Extension Home-Assist Program, (253) 445-4556, or Bio-Integral Resource Center (BIRC), P.O. Box 7414, Berkeley, CA.94707, or the Washington Department of Ecology to obtain "Hazardous Waste Pesticides" (Publication #89-41); and/or EPA to obtain a publication entitled "Suspended, Canceled and Restricted Pesticides" which lists all restricted pesticides and the specific uses that are allowed. Valuable information from these sources may also be available on the internet.

Applicable Operational BMPs for Vegetation Management:

- Use at least an eight-inch "topsoil" layer with at least 8 percent organic matter to provide a sufficient vegetation-growing medium. Amending existing landscapes and turf systems by increasing the percent organic matter and depth of topsoil can substantially improve the permeability of the soil, the disease and drought resistance of the vegetation, and reduce fertilizer demand. This reduces the demand for fertilizers, herbicides, and pesticides. Organic matter is the least water-soluble form of nutrients that can be added to the soil. Composted organic matter generally releases only between 2 and 10 percent of its total nitrogen annually, and this release corresponds closely to the plant growth cycle. If natural plant debris and mulch are returned to the soil, this system can continue recycling nutrients indefinitely.
- Select the appropriate turfgrass mixture for your climate and soil type. Certain tall fescues and rye grasses resist insect attack because the symbiotic endophytic fungi found naturally in their tissues repel or kill common leaf and stem-eating lawn insects. They do not, however, repel root-feeding lawn pests such as Crane Fly larvae, and are toxic to ruminants such as cattle and sheep. The fungus causes no known

adverse effects to the host plant or to humans. Endophytic grasses are commercially available and can be used in areas such as parks or golf courses where grazing does not occur. The local Cooperative Extension office can offer advice on which types of grass are best suited to the area and soil type.

- Use the following seeding and planting BMPs, or equivalent BMPs to obtain information on grass mixtures, temporary and permanent seeding procedures, maintenance of a recently planted area, and fertilizer application rates: Temporary Seeding, Mulching and Matting, Clear Plastic Covering, Permanent Seeding and Planting, and Sodding as described in Volume II).
- Selection of desired plant species can be made by adjusting the soil properties of the subject site. For example, a constructed wetland can be designed to resist the invasion of reed canary grass by layering specific strata of organic matters (e.g., compost forest product residuals) and creating a mildly acidic pH and carbon-rich soil medium. Consult a soil restoration specialist for site-specific conditions.
- Aerate lawns regularly in areas of heavy use where the soil tends to become compacted. Aeration should be conducted while the grasses in the lawn are growing most vigorously. Remove layers of thatch greater than ³/₄-inch deep.
- Mowing is a stress-creating activity for turfgrass. When grass is mowed too short its productivity is decreased and there is less growth of roots and rhizomes. The turf becomes less tolerant of environmental stresses, more disease prone and more reliant on outside means such as pesticides, fertilizers and irrigation to remain healthy. Set the mowing height at the highest acceptable level and mow at times and intervals designed to minimize stress on the turf. Generally mowing only 1/3 of the grass blade height will prevent stressing the turf.

Irrigation:

• The depth from which a plant normally extracts water depends on the rooting depth of the plant. Appropriately irrigated lawn grasses normally root in the top 6 to 12 inches of soil; lawns irrigated on a daily basis often root only in the top 1 inch of soil. Improper irrigation can encourage pest problems, leach nutrients, and make a lawn completely dependent on artificial watering. The amount of water applied depends on the normal rooting depth of the turfgrass species used, the available water holding capacity of the soil, and the efficiency of the irrigation system. Consult with the local water utility, Conservation District, or Cooperative Extension office to help determine optimum irrigation practices.

Fertilizer Management:

- Turfgrass is most responsive to nitrogen fertilization, followed by potassium and phosphorus. Fertilization needs vary by site depending on plant, soil and climatic conditions. Evaluation of soil nutrient levels through regular testing ensures the best possible efficiency and economy of fertilization. For details on soils testing, contact the local Conservation District or Cooperative Extension Service.
- Fertilizers should be applied in amounts appropriate for the target vegetation and at the time of year that minimizes losses to surface and ground waters. Do not fertilize during a drought or when the soil is dry. Alternatively, do not apply fertilizers within three days prior to predicted rainfall. The longer the period between fertilizer application and either rainfall or irrigation, the less fertilizer runoff occurs.
- Use slow release fertilizers such as methylene urea, IDBU, or resin coated fertilizers when appropriate, generally in the spring. Use of slow release fertilizers is especially important in areas with sandy or gravelly soils.
- Time the fertilizer application to periods of maximum plant uptake. Generally fall and spring applications are recommended, although WSU turf specialists recommend four fertilizer applications per year.
- Properly trained persons should apply all fertilizers. At commercial and industrial facilities fertilizers should not be applied to grass swales, filter strips, or buffer areas that drain to sensitive water bodies unless approved by the local jurisdiction.

Integrated Pest Management

An IPM program might consist of the following steps:

Step 1: Correctly identify problem pests and understand their life cycle

Step 2: Establish tolerance thresholds for pests.

Step 3: Monitor to detect and prevent pest problems.

Step 4: Modify the maintenance program to promote healthy plants and discourage pests.

Step 5: Use cultural, physical, mechanical, or biological controls first if pests exceed the tolerance thresholds.

Step 6: Evaluate and record the effectiveness of the control and modify maintenance practices to support lawn or landscape recovery and prevent recurrence.

For an elaboration of these steps refer to Appendix IV-F.

BMPs for Maintenance of Stormwater Drainage and Treatment Systems

Description of Pollutant Sources: Facilities include roadside catch basins on arterials and within residential areas, conveyance systems, detention facilities such as ponds and vaults, oil and water separators, biofilters, settling basins, infiltration systems, and all other types of stormwater treatment systems presented in Volume V. Roadside catch basins can remove from 5 to 15 percent of the pollutants present in stormwater. When catch basins are about 60 percent full of sediment, they cease removing sediments. Oil and grease, hydrocarbons, debris, heavy metals, sediments and contaminated water are found in catch basins, oil and water separators, settling basins, etc.

Pollutant Control Approach: Provide maintenance and cleaning of debris, sediments, and oil from stormwater collection, conveyance, and treatment systems to obtain proper operation.

Applicable Operational BMPs:

Maintain stormwater treatment facilities according to the O & M procedures presented in Section 4.6 of Volume V in addition to the following BMPs:

- Inspect and clean treatment BMPs, conveyance systems, and catch basins as needed, and determine whether improvements in O & M are needed.
- Promptly repair any deterioration threatening the structural integrity of the facilities. These include replacement of clean-out gates, catch basin lids, and rock in emergency spillways.
- Ensure that storm sewer capacities are not exceeded and that heavy sediment discharges to the sewer system are prevented.
- Regularly remove debris and sludge from BMPs used for peak-rate control, treatment, etc. and discharge to a sanitary sewer if approved by the sewer authority, or truck to a local or state government approved disposal site.
- Clean catch basins when the depth of deposits reaches 60 percent of the sump depth as measured from the bottom of basin to the invert of the lowest pipe into or out of the basin. However, in no case should there be less than six inches clearance from the debris surface to the invert of the lowest pipe. Some catch basins (for example, WSDOT Type 1L basins) may have as little as 12 inches sediment storage below the invert. These catch basins will need more frequent inspection and cleaning to prevent scouring. Where these catch basins are part of a stormwater collection and treatment system, the system owner/operator may choose to concentrate maintenance efforts on downstream control devices as part of a systems approach.

- Clean woody debris in a catch basin as frequently as needed to ensure proper operation of the catchbasin.
- Post warning signs; "Dump No Waste Drains to Ground Water," "Streams," "Lakes," or emboss on or adjacent to all storm drain inlets *where practical*.
- Disposal of sediments and liquids from the catch basins must comply with "Recommendations for Management of Street Wastes" described in Appendix IV-G of this volume.

Additional Applicable BMPs: Select additional applicable BMPs from this chapter depending on the pollutant sources and activities conducted at the facility. Those BMPs include:

- BMPs for Soil Erosion and Sediment Control at Industrial Sites
- BMPs for Storage of Liquid, Food Waste, or Dangerous Waste Containers
- BMPs for Spills of Oil and Hazardous Substances
- BMPs for Illicit Connections to Storm Drains
- BMPs for Urban Streets.

BMPs for Parking and Storage of Vehicles and Equipment

Description of Pollutant Sources: Public and commercial parking lots such as retail store, fleet vehicle (including rent-a-car lots and car dealerships), equipment sale and rental parking lots, and parking lot driveways, can be sources of toxic hydrocarbons and other organic compounds, oils and greases, metals, and suspended solids caused by the parked vehicles.

Pollutant Control Approach: If the parking lot is a **high-use site** as defined below, provide appropriate oil removal equipment for the contaminated stormwater runoff.

Applicable Operational BMPs:

- If washing of a parking lot is conducted, discharge the washwater to a sanitary sewer, if allowed by the local sewer authority, or other approved wastewater treatment system, or collect it for off-site disposal.
- Do not hose down the area to a storm drain or to a receiving water. Sweep parking lots, storage areas, and driveways, regularly to collect dirt, waste, and debris.

Applicable Treatment BMPs: An oil removal system such as an API or CP oil and water separator, catch basin filter, or equivalent BMP, approved by the local jurisdiction, is applicable for parking lots meeting the threshold vehicle traffic intensity level of a *high-use site*.

Vehicle High-Use Sites

Establishments subject to a vehicle high-use intensity have been determined to be significant sources of oil contamination of stormwater. Examples of potential high use areas include customer parking lots at fast food stores, grocery stores, taverns, restaurants, large shopping malls, discount warehouse stores, quick-lube shops, and banks. If the PGIS for a high-use site exceeds 5,000 square feet in a threshold discharge area, and oil control BMP from the Oil Control Menu is necessary. A high-use site at a commercial or industrial establishment has one of the following characteristics: (Gaus/King County, 1994)

- Is subject to an expected average daily vehicle traffic (ADT) count equal to or greater than 100 vehicles per 1,000 square feet of gross building area: or
- Is subject to storage of a fleet of 25 or more diesel vehicles that are over 10 tons gross weight (trucks, buses, trains, heavy equipment, etc.).

BMPs for Roof/ Building Drains at Manufacturing and Commercial Buildings

Description of Pollutant Sources: Stormwater runoff from roofs and sides of manufacturing and commercial buildings can be sources of pollutants caused by leaching of roofing materials, building vents, and other air emission sources. Vapors and entrained liquid and solid droplets/particles have been identified as potential pollutants in roof/building runoff. Metals, solvents, acidic/alkaline pH, BOD, and organics, are some of the pollutant constituents identified.

Pollutant Control Approach: Evaluate the potential sources of stormwater pollutants and apply source control BMPs where feasible.

Applicable Operational Source Control BMPs:

- If leachates and/or emissions from buildings are suspected sources of stormwater pollutants, then sample and analyze the stormwater draining from the building.
- If a roof/building stormwater pollutant source is identified, implement appropriate source control measures such as air pollution control equipment, selection of materials, operational changes, material recycle, process changes, etc.

Stormwater Site Plan Report

PREPARED FOR:

Bassetti Architects 71 Columbia Street, Suite 500 Seattle, WA 98104

PROJECT:

Spruce Elementary School Phase 2 17405 Spruce Way Lynnwood, WA 98037 2140275.10

PREPARED BY:

Yi Yang, PE Project Engineer

REVIEWED BY:

Douglas G. Tapp, PE Principal

Bethany P. Steadman, PE Senior Engineer

DATE:

February 2020 – Phase 2

Stormwater Site Plan Report

PREPARED FOR:

Bassetti Architects 71 Columbia Street, Suite 500 Seattle, WA 98104

PROJECT:

Spruce Elementary School Phase 2 17405 Spruce Way Lynnwood, WA 98037 2140275.10

PREPARED BY:

Yi Yang, PE Project Engineer

REVIEWED BY:

Douglas G. Tapp, PE Principal

Bethany P. Steadman, PE Senior Engineer

DATE:

February 2020 – Phase 2

I hereby state that this Stormwater Site Plan Report for Spruce Elementary School Phase 2 has been prepared by me or under my supervision, and meets the standard of care and expertise that is usual and customary in this community for professional engineers. I understand that City of Lynnwood does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me.

Table of Contents

Secti	on		Page
1.0	Proje	ect Overview	1
	1.1	General Description of Project	1
	1.2	Existing Conditions	1
	1.3	Developed Conditions	1
	1.4	Project Classification	1
2.0	Minin	num Requirements	1
3.0	Offsit	te Analysis	2
4.0	Perm	nanent Stormwater Control Plan	2
	4.1	Site Hydrology	2
	4.2	Onsite Stormwater Management	4
	4.3	Flow Control	7
	4.4	Water Quality Treatment	8
5.0	Storn	nwater Pollution Prevention	9
6.0	Spec	ial Reports and Studies	9
7.0	Othe	r Permits	9
8.0	Oper	ration and Maintenance Manual	9
9.0	Decla	aration of Covenant for Privately Maintained Stormwater Facilities	9
10.0	Bond	d Quantities Worksheet	9
11.0	Conc	clusion	9

Appendix A

Maps

A-3bDeveloped Conditions Map - Phase 2

Appendix E

Permanent Stormwater Control Calculations

E-1TDA A Flow Control and Water Quality Calculations
E-2TDA B Flow Control and Water Quality Calculations
E-3TDA C Flow Control and Water Quality Calculations
E-4TDA C TESC Calculations
E-5TDA A Wetland Sizing Calculation

1.0 Project Overview

1.1 General Description of Project

This report supplements the Stormwater Site Plan Report dated April 2018 for the Spruce Elementary School project located on the existing Spruce Elementary School site (17405 Spruce Way, Lynnwood, Washington), and encompasses three tax parcels (00372700301502, 00372700301501, and 00372700301504). This report documents a revision to the hydrologic model for Phase 2, providing a final design of stormwater facilities for Threshold Discharge Area (TDA) A and TDA B, and providing an update to the hydrologic model for TDA C stormwater facilities that were constructed during Phase 1.

Phase 1 was constructed with substantial completion in August 2019. Phase 2 is expected to start construction in July 2020.

1.2 Existing Conditions

See Section 1.2 of the Stormwater Site Plan Report dated April 2018 for a description of the existing conditions prior to construction of Phase 1.

1.3 Developed Conditions

See Section 1.3 of the Stormwater Site Plan Report dated April 2018 for a description of the Phase 1 and Phase 2 projects. Edmonds School District acquired the neighboring property in December 2019. During Phase 2, the total project area is 5.99 acres.

An open stormwater pond combined with a stormwater wetland and underground detention pipe will be constructed to provide flow control and water quality treatment for TDA A. The constructed wetland comprises an open pond, flow control structure, and an emergency overflow structure. The constructed wetland will encourage infiltration and evapotranspiration. A bioretention cell combined with underground detention pipe will be constructed to provide flow control and water quality treatment for TDA B.

1.4 Project Classification

Project classification is unchanged. Per LMC Section 13.40.050, the project is classified as a Large Project because it disturbs more than 1 acre of land and is required to provide a Detailed Drainage Plan. Per the Drainage Manual, the project is classified as a Redevelopment Project and all Minimum Requirements apply to the new and replaced hard surfaces and converted vegetation areas.

2.0 Minimum Requirements

See Section 2.0 of the Stormwater Site Plan Report dated April 2018 for a Minimum Requirements analysis and conclusion. How the project is addressing the Minimum Requirements is unchanged, with the following exception.

Per the 2012 Washington State Department of Ecology Stormwater Management Manual for Western Washington amended in 2014 (Drainage Manual), under the definition for a Threshold Discharge Area (TDA) on page G-43 in Volume 1, TDAs do not include "offsite" areas. As such, the right-of-way improvements have been removed from TDA A flow control and water quality threshold review. See updated Appendix A-3b. The right-of-way improvements within TDA A include 4,500 square feet of new or replaced impervious area and are subject to Minimum Requirements (MRs) 1 through 5, thus not triggering flow control or water quality treatment.

It is not feasible to provide any onsite stormwater management for the road improvements because the road improvements are lower than stormwater facilities located onsite, and there is insufficient area available within the right-of-way.

3.0 Offsite Analysis

See Section 3.0 of the Stormwater Site Plan Report dated April 2018 for offsite analysis and conclusion.

4.0 Permanent Stormwater Control Plan

The project will meet MRs 5 through 7 by providing a permanent stormwater control plan, including Onsite Stormwater Management Best Management Practices (BMPs), flow control facilities, and water quality facilities.

During Phase 1, flow control in TDA C was constructed by using a pond that is interconnected with a 6-foot diameter pipe, and a Silva Cell has been constructed serving the service yard. In Phase 2, a pond combined with detention pipe will be constructed for flow control in TDA A, with wetland underneath the pond providing both onsite stormwater management and water quality treatment. In TDA B, a detention pipe will be constructed for flow control, followed by a bioretention cell, for both onsite stormwater management and water quality treatment.

4.1 Site Hydrology

The site hydrology is determined by the type of land coverage, soil type, and slope. Onsite soils are Vashon Lodgement till, which is categorized as a Class C soil for modeling purposes. Landscape areas will meet BMP T5.13 post-construction soil quality and depth. Per the *Drainage Manual*, page 5-10 from Volume V, these areas shall be modeled as pasture. See Appendix A-3b for the revised Phase 2 Developed Conditions Map.

TDAs A, B, and C require flow control and water quality in Phase 2 of the project. The stormwater modeling software MGSFlood was utilized to size facilities and confirm compliance with the *Drainage Manual for* TDA A and TDA B. The Western Washington Hydrology Model (WWHM) was used to confirm compliance with the *Drainage Manual for* TDA C to maintain consistency with previous calculations during Phase 1.

4.1.1 TDA A

The areas shown below were used in MGSFlood for sizing of stormwater flow control facilities for TDA A. The mitigated areas are areas tributary to the pond and detention pipe system, whereas the bypass area does not drain to the flow control system. An area of existing pavement is being directed to onsite stormwater management facilities as a flow-through area to help offset the bypass areas. The combined volume of the pond and detention tank system is calculated using a stage storage table in MGSFlood. An Excel table provided by MGSFlood is used to create the stage storage table in MGSFlood.

Refer to the table below for a summary of areas that were entered into the MGSFlood model, which is consistent with Appendix A-3b, Developed Conditions Map.

Subbasin	C, Forest (ac)	C, Pasture* (ac)	Bioretention area* (ac)	Impervious (ac)	Total (ac)
Total Pre-Developed	3.730	-	-	0.090**	3.820
Bioretention 1 (B1)	-	0.278	0.052	0.850	1.180
Pond/Detention Tank	-	0.540	-	1.820	2.360
Bypass	-	0.170	-	0.020	0.190
Non-target Pond	-	-	-	0.090	0.090
Total Developed	-	0.988	0.052	2.780	3.820

 Table 1 – Land Cover Summary for Target Areas in TDA A Phase 2 for Flow Control

* Bioretention cell area is subtracted from Pasture. Bioretention is represented by "Area at Riser Crest" in the model and precipitation/evaporation is applied to the bioretention node.

** Non-target area that flows through stormwater facilities.

4.1.2 TDA B

TDA B will be provided with flow control and water quality to meet the minimum requirements. The mitigated areas are areas tributary to the detention pipe that are followed by a bioretention cell, whereas the bypass area does not drain to the flow control system.

Subbasin	C, Forest (ac)	C, Pasture (ac)	C, Pasture* (Silva Cell) (ac)	Impervious (ac)	Total (ac)
Total Pre-Developed	2.260	-	-	-	2.260
Bioretention 2 (B2)	-	0.310	0.100	0.040	0.450
Detention Tank	-	0.460	-	1.060	1.520
Bypass	-	0.250	-	0.040	0.290
Total Developed	_	1.020	0.100	1.140	2.260

 Table 2 – Land Cover Summary for Target Areas in TDA B Phase 2 for Flow Control

* Bioretention cell area is subtracted from Pasture. Bioretention is represented by "Area at Riser Crest" in the model and precipitation/evaporation is applied to the bioretention node.

** Basin includes pollution generating surfaces.

4.1.3 TDA C

Developed conditions for TDA C have been modeled to evaluate the flow control facilities designed in Phase 1. The same rain gage was selected in WWHM to match the precipitation modeled in MGSFlood.

The areas shown below were measured on construction plans and used in the model. The mitigated areas are areas tributary to the flow control system, whereas the bypass area does not drain to the flow control system. TDA C flow control volume was constructed in Phase 1. The control structure will be revised in Phase 2 per updated calculation results.

Subbasin	C, Forest (ac)	C, Pasture (ac)	Impervious (ac)	Total (ac)
Total Pre-Developed	3.000 ac	-	-	3.000
Basin 3 (Silva Cell)*	-	-	0.140	0.140
Mitigated (Pond+Tank)	-	0.660	1.840	2.500
Bypass	-	0.330	0.030	0.360
Total Developed	-	0.990	2.010	3.000

 Table 3 – Land Cover Summary for Target Areas in TDA C Phase 2 for Flow Control

* Basin includes pollution generating surfaces.

4.2 Onsite Stormwater Management

All TDAs are required to fulfill List 2 in Section 2.5.5, Volume 1, of the *Drainage Manual*. During Phase 2 of the project, BMPs are implemented to the maximum extent. Based on the requirements from List 2, Table 4 summarizes the BMP consideration for each surface in TDA A and the feasibility determination for the work in this subbasin.

Table 4 – Onsite	Stormwater	Management	RMP	Feasibility	
	Stornwater	manayement	DIVIE	i easibility	(IDAA)

Surface Type	List #2 Feasibility Review (Bold Determined Feasible and Provided)	Justification
Landscaping	1. Post Construction Soil (BMP T5.13)	1. BMP T5.13 is proposed for all proposed landscaped areas.
Roof Basins: B1	 Full Dispersion or Downspout Full Infiltration Systems Bioretention Downspout Dispersion Perforated Stub-out Connections 	 Full Dispersion is not feasible be, as a 65% native growth area is not being set aside downstream of impervious areas. A bioretention cell has been provided.
Drive Lanes, Fire Lane, Parking Lot, and Walks Basins: B1	 Full Dispersion Permeable Pavement Bioretention Sheet Flow Dispersion 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non-infiltrating soils (including existing fill soils) and permeable pavement is infeasible. A bioretention cell has been provided.
Other Hard Surfaces: Pond maintenance access; Bike path around pond; Existing Driveway and Sidewalk Basin: Pond Bypass	 Full Dispersion Permeable Pavement Bioretention Sheet Flow Dispersion 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non-infiltrating soils (including existing fill soils) and permeable pavement is infeasible. Bioretention cells are not feasible, as there is no area available within the ROW that can accept drainage via gravity. Sheet Flow Dispersion is not feasible, as there is not a 50-foot vegetated path available.

Table 5 summarizes the BMP consideration for each surface in TDA B and the feasibility determination for the work in this subbasin.

Surface Type	List #2 Feasibility Review (Bold Determined Feasible and Provided)	Justification
Landscaping	1. Post Construction Soil (BMP T5.13)	1. BMP T5.13 is proposed for all proposed landscaped areas.
Playfield Basins:	1.Full Dispersion2.Permeable Pavement3.Bioretention	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas.
Field	4. Sheet Flow Dispersion	2. The surface is not a pavement area, thus permeable pavement is not feasible.
		3. Bioretention cells are not feasible, as the surface area is being collected with an underdrain system that would be too deep to gravity discharge into a bioretention cell.
		4. Sheet Flow Dispersion is not feasible, as the vegetated flow path is not available.
Drive Lanes, Parking Lot, and Concrete	Eull Dispersion Permeable Pavement Bioretention	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas.
Walks; Pathway around playfield	4, Sheet Flow Dispersion	2. Geotechnical engineer has deemed the site to have non-infiltrating soils, and thus permeable pavement is infeasible.
Basins: B2		3. A bioretention cell has been provided.
Other Hard Surfaces: Driveway and Sidewalk	Full Dispersion Permeable Pavement Bioretention Desch Einen Dispersion	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas.
Basins: Bypass	4. Sheet Flow Dispersion	 Geotechnical engineer has deemed the site to have non-infiltrating soils, and thus permeable pavement is infeasible. Directortion only on the set for site of the set of the
		 Bioretention cells are not feasible, as there is no area available within the ROW that can accept drainage via gravity.
		4. Sheet Flow Dispersion is not feasible, as the vegetated flow path is not available.

Table 5 – Onsite Stormwater Management BMP Feasibility (TDA B)

Table 6 summarizes the BMP consideration for each surface in TDA C and the feasibility determination for the work in this subbasin.

Surface Type	List #2 Feasibility Review (Bold Determined Feasible and Provided)	Justification
Landscaping	1. Post Construction Soil (BMP T5.13)	1. BMP T5.13 is proposed for all proposed landscaped areas.
Roof Basins: Det	 Full Dispersion or Downspout Full Infiltration Systems Bioretention Downspout Dispersion Perforated Stub-Out Connections 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Bioretention is not feasible, as there is no area available that can accept drainage. Downspout dispersion is not feasible, as the vegetated flow path is not available. Perforated Stub-Out Connection is not feasible, as the Geotechnical engineer has deemed the site to have non- infiltrating soils.
Service Yard Basins: Basin 3	 Full Dispersion Permeable Pavement Bioretention Sheet Flow Dispersion 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non-infiltrating soils (including existing fill soils) and permeable pavement is infeasible. A bioretention cell (Silva Cell) has been provided. (Sized and constructed in Phase 1)
Other Hard Surfaces: Classroom Courtyard, Loop Path, Play Areas Basin: Det, Bypass	 Full Dispersion Permeable Pavement Bioretention Sheet Flow Dispersion 	 Full Dispersion is not feasible, as a 65% native growth area is not being set aside downstream of impervious areas. Geotechnical engineer has deemed the site to have non-infiltrating soils (including existing fill soils) and permeable pavement is infeasible. Bioretention cells are not feasible, as there is no area available within the ROW that can accept drainage via gravity. Sheet Flow Dispersion is not feasible, as there is not a 50-foot vegetated path available.

Table 6 – Onsite Stormwater Management BMP Feasibility (TDA C)

Bioretention areas are sized per BMP T5.14B. The design guidelines recommended in the *Drainage Manual* are 5 percent of the total impervious surface area and 2 percent of the total pervious surface area draining to it. See Table 7 for areas draining to each bioretention cell, as well as the required and provided ponding surface areas. TDA C has not changed from Phase 1 and is not repeated below.

Bioretention Cell	Contributing Area Type	Contributing Surface Area (ac)	Required Ponding Surface Area (sf)	Provided Ponding Surface Area (sf)	Area Mitigated by OSM?
Bioretention 1	Impervious	0.85	2,148	3,017	\boxtimes
(TDA A)	Pervious	0.34			
Bioretention 2	Impervious	1.17	2.944	7 440	
(TDA B)	Pervious	0.34	2,844	7,410	\square

Table 7 – Bioretention Cell Sizing for OSM

4.3 Flow Control

Flow control in TDA A will be implemented by constructing a pond system combined with a 6-foot diameter detention tank under the northwesterly parking area. The flow control restrictor tee within the control manhole has been sized to mitigate peak flows modeled in MGSFlood. See Table 8 for the MGSFlood inputs and Appendix E-1 for the modeling report.

Facility Type	Pond connected to 6-foot Diameter Pipe
Required Total Volume	57,111 cf
Live Storage Depth	6 ft
Total Linear Feet Provided	325 ft
Provided Total Volume in Pipe	8,510 cf
Facility Type	Pond
Live Storage Depth	6 ft
Available Total Volume in Pond	58,195 cf
Provided Total Volume in Pipe + Pond	66,705 cf

Table 8 – TDA A - Flow Control Facility Summary

Flow control in TDA B will be implemented by a detention pond in the southwest corner of the site with a flow control structure. Below is a summary of the required and provided flow control system. See Table 9 for the MGSFlood inputs and Appendix E-2 for the modeling report.

Table 9 – TDA B - Flow Control Facility Summary

Facility Type	6-foot Diameter Pipe
Required Total Volume	27,413 cf
Live Storage Depth	5 ft
Total Linear Feet Provided	1,100 ft
Provided Total Volume in Pipe	27,560 cf

Flow control for TDA C will be provided using a detention pond interconnected with a 6-foot diameter detention tank that was constructed during Phase 1. The post-developed condition has been modeled in MGSFlood to confirm the design from Phase 1 meets the Phase 2 developed conditions. The flow control riser will be replaced based on the updated modeling results in Phase 2. See Table 10 for the MGSFlood input and Appendix E-3 for the modeling report.

Facility Type	Pond connected to 6-foot Diameter Pipe
Required Total Volume	35,364 cf
Live Storage Depth	5 ft
Provided Total Volume in Pipe + Pond	40,380 cf

4.4 Water Quality Treatment

A. Phase 1

TDA A: Pollution-generating surfaces in TDA A include the school bus drop-off area, the north half of the parking lot, and the fire lane to the east. The runoff generated by these areas will be treated by the wetland located downstream of the detention system, which will also provide treatment for the non-target and bypass pollution generating surfaces. The non-target areas are treated to help offset areas that bypass the system. The wetland is designed per BMP T-10.30. See Appendix E-5 for wetland sizing.

TDA B: Pollution-generating surfaces in TDA B include the south half of the parking lot. A bioretention system located near the south entrance will provide treatment for these surfaces. The playfield will be covered by natural grass. Water quality treatment is not required for the playfield.

TDA C: The temporary parking constructed in Phase 1 has been replaced with non-pollution generation surfaces. The remaining pollution-generating surface in TDA C includes the service yard on the south side of the school. A Silva Cell bioretention system has been constructed in Phase 1 to provide water quality treatment. The design of the system has been confirmed in WWHM.

See Appendices E-1 through E-3 for MGSFlood/WWHM modeling reports. A letter from DeepRoot Partners was provided in the previous report confirming that the Silva Cell is acceptable as BMP T7.30. See the table below for a summary of the water quality facility sizes.

TDA A – Wetland	See Appendix E-5	
	Facility Type	Bioretention
	Required Infiltration %	91%
TDA A – Bioretention 2	Provided Infiltration %	96.01%
	Required Bottom Area	5,242 SF
	Provided Bottom Area	5,521 SF

Table 11 – Water Quality Facilities Summary

5.0 Stormwater Pollution Prevention

The project will provide temporary and permanent BMPs per the Construction Stormwater Pollution Prevention Plan (CSWPPP) outlined in Section 5.0 of the Stormwater Site Plan Report dated April 2018 to meet MR 2. A CSWPPP plan has been provided as a separate report. An additional calculation for TDA C was necessary because the entire basin is not being disturbed in Phase 2. All TESC modeling is included in Appendix E.

6.0 Special Reports and Studies

See Section 6.0 of the Stormwater Site Plan Report dated April 2018.

7.0 Other Permits

See Section 7.0 of the Stormwater Site Plan Report dated April 2018.

8.0 Operation and Maintenance Manual

See Section 8.0 of the Stormwater Site Plan Report dated April 2018.

9.0 Declaration of Covenant for Privately Maintained Stormwater Facilities

A declaration of covenant can be provided, if required.

10.0 Bond Quantities Worksheet

A Bond Quantities Worksheet for this project has not been included. Per the Revised Code of Washington (RCW), schools cannot use capital funds to post bonds. The necessary bonds for construction will be posted by the contractor, if required.

11.0 Conclusion

After completion of Phase 2, the project will meet the requirements of the 2012 Washington State Department of Ecology *Stormwater Management Manual for Western Washington amended in 2014 (Drainage Manual)*, City of Lynnwood Standard Plans, and Lynnwood Municipal Code (LMC) Chapter 13.40, Stormwater Management. This report, in conjunction with the report dated April 2018, documents how the project will meet Minimum Requirements (MRs) 1 through 9

This analysis is based on data and records either supplied to or obtained by AHBL. These documents are referenced within the text of the analysis. The analysis has been prepared using procedures and practices within the standard accepted practices of the industry.

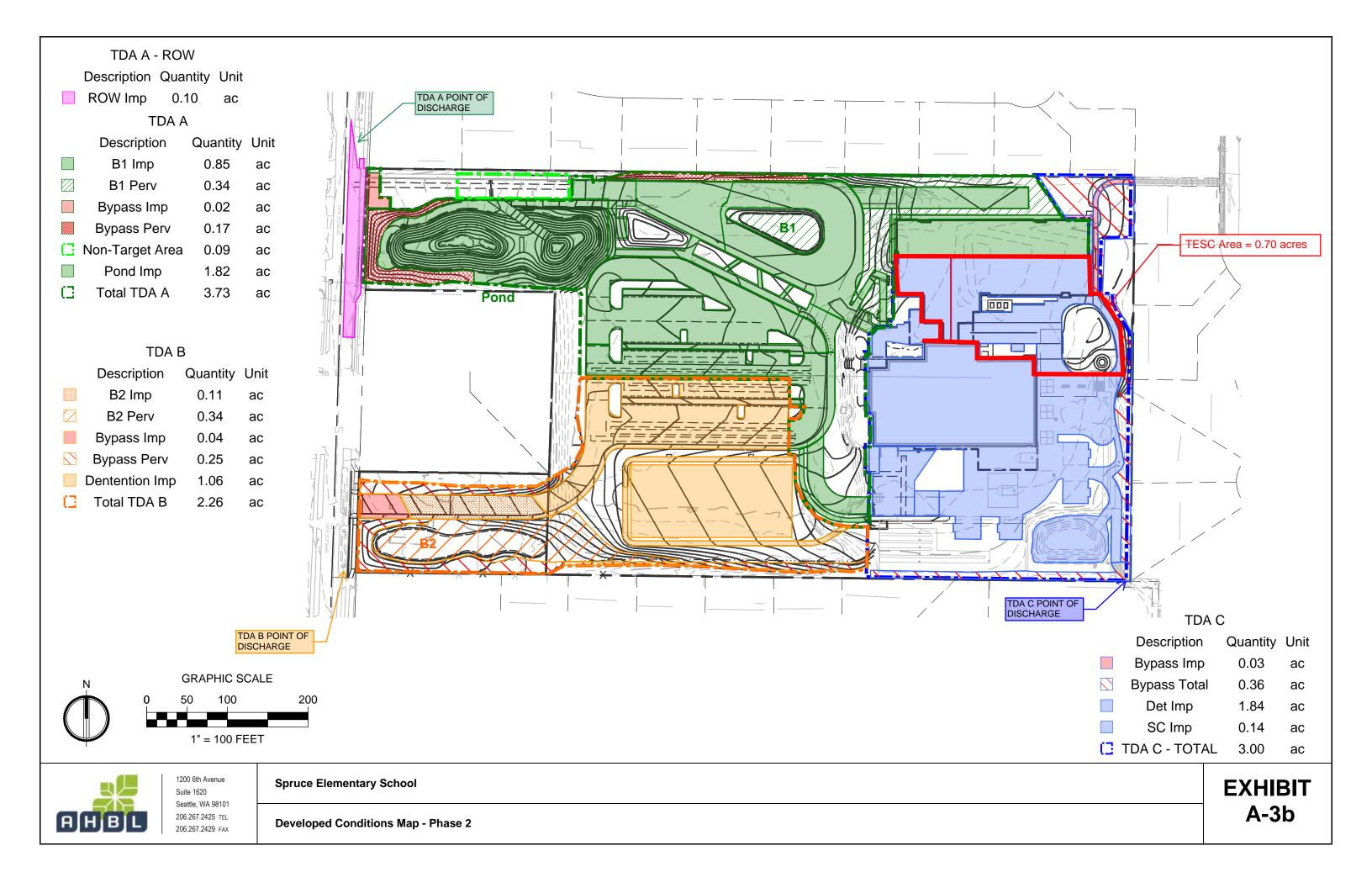
AHBL, Inc.

Yi Yang, PE Project Engineer

YY/lsk

February 2020 - Phase 2

Q:\2014\2140275\WORDPROC\Reports\Phase 2\20200203 Rpt (SSP Ph 2) 2140275.10.docx



Maps

A-3b.....Developed Conditions Map – Phase 2

Permanent Stormwater Control Calculations

E-1.....TDA A Flow Control and Water Quality Calculations

E-2.....TDA B Flow Control and Water Quality Calculations

- E-3.....TDA C Flow Control and Water Quality Calculations
- E-4.....TDA C TESC Calculations
- E-5.....TDA A Wetland Sizing Calculation

E-1

MGS FLOOD PROJECT REPORT

Program Version: MGSFlood 4.50 Program License Number: 201710010 Project Simulation Performed on: 01/29/2020 2:08 PM Report Generation Date: 01/30/2020 11:46 AM

Project Name: S	DA.fld Spruce ES DA A			
		ATION INPUT ———		
Computational Time Step	(Minutes): 15			
Precipitation Station Data Climatic Region Number:	Selected 5			
Full Period of Record Ava Precipitation Station : Evaporation Station : At Site 25-Year, 24-Hour Gage 25-Year, 24-Hour P Precipitation Scale Factor Evaporation Scale Factor	452675 Everett 456803 Puyallu Precipitation (inches) Precipitation (inches) 1.112	10/01/1948-10/01/2 p : 2.99	011	
HSPF Parameter Region HSPF Parameter Region		Default		
********** Default HSPF F	Parameters Used (Not	Modified by User) **	****	
****************************** WATI	ERSHED DEFINITION	*****	*	
Predevelopment/Po	st Development Tribu	-	-	
Total Subbasin Area (ac Area of Links that Include Total (acres)		Predeveloped 3.820 0.000 3.820	Post Developed 3.768 0.052 3.820	
SCENAR Number of Subbasins: 1	RIO: PREDEVELOPED)		
	A - Predev -Area (Acres) 3.730			

Till Forest

Impervious 0.090

Subbasin Total 3.820

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 4

 ----- Subbasin : Area to B1 -----

 ------Area (Acres) ----- -----

 Till Pasture
 0.278

 Impervious
 0.850

 ----- Subbasin Total

 1.128

Subbasin	: Area to Pond
	Area (Acres)
Till Pasture	0.540
Impervious	1.820
Subbasin Total	2.360

Subbasin : I	Bypass Area (Acres)
	x y
Till Pasture	0.170
Impervious	0.020
Subbasin Total	0.190

Subbasin	: Non Target Pond
	Area (Acres)
Impervious	0.090
Subbasin Total	0.090

-----SCENARIO: PREDEVELOPED Number of Links: 0

-----SCENARIO: POSTDEVELOPED Number of Links: 3

Link Name: B1 Link Type: Bioretention Facility Downstream Link Name: Pond

Base Elevation (ft)	:	544.54			
Riser Crest Elevation (ft)		:	544.79		
Storage Depth (ft)	:	0.25			
Bottom Length (ft)	:	100.0			
Bottom Width (ft)	:	22.7			
Side Slopes (ft/ft)	: L	1= 3.00	L2= 3.00	W1= 3.00	W2= 3.00
Bottom Area (sq-ft)	:	2268.			
Area at Riser Crest El (sq-ft)	:	2,454.			
(acres)	:	0.056			
Volume at Riser Crest (cu-ft)	:	1,951.			
(ac-ft)	:	0.045			

Infiltration on Bottom and Sideslopes Selected

Soil Properties		
Biosoil Thickness (ft)	:	1.50
Biosoil Saturated Hydraulic Conductivity (in/hr)	:	3.00
Biosoil Porosity (Percent)	:	40.00
Maximum Elevation of Bioretention Soil : 545.2	9	
Native Soil Hydraulic Conductivity (in/hr)	:	0.00

:	541.29
:	0.500

Riser Geometry		
Riser Structure Type		: Rectangular
Riser Length (ft)	: 2.00	
Riser Width (ft)		: 2.00
Common Length (ft)		: 0.000
Riser Crest Elevation		: 544.79 ft

Hydraulic Structure Geometry

Number of Devices: 0

Link Name: Pond

Link Type: Structure Downstream Link Name: POC

User Specified Elevation Volume Table Used		
Elevation (ft)	Pond Volume (cu-ft)	
531.50	0.	
531.75	532.	
532.00	1938.	
532.25	3556.	
532.50	5225.	
532.75	7004.	
533.00	8885.	
533.25	10865.	
533.50	12941.	
533.75	15224.	

534.00	17485.	
534.25	19829.	
534.50	22260.	
534.75	24773.	
535.00	27364.	
535.25	30148.	
535.50	32891.	
535.75	35707.	
536.00	38591.	
536.25	41543.	
536.50	44558.	
536.75	47708.	
537.00	50819.	
537.25	53966.	Minimum total detention volume required
537.50	57111.	
537.75	60230.	Required total detention volume = 57,111 cf
538.00	63443.	
538.25	66751.	
538.50	69654.	

Massmann Infiltration Option UsedHydraulic Conductivity (in/hr): 0.00Massmann Regression Used to Estimate Hydralic GradientDepth to Water Table (ft): 100.00Bio-Fouling Potential: LowMaintenance: Average or Better

Riser Geometry	
Riser Structure Type	: Circular
Riser Diameter (in)	: 18.00
Common Length (ft)	: 0.000
Riser Crest Elevation	: 537.50 ft

Hydraulic Structure Geometry

Number of Devices: 4

Device Number		1
Device Type	:	Circular Orifice
Control Elevation (ft)	:	531.50
Diameter (in)	:	1.00
Orientation	: ł	Horizontal
Elbow	: 1	No

Device Number		2
Device Type	:	Circular Orifice
Control Elevation (ft)	:	534.85
Diameter (in)	:	1.25
Orientation	:1	Horizontal
Elbow	:`	Yes

Device Number		3
Device Type	:	Circular Orifice
Control Elevation (ft)	:	535.60
Diameter (in)	:	1.88
Orientation	: ł	Horizontal

Elbow : Yes

---Device Number4 ---Device Type: Circular OrificeControl Elevation (ft): 536.40Diameter (in): 1.37Orientation: HorizontalElbow: Yes

Link Name: POC

Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 0

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 4 Number of Links: 3

Recharge is computed as input to PerInd Groundwater Plus Infiltration in Structures

Total Predeveloped Recharge During Simulation

Model Element Recharge Amount (ac-ft)

Subbasin: TDA A - Predev 236.032

Total:

236.032

Total Post Developed Recharge During Simulation Model Element Recharge Amount (ac-ft)

Subbasi	n: Area to B1	16.851	
Subbasi	n: Area to Pond	32.732	
Subbasi	n: Bypass	10.305	
Subbasi	n: Non Target Pond	0.000	
Link:	B1	Not Computed	
Link:	Pond	Not Computed	
Link:	POC	0.000	
Total:			59.888

Total Predevelopment Recharge is Greater than Post Developed Average Recharge Per Year, (Number of Years= 63) Predeveloped: 3.747 ac-ft/year, Post Developed: 0.951 ac-ft/year

**********Water Quality Facility Data ************

-----SCENARIO: PREDEVELOPED

Number of Links: 0

-----SCENARIO: POSTDEVELOPED

Number of Links: 3

*********** Link: POC

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 599.30 Inflow Volume Including PPT-Evap (ac-ft): 599.30 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 599.30 Secondary Outflow To Downstream System (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

***********Compliance Point Results *************

Scenario Predeveloped Compliance Subbasin: TDA A - Predev

Scenario Postdeveloped Compliance Link: POC

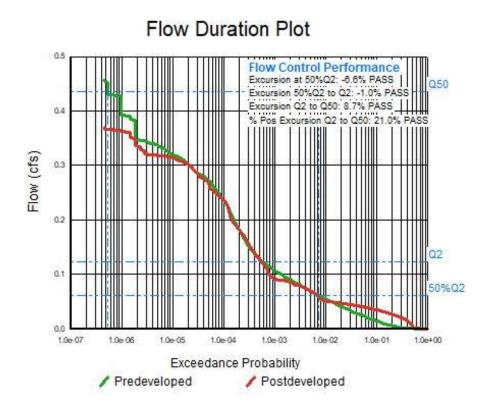
*** Point of Compliance Flow Frequency Data ***

Recurrence Interval Computed Using Gringorten Plotting Position

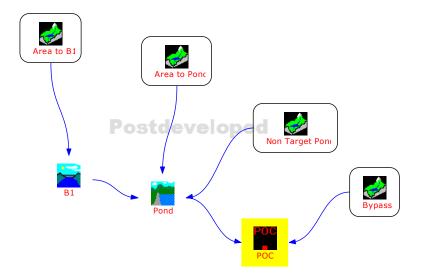
Prede	evelopment Runoff	Postdevelopm	ent Runoff	
Tr (Years)	Discharge (cfs)	Tr (Years) Disch	arge (cfs)	
2-Year	0.124	2-Year	7.849E-02	
5-Year	0.209	5-Year	0.127	
10-Year	0.292	10-Year	0.155	
25-Year	0.393	25-Year	0.254	
50-Year	0.434	50-Year	0.279	
100-Year	0.452	100-Year	0.356	
200-Year	**	200-Y	ear	**
500-Year	**	500-Y	ear	**

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

**** Flow Duration Performance ****


Excursion at Predeveloped 50%Q2 (Must be Less Than or Equal to 0%):	-6.6%	PASS
Maximum Excursion from 50%Q2 to Q2 (Must be Less Than or Equal to 0%):	-1.0%	PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	8.7%	PASS

Percent Excursion from Q2 to Q50 (Must be less than 50%):


21.0% PASS

MEETS ALL FLOW DURATION DESIGN CRITERIA: PASS

E-2

MGS FLOOD PROJECT REPORT

Program Version: MGSFlood 4.50 Program License Number: 201710010 Project Simulation Performed on: 02/04/2020 12:13 PM Report Generation Date: 02/04/2020 12:14 PM

Input File Name: TDA B-BPS.fld Project Name: Spruce Phase 2 - TDA Analysis Title:	В
Comments: PRECIPITA	ATION INPUT
Computational Time Step (Minutes): 15	
Precipitation Station Data Selected Climatic Region Number: 5	
Full Period of Record Available used for Routing Precipitation Station :452675 Everett 456803 Puyallu At Site 25-Year, 24-Hour Precipitation (inches) Gage 25-Year, 24-Hour Precipitation (inches) Precipitation Scale Factor :1.112 0.750	t 10/01/1948-10/01/2011 up): 2.99
HSPF Parameter Region Number:1HSPF Parameter Region NameUSGS	Default
********* Default HSPF Parameters Used (Not	Modified by User) **************
********************** WATERSHED DEFINITION	*****
Predevelopment/Post Development Tribu	utary Area Summary
	Predeveloped Post Developed
Total Subbasin Area (acres)	2.260 2.160
Area of Links that Include Precip/Evap (acres) Total (acres)	0.0000.1002.2602.260
SCENARIO: PREDEVELOPED)
Subbasin : TDA B Area (Acres)	
Till Forest 2.260	

Subbasin Total 2.260

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 3

 ----- Subbasin : Det Pipe -----

 ------Area (Acres) -----

 Till Pasture
 0.460

 Impervious
 1.060

Subbasin Total 1.520

Subbasin :	Bypass
	Area (Acres)
Till Pasture	0.250
Impervious	0.040
Subbasin Total	0.290

Subbasin :	Bioretention
	Area (Acres)
Till Pasture	0.240
Impervious	0.110
Subbasin Total	0.350

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: POC

Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 3

Link Name: POC Link Type: Copy Downstream Link: None Link Name: Det Pipe

Link Type: Structure Downstream Link Name: Bioretention

533.80 () 534.00 () 534.20 () 534.40 () 534.60 () 534.80 () 534.80 () 535.00 () 535.20 () 535.40 () 535.60 () 535.80 () 536.00 () 536.20 () 536.40 () 536.40 () 536.60 () 536.700 () 537.00 () 537.40 () 537.60 () 537.80 () 538.00 () 538.40 () 538.40 () 538.80 () 538.80 () 539.00 () 539.20 ()	Volume Table Used ond Volume (cu-ft) 0. 249. 872. 1474. 2161. 3188. 4027. 4917. 6162. 7138. 8140. 9515. 10567. 11629. 13062. 14143. 15223. 16656. 17718. 18770. 20146. 21147. 22123. 23369. 24258. 25097. 26124. 26812. Total de
	28036. 28285.

Total detention volume required = 27413 cu-ft

Massmann Infiltration Option UsedHydraulic Conductivity (in/hr): 0.00Massmann Regression Used to Estimate Hydralic GradientDepth to Water Table (ft): 100.00Bio-Fouling Potential: LowMaintenance: Average or Better

Riser Geometry	
Riser Structure Type	: Circular
Riser Diameter (in)	: 18.00
Common Length (ft)	: 0.000
Riser Crest Elevation	: 539.30 ft

Hydraulic Structure Geometry

Number of Devices: 4

Device Number	1
Device Type	: Circular Orifice
Control Elevation (ft)	: 534.30
Diameter (in)	: 0.62
Orientation	: Horizontal
Elbow	: No
Device Number	2
Device Type	: Circular Orifice
Control Elevation (ft)	: 536.50
Diameter (in)	: 0.50
Orientation	: Horizontal
Elbow	: Yes
Device Number	3
Device Type	: Circular Orifice
Control Elevation (ft)	: 537.10
Diameter (in)	: 0.75
Orientation	: Horizontal
Elbow	: Yes
Device Number	4
Device Type	: Circular Orifice
Control Elevation (ft)	: 538.00
Diameter (in)	: 1.37
Orientation	: Horizontal
Elbow	: Yes

Link Name: Bioretention

Link Type: Bioretention Facility Downstream Link Name: POC

Base Elevation (ft)	:	533.76	
Riser Crest Elevation (ft)		:	534.16
Storage Depth (ft)	:	0.40	
Bottom Length (ft)	:	208.0	
Bottom Width (ft)	:	21.0	
Side Slopes (ft/ft)	: L	1= 3.00	L2= 3.00 W1= 3.00 W2= 3.00
Bottom Area (sq-ft)	:	4368.	
Area at Riser Crest El (sq-ft)	:	4,923.	Minimum bottom area required for
(acres)	:	0.113	Bioretention 2 = 4,368*1.2 = 5,242 sq-ft
Volume at Riser Crest (cu-ft)	:	4,479.	
(ac-ft)	:	0.103	

Infiltration on Bottom and Sideslopes Selected

Soil Properties		
Biosoil Thickness (ft)	:	1.50
Biosoil Saturated Hydraulic Conductivity (in/hr)	:	3.00
Biosoil Porosity (Percent)	:	40.00
Maximum Elevation of Bioretention Soil : 534.5	51	
Native Soil Hydraulic Conductivity (in/hr)	:	0.00

Underdrain Present

Orifice Present in Under Drain		
Orifice Control Elevation (ft)	:	530.51
Orifice Diameter (in)	:	0.625

Riser Geometry		
Riser Structure Type		: Rectangular
Riser Length (ft)	: 2.00	
Riser Width (ft)		: 2.00
Common Length (ft)		: 0.000
Riser Crest Elevation		: 534.16 ft

Hydraulic Structure Geometry

Number of Devices: 1

Device Number		1
Device Type	:	Circular Orifice
Control Elevation (ft)	:	534.01
Diameter (in)	:	4.00
Orientation	:	Horizontal
Elbow	:	Yes

-----SCENARIO: PREDEVELOPED Number of Subbasins: 1

Number of Links: 1

*********** Subbasin: TDA B **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year	6.416E-02
5-Year	9.840E-02
10-Year	0.165
25-Year	0.196
50-Year	0.233
100-Year	0.237
200-Year	**
500-Year	**
** Decord tee C	Chart to Commute Deals Discharge fo

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

25-Year	0.196
50-Year	0.233
100-Year	0.237
200-Year	**
500-Year	**

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 3 Number of Links: 3

********** Subbasin: Det Pipe **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

	2-Year	0.495
	5-Year	0.689
	10-Year	0.861
	25-Year	1.147
	50-Year	1.342
	100-Year	1.667
	200-Year	**
	500-Year	**
**	Record too S	bort to Compute Peak Discharge for These Recurrence

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

*********** Subbasin: Bypass **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

_		
	2-Year	3.015E-02
	5-Year	5.065E-02
	10-Year	6.169E-02
	25-Year	0.131
	50-Year	0.150
	100-Year	0.200
	200-Year	**
	500-Year	**

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

*********** Subbasin: Bioretention **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year	5.996E-02	
5-Year	8.996E-02	
10-Year	0.109	

25-Year	0.195
50-Year	0.219
100-Year	0.286
200-Year	**
500-Year	**

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

********** Link: POC ******* Link Inflow **Frequency Stats** Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Flood Peak (cfs) Tr (yrs) _____ 2-Year 7.785E-02 5-Year 0.110 10-Year 0.137 25-Year 0.158 50-Year 0.210 100-Year 0.225 200-Year **

500-Year

**

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

		****	Link Inflow
======================================	0.495		
5-Year	0.689		
10-Year	0.861		
25-Year	1.147		
50-Year	1.342		
100-Year	1.667		
200-Year	**		
500-Year	**		
** Record too	Short to Compute Peak Discharge for These Recurrence In	tervals	
********** Link:	Det Pipe	********	Link Outflow 1
Frequency Sta	1		
Flood Freque	ency Data(cfs)		

(Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year 2.142E-02 5-Year 3.432E-02 10-Year 3.917E-02 25-Year 6.649E-02 50-Year 8.809E-02 100-Year 0.136 200-Year ** 500-Year **

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

********** Link: Det Pipe ******* Link WSEL Stats WSEL Frequency Data(ft) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) WSEL Peak (ft) _____ 1.05-Year 535.986 1.11-Year 536.148 1.25-Year 536.386 2.00-Year 536.975 3.33-Year 537.286 5-Year 537.519 10-Year 537.838 25-Year 538.222 50-Year 538.543 100-Year 539.201 ********** Link: Bioretention ****** Link Inflow **Frequency Stats** Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Flood Peak (cfs) Tr (yrs) _____ 2-Year 7.262E-02 5-Year 0.104 10-Year 0.126 25-Year 0.206 50-Year 0.227 100-Year 0.293 ** 200-Year ** 500-Year ** Record too Short to Compute Peak Discharge for These Recurrence Intervals ********** Link: Bioretention ****** Link Outflow 1 **Frequency Stats** Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs) _____ 2-Year 6.000E-02 5-Year 7.912E-02 10-Year 9.046E-02 25-Year 0.105 0.132 50-Year 100-Year 0.160

20	0-	Year	

500-Year **

********** Link: Bioretention

**

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

********** Link WSEL Stats

1.11-Year	533.944	
1.25-Year	534.011	
2.00-Year	534.022	
3.33-Year	534.028	
5-Year	534.032	
10-Year	534.041	
25-Year	534.055	
50-Year	534.088	
100-Year	534.131	

*********Groundwater Recharge Summary ***********

Recharge is computed as input to PerInd Groundwater Plus Infiltration in Structures

Total Predevelop Model Element	pped Recharge During Simulation Recharge Amount (ac-ft)	
Subbasin: TDA B Link: POC	143.011 0.000	
Total:	143.011	
Total Post Develop Model Element	oped Recharge During Simulation Recharge Amount (ac-ft)	
Subbasin: Det Pipe Subbasin: Bypass Subbasin: Bioretention Link: POC Link: Det Pipe Link: Bioretention	27.883 15.154 14.548 0.000 0.000 0.000	
Total:	57.584	
Total Predevelopment Recharge is Greater than Post Developed Average Recharge Per Year, (Number of Years= 63) Predeveloped: 2.270 ac-ft/year, Post Developed: 0.914 ac-ft/year		
*********Water Quality Facility Data ***********		
SCENARIO: P	PREDEVELOPED	
Number of Links: 1		

********** Link: POC

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 117.49 Inflow Volume Including PPT-Evap (ac-ft): 117.49 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 117.49 Secondary Outflow To Downstream System (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 3

*********** Link: POC

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 313.46 Inflow Volume Including PPT-Evap (ac-ft): 313.46 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 313.46 Secondary Outflow To Downstream System (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

********** Link: Det Pipe

Basic Wet Pond Volume (91% Exceedance): 5543. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 8314. cu-ft

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 231.33 Inflow Volume Including PPT-Evap (ac-ft): 231.33 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 231.30 Secondary Outflow To Downstream System (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

*********** Link: Bioretention

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 270.33 Inflow Volume Including PPT-Evap (ac-ft): 286.57 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 278.00, 97.01% Primary Outflow To Downstream System (ac-ft): 286.57 Secondary Outflow To Downstream System (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered)/Total Volume: 97.01%

**********Compliance Point Results **************

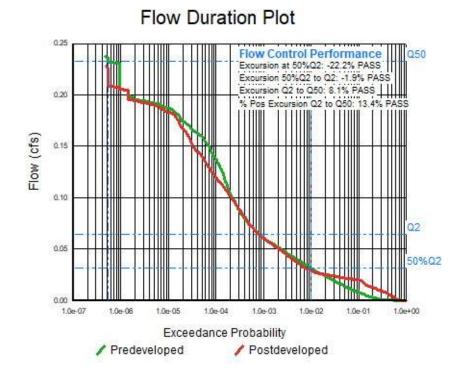
Scenario Predeveloped Compliance Link: POC Scenario Postdeveloped Compliance Link: POC

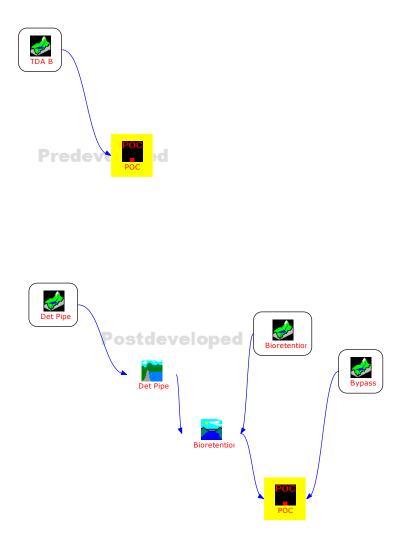
*** Point of Compliance Flow Frequency Data ***

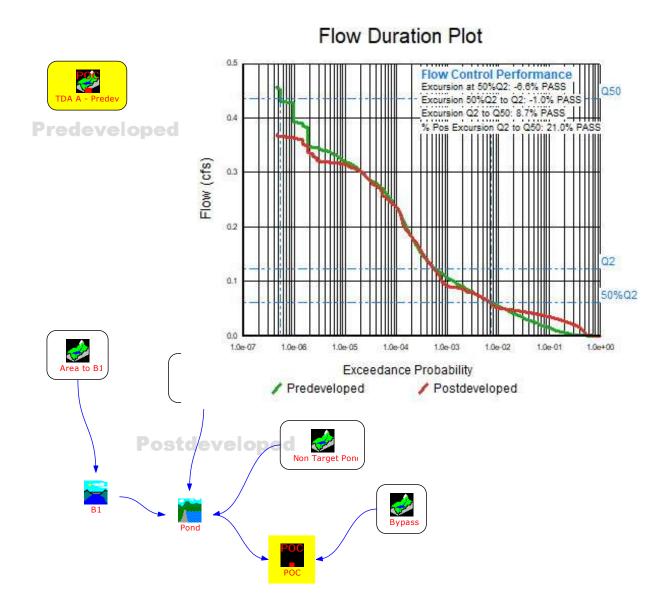
Recurrence Interval Computed Using Gringorten Plotting Position

	evelopment Runoff	Postdevelopr		
Tr (Years)	Discharge (cfs)	Tr (Years) Disch	narge (cfs)	
2-Year	6.416E-02	2-Year	7.785E-02	
5-Year	9.840E-02	5-Year	0.110	
10-Year	0.165	10-Year	0.137	
25-Year	0.196	25-Year	0.158	
50-Year	0.233	50-Year	0.210	
100-Year	0.237	100-Year	0.225	
200-Year	**	200-`	Year	**
500-Year	**	500-`	Year	**
** Decord too	Short to Compute Deal	Discharge for These P	ogurrongo Inton	

** Record too Short to Compute Peak Discharge for These Recurrence Intervals




**** Flow Duration Performance ****


Excursion at Predeveloped 50%Q2 (Must be Less Than or Equal to 0%):	-22.2%	PASS
Maximum Excursion from 50%Q2 to Q2 (Must be Less Than or Equal to 0%):	-1.9%	PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	8.1%	PASS
Percent Excursion from Q2 to Q50 (Must be less than 50%):	13.4%	PASS

MEETS ALL FLOW DURATION DESIGN CRITERIA: PASS

<section-header>

General Model Information

Project Name:	TDA C
Site Name:	
Site Address:	
City:	
Report Date:	10/15/2019
Gage:	Everett
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2017/04/14
Version:	4.2.13

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

к	asi	n	- 1
	asi		

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Mod	acre 3
Pervious Total	3
Impervious Land Use	acre
Impervious Total	0
Basin Total	3
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Mitigated

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Flat	acre 0.66
Pervious Total	0.66
Impervious Land Use SIDEWALKS FLAT	acre 1.84
Impervious Total	1.84
Basin Total	2.5
Flement Flows To:	

Interflow
Detention

Groundwater

Bypass

Bypass:	Yes
GroundWater:	No
Pervious Land Use C, Pasture, Flat	acre 0.33
Pervious Total	0.33
Impervious Land Use PARKING FLAT	acre 0.03
Impervious Total	0.03
Basin Total	0.36

Element Flows To: Surface Interflow

Groundwater

Basin 3

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use PARKING FLAT	acre 0.14
Impervious Total	0.14
Basin Total	0.14
Element Flows To:	

Surface Interflow Groundwater Surface Silva Cell Surface Silva Cell Routing Elements Predeveloped Routing

Mitigated Routing

Detention

Bottom Length: Bottom Width: Depth: Volume at riser head: Side slope 1: Side slope 2: Side slope 3: Side slope 4: Discharge Structure	60.00 ft. 65.00 ft. 6 ft. 0.8057 acre-feet. 3 To 1 3 To 1 3 To 1 3 To 1 3 To 1 3 To 1
Riser Height:	5.5 ft.
Riser Diameter:	18 in.
Notch Type:	Rectangular
Notch Width:	0.010 ft.
Notch Height:	0.750 ft.
Orifice 1 Diameter:	0.75 in. Elevation:0.5 ft.
Orifice 2 Diameter:	0.625 in. Elevation:4.3 ft.
Orifice 3 Diameter:	0.625 in. Elevation:4.8 ft.
Element Flows To:	
Outlet 1	Outlet 2

Pond Hydraulic Table

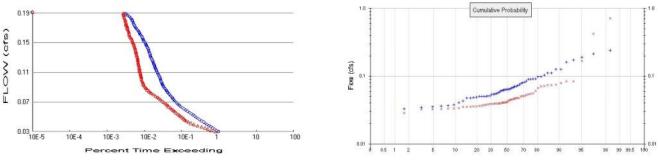
Stage(feet) 0.0000 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 0.6000 0.6667 0.7333 0.8000 0.8667 0.9333 1.0000 1.0667 1.1333 1.2000 1.2667	Area(ac.) 0.089 0.090 0.091 0.093 0.094 0.095 0.096 0.097 0.098 0.100 0.101 0.102 0.103 0.105 0.106 0.107 0.108 0.110 0.111 0.112	Volume(ac-ft.) 0.000 0.006 0.012 0.018 0.024 0.030 0.037 0.043 0.050 0.056 0.063 0.070 0.077 0.084 0.091 0.098 0.105 0.112 0.120 0.127	Discharge(cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.012 0.013	Infilt(cfs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000
0.9333	0.106	0.091	0.010	0.000
1.0000	0.107	0.098	0.010	0.000
1.0667	0.108	0.105	0.011	0.000
1.1333	0.110	0.112	0.012	0.000
1.1333	0.110	0.112	0.012	0.000
1.2000	0.111	0.120	0.012	0.000
1.2667	0.112	0.127	0.013	0.000
1.3333	0.114	0.135	0.013	0.000
1.4000	0.115	0.143	0.014	0.000
1.4667	0.116	0.150	0.015	0.000
1.5333	0.117	0.158	0.015	0.000
1.6000	0.119	0.166	0.016	0.000
1.6667	0.120	0.174	0.016	0.000
1.7333	0.121	0.182	0.017	0.000
1.8000	0.123	0.190	0.017	0.000
1.8667	0.124	0.198	0.017	0.000
1.9333	0.125	0.207	0.018	0.000

5.8667	0.219	0.877	3.339	0.000
5.9333	0.220	0.891	4.067	0.000
6.0000	0.222	0.906	4.718	0.000
6.0667	0.224	0.921	5.259	0.000

Silva Cell

Bottom Length: Bottom Width: Material thickness of first layer Material type for first layer: Material thickness of second Material type for second laye Material thickness of third lay Material type for third layer: Underdrain used	layer: r:	11.00 ft. 11.00 ft. 1.5 SMMWW 12 in/hr 2 GRAVEL 0 GRAVEL
Underdrain Diameter (feet):		0.5
Orifice Diameter (in.):		6
Offset (in.):		6
Flow Through Underdrain (ad	c-ft.):	20.881
Total Outflow (ac-ft.):	,	21.772
Percent Through Underdrain	:	95.91 >91% thus Water Quality Treatment provided
Discharge Structure		
Riser Height: (D.5 ft.	
Riser Diameter:	24 in.	
Element Flows To:		
Outlet 1 Outlet Detention	2	

Bioretention Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cf	s) Infilt(cfs)
0.0000	0.0028	0.0000	0.0000	0.0000
0.0495	0.0028	0.0001	0.0000	0.0000
0.0989	0.0028	0.0001	0.0000	0.0000
0.1484	0.0028	0.0002	0.0000	0.0000
0.1978	0.0028	0.0003	0.0000	0.0000
0.2473	0.0028	0.0003	0.0000	0.0000
0.2967	0.0028	0.0004	0.0000	0.0000
0.3462	0.0028	0.0004	0.0000	0.0000
0.3956	0.0028	0.0005	0.0000	0.0000
0.4451	0.0028	0.0006	0.0000	0.0000
0.4945	0.0028	0.0006	0.0000	0.0000
0.5440	0.0028	0.0007	0.0000	0.0000
0.5934	0.0028	0.0008	0.0000	0.0000
0.6429	0.0028	0.0008	0.0000	0.0000
0.6923	0.0028	0.0009	0.0000	0.0000
0.7418	0.0028	0.0009	0.0000	0.0000
0.7912	0.0028	0.0010	0.0000	0.0000
0.8407	0.0028	0.0011	0.0000	0.0000
0.8901	0.0028	0.0011	0.0000	0.0000
0.9396	0.0028	0.0012	0.0000	0.0000
0.9890	0.0028	0.0013	0.0000	0.0000
1.0385	0.0028	0.0013	0.0000	0.0000
1.0879	0.0028	0.0014	0.0000	0.0000
1.1374	0.0028	0.0014	0.0000	0.0000
1.1868	0.0028	0.0015	0.0000	0.0000
1.2363	0.0028	0.0016	0.0000	0.0000
1.2857	0.0028	0.0016	0.0000	0.0000
1.3352	0.0028	0.0017	0.0000	0.0000
1.3846	0.0028	0.0018	0.0000	0.0000
1.4341	0.0028	0.0018	0.0000	0.0000
1.4835	0.0028	0.0019	0.0000	0.0000

1.5330 1.5824 1.6319 1.6813 1.7308 1.7308 1.7802 1.8297 1.8791 1.9286 1.9780 2.0275 2.0769 2.1264 2.2253 2.2747 2.3242 2.3736 2.4231 2.4725 2.5220 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.5520 2.5714 2.6209 2.5714 2.6209 2.5714 2.6209 2.5714 2.5220 2.5714 2.6209 2.5714 2.6209 2.5714 2.5220 2.5714 2.5220 2.5714 2.5220 2.5714 2.5220 2.5714 2.5220 2.5714 2.5220 2.5714 2.5220 2.5714 2.6209 2.7198 2.7692 2.8187 2.8681 2.9176 3.0659 3.1154 3.6263 3.3132 3.3626 3.4121 3.4615 3.5000		128 1	0.0019 0.0020 0.0021 0.0021 0.0022 0.0022 0.0023 0.0023 0.0025 0.0025 0.0026 0.0026 0.0027 0.0027 0.0029 0.0029 0.0029 0.0029 0.0030 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0032 0.0033 0.0033 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0036 0.0037 0.0038 0.0038 0.0039 0.0039 0.0039 0.0040 0.0041 0.0041 0.0042 0.0042	0.0000 0.00	0.0000 0.00
	Bioretentior	•			
Stage(fe 3.5000 3.5495 3.5989 3.6484 3.6978 3.7473 3.7967 3.8462 3.8956 3.9451 3.9945 4.0440 4.0934 4.1429	eet)Area(ac. 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028)Volume(0.0042 0.0043 0.0045 0.0046 0.0048 0.0049 0.0050 0.0052 0.0053 0.0054 0.0056 0.0057 0.0059 0.0060	ac-ft.)Dischar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	ge(cfs)To Amer 0.0347 0.0347 0.0358 0.0369 0.0380 0.0392 0.0403 0.0414 0.0425 0.0436 0.0436 0.0447 0.0458 0.0469 0.0480	nded(cfs)Infilt(cfs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.1923	0.0028	0.0061	0.0000	0.0491	0.0000
4.2418	0.0028	0.0063	0.0000	0.0502	0.0000
4.2912	0.0028	0.0064	0.0000	0.0513	0.0000
4.3407	0.0028	0.0065	0.0000	0.0524	0.0000
4.3901	0.0028	0.0067	0.0000	0.0536	0.0000
4.4396	0.0028	0.0068	0.0000	0.0547	0.0000
4.4890	0.0028	0.0070	0.0000	0.0558	0.0000
4.5000	0.0028	0.0070	0.0000	0.0560	0.0000

Surface Silva Cell Element Flows To: Outlet 1 Outlet 2 Silva Cell Detention

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	3
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.99 Total Impervious Area: 2.01

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1 **Return Period** Flow(cfs) 0.066835 2 year 0.10231 5 year 10 year 0.127814 25 year 0.162052 50 year 0.188903 100 year 0.216837

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.046074
5 year	0.076225
10 year	0.103644
25 year	0.148939
50 year	0.191988
100 year	0.244514

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 ed

Year	Predeveloped	Mitigate
1949	0.036	0.035
1950	0.071	0.045
1951	0.064	0.036
1952	0.049	0.039
1953	0.038	0.033
1954	0.191	0.071
1955	0.098	0.066
1956	0.085	0.074
1957	0.098	0.051
1958	0.069	0.051

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** Predeveloped Mitigated 1 0.2402 0.7119

1	0.2402	0.7119
2	0.2134	0.4229
3	0.1906	0.1684

Duration Flows The Facility PASSED

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0366	16309		66	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0381		8994	62	Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0397	12882	7264	56	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0617	2714	1253	46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Pass
0.085289330333Pass0.086884928133Pass0.088480925831Pass0.090076124031Pass0.091572022631Pass0.093168921831Pass0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117832Pass0.104155517832Pass0.105754117532Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.086884928133Pass0.088480925831Pass0.090076124031Pass0.091572022631Pass0.093168921831Pass0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.088480925831Pass0.090076124031Pass0.091572022631Pass0.093168921831Pass0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117832Pass0.104155517832Pass0.105754117532Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.090076124031Pass0.091572022631Pass0.093168921831Pass0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117832Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.091572022631Pass0.093168921831Pass0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117832Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.093168921831Pass0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117831Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.094766421031Pass0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117831Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.096264119730Pass0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117831Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.097862319531Pass0.099460319031Pass0.101058618431Pass0.102557117831Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.101058618431Pass0.102557117831Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass		623			
0.102557117831Pass0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.104155517832Pass0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.105754117532Pass0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.107252317232Pass0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.108850616933Pass0.110448416734Pass0.111946516435Pass					
0.110448416734Pass0.111946516435Pass					
0.1119 465 164 35 Pass					
U.1130 440 130 33 Pass	0.1135	448	158	35	Pass
0.1151 440 158 35 Pass		440			

0.1167 0.1182 0.1182 0.1214 0.1229 0.1245 0.1261 0.1277 0.1292 0.1308 0.1324 0.1339 0.1355 0.1371 0.1386 0.1402 0.1418 0.1402 0.1449 0.1449 0.1449 0.1445 0.1449 0.1449 0.1512 0.1528 0.1575 0.1575 0.1591 0.1606 0.1622 0.1638 0.1653 0.1653 0.1669 0.1685 0.1701 0.1716 0.1732 0.1748 0.1779 0.1795 0.1811 0.1826 0.1842 0.1858 0.1873	$\begin{array}{c} 424\\ 412\\ 403\\ 390\\ 376\\ 365\\ 357\\ 343\\ 335\\ 323\\ 300\\ 293\\ 285\\ 275\\ 269\\ 251\\ 244\\ 235\\ 228\\ 213\\ 206\\ 191\\ 185\\ 163\\ 155\\ 148\\ 163\\ 155\\ 168\\ 163\\ 155\\ 148\\ 163\\ 155\\ 148\\ 163\\ 155\\ 148\\ 163\\ 155\\ 148\\ 163\\ 155\\ 148\\ 163\\ 155\\ 148\\ 163\\ 155\\ 148\\ 101\\ 98\\ 91\\ 87\\ 77\\ 70\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\$	$\begin{array}{c} 158\\ 155\\ 153\\ 150\\ 147\\ 145\\ 145\\ 142\\ 141\\ 140\\ 136\\ 134\\ 131\\ 129\\ 127\\ 125\\ 122\\ 120\\ 117\\ 115\\ 110\\ 108\\ 104\\ 102\\ 100\\ 93\\ 89\\ 87\\ 84\\ 83\\ 82\\ 81\\ 79\\ 75\\ 74\\ 74\\ 69\\ 66\\ 66\\ 65\\ 63\\ 61\\ 60\\ 59\end{array}$	$\begin{array}{c} 37\\ 37\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 44\\ 45\\ 46\\ 47\\ 46\\ 78\\ 49\\ 50\\ 88\\ 88\\ 50\\ 52\\ 56\\ 58\\ 20\\ 62\\ 63\\ 66\\ 69\\ 70\\ 78\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 20\\ 62\\ 63\\ 66\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 50\\ 52\\ 56\\ 56\\ 58\\ 60\\ 69\\ 77\\ 84\\ 84\\ 88\\ 80\\ 50\\ 52\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$	Pass Pass Pass Pass Pass Pass Pass Pass
0.1873	70	59	84	Pass
0.1889	67	58	86	Pass

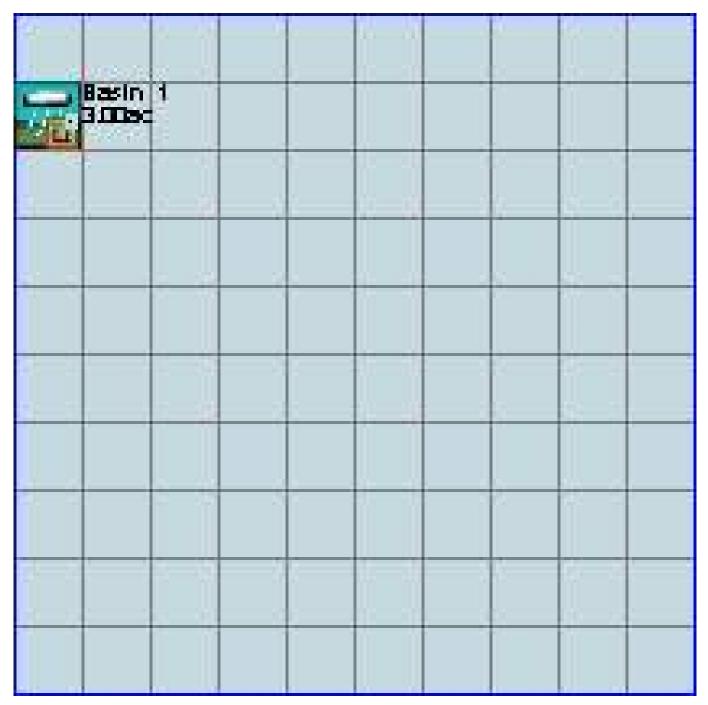
Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.

LID Report

LID Technique	Used for Treatment ?	Needs	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Detention POC		309.29				0.00			
Silva Cell		19.81				0.00			
Total Volume Infiltrated		329.11	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr	ſ								Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.


PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation
 START
 1948
 10
 01
 END
 2009
 09
 30

 RUN INTERP OUTPUT LEVEL
 3
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 WDM TDA C.wdm MESSU 25 MitTDA C.MES 27 MitTDA C.L61 28 MitTDA C.L62 POCTDA Cl.dat 30 END FILES OPN SEOUENCE INDELT 00:15 INGRP PERLND 13 IMPLND 8 11 IMPLND 2 1 GENER RCHRES 2 RCHRES -3 1 RCHRES COPY 501 COPY COPY 601 1 DISPLY END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1

 # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND

 1
 Detention

 MAX
 1
 2
 30
 9

 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 1 601 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** 2 24 END OPCODE PARM K *** # # Ο. 2 END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out 1 1 1 1 * * * 13 C, Pasture, Flat 27 0 END GEN-INFO *** Section PWATER***

TDA C

- # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 13 0 0 1 0 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO 13 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 13
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1

 PWAT-PARM2

 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 13
 0
 4.5
 0.06
 400
 0.05
 0.5
 0.996

 PWAT-PARM3 <PLS > PWATER input info: Part 3 ***
- # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP 13 0 0 2 2 0 0 0 END PWAT-PARM3 PWAT-PARM4
 <PLS >
 PWATER input info: Part 4

 # - #
 CEPSC
 UZSN
 NSUR

 13
 0.15
 0.4
 0.3
 * * * INTFW IRC LZETP *** 6 0.5 0.4 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 13
 0
 0
 0
 0
 2.5
 1
 GWVS 0 END PWAT-STATE1 END PERLND TMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # in out 1 1 1 27 0 1 1 1 27 0 * * * SIDEWALKS/FLAT 8 PARKING/FLAT 11 END GEN-INFO *** Section IWATER*** ACTIVITY
 # # ATMP
 SNOW
 IWAT
 SLD
 IWG
 IQAL

 8
 0
 0
 1
 0
 0
 0

 11
 0
 0
 1
 0
 0
 0
 * * * END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI ***

0 8 0 0 0 0 0 0 11 0 Ο Ο END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 * * * # - # *** LSUR SLSUR NSUR RETSC 0.01 0.1 0.1 8 400 11 400 0.01 0.1 0.1 END IWAT-PARM2 IWAT-PARM3 * * * IWATER input info: Part 3 <PLS > # - # ***PETMAX PETMIN 8 0 0 0 0 11 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 8 0 0 0 11 0 END IWAT-STATE1 END IMPLND SCHEMATIC <-Target-> MBLK * * * <-Source-> <--Area--> * * * <Name> # <-factor-> <Name> # Tbl# Mitigated*** PERLND 13 0.66 RCHRES 3 2 PERLND 13 0.66 RCHRES 3 3 IMPLND 8 1.84 RCHRES 3 5 Basin 3*** IMPLND 11 0.14 RCHRES 1 5 Bypass*** PERLND 13 0.33 COPY 501 12 PERLND 13 0.33 COPY 601 12 PERLND 13 13 0.33 COPY 501 PERLND 13 0.33 COPY 601 13 IMPLND 11 0.03 COPY 501 15 IMPLND 11 0.03 COPY 601 15 *****Routing***** PERLND 13 0.66 COPY 1 12 IMPLND 1.84 COPY 8 1 15 PERLND 13 0.66 COPY 1 13 RCHRES 2 1 RCHRES 3 6 2 RCHRES COPY 1 16 RCHRES 1 RCHRES 3 7 1 1 17 RCHRES 1 COPY 1 1 2 RCHRES RCHRES 8 3 1 COPY 501 16 RCHRES END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # * * * <Name> # # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 GENER 2 OUTPUT TIMSER .0011111 RCHRES EXTNL OUTDGT 1 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO

RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out Surface Silva Ce-0153112801Silva Cell11112801Detention11112801 1 2 3 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2
 2
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 END ACTIVITY PRINT-INFO ******* 0 0 0 0 0 0 0 1 9 4 3 END PRINT-INFO HYDR-PARM1

 TDR-PARMI
 RCHRES
 Flags for each HYDR Section

 # - #
 VC A1 A2 A3
 ODFVFG for each *** ODGTFG for each
 FUNCT for each

 FG FG FG FG FG possible
 exit

 possible
 exit

 1
 0
 1
 0
 4
 5
 6
 0
 0
 1
 0
 0
 2
 1
 2
 2

 2
 0
 1
 0
 4
 0
 0
 0
 0
 0
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 <t END HYDR-PARM1 HYDR-PARM2 #-# FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * *
 1
 1
 0.01
 0.0
 0.0
 0.5
 0.0

 2
 2
 0.01
 0.0
 0.0
 0.5
 0.0

 3
 3
 0.01
 0.0
 0.0
 0.5
 0.0
 END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * *

 4.0
 5.0
 6.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 1 0 2 0 3 0 END HYDR-INIT END RCHRES SPEC-ACTIONS *** User-Defined Variable Quantity Lines * * * addr * * * <----> UVQUAN vol2 RCHRES 2 VOL 4 UVQUAN VO12 RCHRES 2 VOL UVQUAN V2m2 GLOBAL WORKSP 1 UVQUAN VPO2 GLOBAL WORKSP 2 UVQUAN V2d2 GENER 2 K 1 *** User-Defined Target Variable Names 3 3 3 *** addr or addr or UVNAMEv2m21WORKSP11.0QUANUVNAMEvpo21WORKSP21.0QUAN

UVNAME v2d2 1 K 1 1.0 QUAN *** opt foplop dcdts yr mo dy hr mn d t vnam s1 s2 s3 ac quantity tc ts rp GENER 2 v2m2 = 172. *** Compute remaining available pore space GENER 2 vpo2 = v2m2 vpo2 -= vol2 GENER 2 *** Check to see if VPORA goes negative; if so set VPORA = 0.0 IF (vpo2 < 0.0) THEN GENER 2 = 0.0 vpo2 END IF *** Infiltration volume GENER 2 v2d2 = vpo2 END SPEC-ACTIONS FTABLES 2 FTABLE 91 4 Depth Area Volume Outflow1 Velocity Travel Time***

 (ft)
 (acres)
 (acre-ft)
 (cfs)
 (ft/sec)
 (Minutes)***

 0.000000
 0.089532
 0.000000
 0.000000
 0.000000

 0.066667
 0.090683
 0.006007
 0.000000

 0.133333
 0.091842
 0.012091
 0.000000

 0.200000
 0.093008
 0.018253
 0.000000

 0.266667 0.094182 0.024493 0.000000 0.333333 0.095363 0.030811 0.000000 0.400000 0.096551 0.037208 0.000000 0.466667 0.097747 0.043685 0.000000 0.533333 0.098949 0.050241 0.002787 0.600000 0.100160 0.056878 0.004827 0.666667 0.101377 0.063596 0.006232 0.733333 0.102602 0.070395 0.007373 0.800000 0.103835 0.077277 0.008361 0.866667 0.105074 0.084240 0.009243 0.933333 0.106321 0.091287 0.010048 1.000000 0.107576 0.098417 0.010794 1.06060600.1073760.0984170.0107941.0666670.1088370.1056300.0114911.1333330.1101070.1129280.0121481.2000000.1113830.1203110.0127711.2666670.1126670.1277800.0133651.3333330.1139580.1353340.013934 1.400000 0.115256 0.142974 0.014481 1.466667 0.116562 0.150702 0.015008 1.533333 0.117875 0.158516 0.015517 1.600000 0.119196 0.166419 0.016009 1.6666667 0.120523 0.174409 0.016487 1.7333330.1218590.1824890.0169521.8000000.1232010.1906570.0174041.8666670.1245510.1989160.0178451.9333330.1259080.2072640.018275 2.000000 0.127273 0.215704 0.018695 2.066667 0.128645 0.224234 0.019106 2.133333 0.130024 0.232857 0.019508 2.200000 0.131410 0.241571 0.019902 2.266667 0.132804 0.250378 0.020289 2.2000070.1320040.2303780.020282.3333330.1342060.2592790.0206682.4000000.1356140.2682730.0210412.4666670.1370300.2773610.0214072.5333330.1384540.2865430.0217662.6000000.1398840.2958210.022120 2.666667 0.141322 0.305195 0.022469 2.733333 0.142768 0.314665 0.022812 2.800000 0.144220 0.324231 0.023150 2.866667 0.145680 0.333894 0.023483 2.933333 0.147148 0.343655 0.023811 3.000000 0.148623 0.353514 0.024135 3.066667 0.150105 0.363472 0.024455 3.133333 0.151594 0.373528 0.024770 3.200000 0.153091 0.383685 0.025082 3.266667 0.154595 0.393941 0.025390 3.333333 0.156107 0.404298 0.025694

3.400000 3.466667 3.53333 3.600000 3.66667 3.73333 3.800000 3.866667 4.000000 4.066667 4.133333 4.000000 4.266667 4.33333 4.200000 4.266667 4.33333 4.400000 4.466667 4.533333 4.600000 4.666667 5.133333 5.000000 5.266667 5.133333 5.200000 5.266667 5.133333 5.200000 5.266667 5.533333 5.400000 5.266667 5.533333 5.400000 5.266667 5.533333 5.400000 5.266667 5.533333 5.600000 5.666667 5.533333 5.800000 5.66667 5.933333 5.800000 5.866667 5.933333 5.800000 5.86667 5.933333 5.800000 5.86667 5.933333 5.800000 5.866667 5.933333 5.800000	0.157625 0.159152 0.160685 0.162226 0.163774 0.165330 0.166893 0.168463 0.170040 0.171625 0.173218 0.174817 0.176424 0.178039 0.179660 0.181289 0.182926 0.184569 0.184569 0.186220 0.187879 0.189545 0.191218 0.192898 0.192898 0.194586 0.196281 0.192898 0.194586 0.196281 0.197983 0.201410 0.203135 0.204867 0.206606 0.208353 0.201410 0.203135 0.204867 0.206606 0.208353 0.211007 0.213636 0.215412 0.217196 0.218986 0.220784 0.222590 E	0.414755 0.425314 0.435976 0.446739 0.457606 0.468576 0.4796509 0.502112 0.513501 0.524996 0.536597 0.548305 0.560120 0.572044 0.584075 0.560120 0.572044 0.584075 0.684288 0.671372 0.684288 0.671372 0.684288 0.671372 0.684288 0.671372 0.684288 0.677317 0.710459 0.723715 0.737085 0.750570 0.764170 0.777886 0.791718 0.805667 0.819732 0.833916 0.848217 0.862638 0.970615	0.025994 0.026292 0.026585 0.027163 0.027448 0.027729 0.028084 0.028284 0.028557 0.028284 0.029096 0.029362 0.029362 0.029625 0.031821 0.033497 0.034729 0.035776 0.036714 0.037577 0.038385 0.039517 0.043910 0.046965 0.049945 0.055951 0.052934 0.055951 0.052934 0.055951 0.055951 0.052934 0.055951 0.055951 0.052934 0.055951 0.052934 0.055951 0.059001 0.062079 0.065181 0.068300 0.071431 0.170333 0.576602 1.149611 1.832486 2.578371 3.339467 4.067624 4.718708		
72 4 Depth (ft) 0.000000 0.049451 0.098901 0.148352 0.197802 0.247253 0.296703 0.346154 0.395604 0.494505 0.543956 0.593407 0.642857 0.692308 0.741758 0.791209 0.840659 0.890110 0.939560 0.989011 1.038462 1.087912 1.137363 1.186813	Area (acres) 0.002778	Volume (acre-ft) 0.000000 0.00003 0.000126 0.000188 0.000251 0.000314 0.000377 0.000440 0.000503 0.000565 0.000628 0.000628 0.000691 0.000754 0.000817 0.000817 0.000817 0.000817 0.000817 0.000942 0.001005 0.001068 0.001131 0.001194 0.001256 0.001319 0.001382 0.001445 0.001508	Outflow1 (cfs) 0.000000 0.000000 0.000000 0.000000 0.000000	Velocity (ft/sec)	Travel Time*** (Minutes)***

1.236264 1.285714 1.335165 1.384615 1.434066 1.483516 1.532967 1.582418 1.631868 1.681319 1.730769 1.780220 1.829670 1.879121 1.928571 1.978022 2.027473 2.076923 2.126374 2.175824 2.225275 2.2274725 2.324176 2.373626 2.423077 2.472527 2.521978 2.571429 2.620879 2.620879 2.670330 2.719780 2.769231 2.818681 2.868132 2.917582 2.967033 3.016484 3.065934 3.115385 3.164835 3.214286 3.26373 3.412088 3.450000 END FTABLE FTABLE	0.002778 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	0.001570 0.001633 0.001696 0.001759 0.001822 0.001844 0.001941 0.002055 0.002113 0.002170 0.002227 0.002284 0.002341 0.002398 0.002455 0.002512 0.002512 0.002569 0.002569 0.002569 0.002569 0.002545 0.002545 0.002542 0.002545 0.002550 0.002550 0.002550 0.002550 0.002520 0.002550 0.002550 0.002550 0.002550 0.002550 0.002550 0.002550 0.002740 0.002740 0.002797 0.002854 0.003025 0.003025 0.003196 0.003196 0.003424 0.003424 0.003424 0.003595 0.003595 0.003709 0.003709 0.003709 0.003709 0.003709 0.003994 0.004165 0.008839	0.001122 0.001340 0.001582 0.001582 0.001582 0.002139 0.002456 0.002799 0.003170 0.003569 0.003997 0.004454 0.004942 0.005459 0.005459 0.006589 0.007202 0.007202 0.007846 0.008403 0.00				
22 6 Depth	Area	Volume	Outflow1	Outflow2	outflow 3	Velocity	Travel
Time*** [*] (ft)	(acres)	(acre-ft)	(cfs)	(cfs)	(cfs)	(ft/sec)	
(Minutes)** 0.000000 0.049451 0.098901 0.148352 0.197802 0.247253 0.296703 0.346154 0.395604 0.445055 0.543956 0.593407 0.642857 0.692308 0.741758	* 0.002778	0.000000 0.000137 0.000275 0.000412 0.000549 0.000827 0.000824 0.000962 0.001099 0.001236 0.001374 0.001511 0.001648 0.001786 0.001923 0.002060	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.005153\\ 1.142846\\ 1.779946\\ 2.496989 \end{array}$	0.000000 0.034719 0.035827 0.036935 0.038043 0.039151 0.040259 0.041368 0.042476 0.043584 0.044692 0.045800 0.045800 0.046908 0.048016 0.049124 0.050232	0.000000 0.000000		

	778 0.0023 778 0.0024 778 0.0026 778 0.0027	354.104021734.961058105.831235476.697340	0.051340 0.000 0.052448 0.000 0.053556 0.000 0.054664 0.000 0.055772 0.000 0.056019 0.000	0000 0000 0000 0000	
	<pre># tem strg ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL</pre>	<pre>><mult>Tran <-factor->strg 1 0.76 0.76 1 0.5 0.76</mult></pre>	<pre><name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999</name></pre>	< grbs < member >	**
END EXT SOURCES					
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 1 OUTPUT COPY 501 OUTPUT COPY 601 OUTPUT RCHRES 3 HYDR RCHRES 3 HYDR END EXT TARGETS</name>	<name> # # MEAN 1 1 MEAN 1 1</name>	<-factor->strg 48.4 48.4 48.4 1	<-Volume-> <me <name> # <na WDM 701 FLO WDM 801 FLO WDM 901 FLO WDM 1002 FLO WDM 1003 STA</na </name></me 	DWENGLREPLDWENGLREPLDWENGLREPLDWENGLREPL	
<name> MASS-LINK</name>	2	<-factor->	<target> <name></name></target>	<-Grp> <-Member->*** <name> # #***</name>	
PERLND PWATER END MASS-LINK	SURO 2	0.083333	RCHRES	INFLOW IVOL	
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW IVOL	
MASS-LINK IMPLND IWATER END MASS-LINK		0.083333	RCHRES	INFLOW IVOL	
MASS-LINK RCHRES ROFLOW END MASS-LINK			RCHRES	INFLOW	
MASS-LINK RCHRES OFLOW END MASS-LINK	OVOL 1		RCHRES	INFLOW IVOL	
MASS-LINK RCHRES OFLOW END MASS-LINK	OVOL 2		RCHRES	INFLOW IVOL	
MASS-LINK PERLND PWATER END MASS-LINK	SURO	0.083333	СОРҮ	INPUT MEAN	
MASS-LINK PERLND PWATER END MASS-LINK	IFWO	0.083333	СОРҮ	INPUT MEAN	
MASS-LINK IMPLND IWATER END MASS-LINK	SURO	0.083333	СОРҮ	INPUT MEAN	

MASS-LINK	16				
RCHRES ROFLO	W		COPY	INPUT	MEAN
END MASS-LINK	16				
MASS-LINK	17				
RCHRES OFLOW	I OVOL	1	COPY	INPUT	MEAN
END MASS-LINK	17				

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2019; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

E-4

MGS FLOOD PROJECT REPORT

Program Version: MGSFlood 4.50 Program License Number: 201710010 Project Simulation Performed on: 07/16/2019 3:07 PM Report Generation Date: 07/16/2019 3:10 PM

Input File Name:	TDA C TESC.fld
Project Name:	Spruce ES - Phase 2
Analysis Title:	TDA C TESC
Comments:	Calculations for TDA C TESC Basin

Computational Time Step (Minutes): 15

Precipitation Station Data Selected Climatic Region Number: 5

Full Period of Record Available used for RoutingPrecipitation Station :452675 Everett 10/01/1948-10/01/2011Evaporation Station :456803 PuyallupAt Site 25-Year, 24-Hour Precipitation (inches): 2.99Gage 25-Year, 24-Hour Precipitation (inches) :2.69Precipitation Scale Factor :1.112Evaporation Scale Factor :0.750

HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default

***************************** WATERSHED DEFINITION ******************************

Predevelopment/Post Development Tributary Area Summary

	Predeveloped	Post Developed
Total Subbasin Area (acres)	0.700	0.700
Area of Links that Include Precip/Evap (acres)	0.000	0.000
Total (acres)	0.700	0.700

-----SCENARIO: PREDEVELOPED

Number of Subbasins: 1

------ Subbasin : TDA C ------------ Area (Acres) ------Till Forest 0.700

Subbasin Total 0.700

------SCENARIO: POSTDEVELOPED Number of Subbasins: 1

------SCENARIO: PREDEVELOPED Number of Links: 0

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: TESC Link Type: Copy

Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 0

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1

*********** Subbasin: TESC Area **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year 0.313 5-Year 0.420 10-Year 0.501 25-Year 0.651 50-Year 0.761 100-Year 0.923 200-Year ** ** 500-Year

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

 Link Outflow 1 Frequency Stats

 Flood Frequency Data(cfs)
 (Recurrence Interval Computed Using Gringorten Plotting Position)

 Tr (yrs)
 Flood Peak (cfs)

2-Year 0.313 5-Year 0.420 10-Year 0.501 TESC Q 25-Year 0.651 50-Year 0.761 100-Year 0.923 200-Year ** 500-Year

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

Total Predeveloped Recharge During Simulation						
Model Element	Recharge Amount (ac-ft)					
Subbasin: TDA C	44.295					

Total:	44.295
	Total Post Developed Recharge During Simulation

 Model Element
 Recharge Amount (ac-ft)

 Subbasin: TESC Area
 0.000

 Link:
 TESC

Total: 0.000

Total Predevelopment Recharge is Greater than Post Developed Average Recharge Per Year, (Number of Years= 63) Predeveloped: 0.703 ac-ft/year, Post Developed: 0.000 ac-ft/year

-----SCENARIO: PREDEVELOPED

Number of Links: 0

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

********** Link: TESC

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 129.04 Inflow Volume Including PPT-Evap (ac-ft): 129.04 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 129.04 Secondary Outflow To Downstream System (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

***********Compliance Point Results ************

Scenario Predeveloped Compliance Subbasin: TDA C

Scenario Postdeveloped Compliance Link: TESC

*** Point of Compliance Flow Frequency Data ***

Recurrence Interval Computed Using Gringorten Plotting Position

Predevelopment Runoff		Postd	evelopment Runoff	
Tr (Years)	Discharge (cfs)	Tr (Years)	Discharge (cfs)	
2-Year	1.987E-02	2-Year	0.313	
5-Year	3.048E-02	5-Year	0.420	
10-Year	5.107E-02	10-Year	0.501	
25-Year	6.072E-02	25-Year	0.651	
50-Year	7.204E-02	50-Year	0.761	
100-Year	7.344E-02	100-Year	0.923	
200-Year	**	200-Year	**	
500-Year	**	500-Year	**	
data En 1.4				

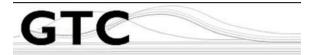
** Record too Short to Compute Peak Discharge for These Recurrence Intervals

**** Flow Duration Performance ****

Excursion at Predeveloped 50%Q2 (Must be Less Than or Equal to 0%):	607.1% FAIL
Maximum Excursion from 50%Q2 to Q2 (Must be Less Than or Equal to 0%):	4850.8% FAIL
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	99999.0% FAIL
Percent Excursion from Q2 to Q50 (Must be less than 50%):	100.0% FAIL

FLOW DURATION DESIGN CRITERIA: FAIL

E-5					
Project S	pruce Elementary Schoo	Project No. 2140	075.10	□ Page1 of1	
5	DA Wetland Sizing	Dhama 206	267 2425	Meeting Minutes	
5	3				
		# Faxed Pages		Calculations	
	/30/2020	By Yi Yang		□ Telephone Memo ─ ☑ Calculations ─ □ Memorandum □ □ Fax	HBL
Duto					
See Appe	endix E-1 for MGSFloc	od which provide the bas	ic wetpond desigr	n volume (highlighted).	
Basic we	tpond volume (91% ex	ceedance): 13,973 cu-ft			
	e the surface area of t tland volume dividing t	he total wetland: by the average water de	pth (use 3 feet) =	13,973/3 = 4,658 sq-ft	
Determin	e the surface area of t	he first cell (the presettli	ng cell):		Civil Engineers
				072 *220/ // 4 452 (Structural Engineers
	should contain approx the wetland = 4 feet	imately 33% of the wetp	ond volume = (13	,973 *33%)/4 = 1,153 cu-ft;	
	Area = = 1,153/4 = 28	8 sq-ft			Landscape Architects
	e the surface area of t a - first cell = 4,658 - 2	he second cell (the wetla 88 = 4,370 sq-ft	and cell):		Community Planners
					Land Surveyors
Distributio	on of depths in wetland	d cell:			Neighbors
Denth ray	nge (feet) Percent	Required Area (sq-f	t) Provided A	rea (sa-ft)	
Total	ige (ieet) Feicelit	4,658	5,370		
0.1 to 1	25	1092.5	1,191		
1 to 2 2 to 2.5	55 20	2403.5 874	2,969		
			,		


SEATTLE

1200 6th Avenue Suite 1620 Seattle, WA 98101-3117 206.267.2425 TEL

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.

www.ahbl.com

Appendix D Traffic Impact Analysis <u>and Updated</u> <u>Traffic Analysis</u>

Gibson Traffic Consultants, Inc. 2813 Rockefeller Avenue Suite B Everett, WA 98201 425.339.8266

Spruce Elementary School Traffic Impact Analysis

Prepared for: Edmonds School District Jurisdiction: City of Lynnwood

April 2017

TABLE OF CONTENTS

1.	INT	RODUCTION	. 3
2.	PRO	DPOSED SITE DEVELOPMENT & ACCESS	. 3
3.	ME	THODOLOGY & ANALYSIS SCOPING	. 5
4.	EX	ISTING CONDITIONS	. 7
4.	1	Walking Conditions	. 7
4.	2	Collision Data	. 7
4.	3	Existing Parking Utilization	. 8
4.	4	Existing Volumes and Level of Service	. 8
5.	FU	FURE CONDITIONS	
5.	1	Trip Generation	11
5.	2	Trip Distribution	12
5.	3	2020 Baseline Volumes and Level of Service	
5.4	4	2020 Future with Project Volumes and Level of Service	16
5.	5	2020 Opening Year Queuing	16
5.	6	2020 Opening Year Parking Demand	22
6.	CO	NCLUSIONS	22

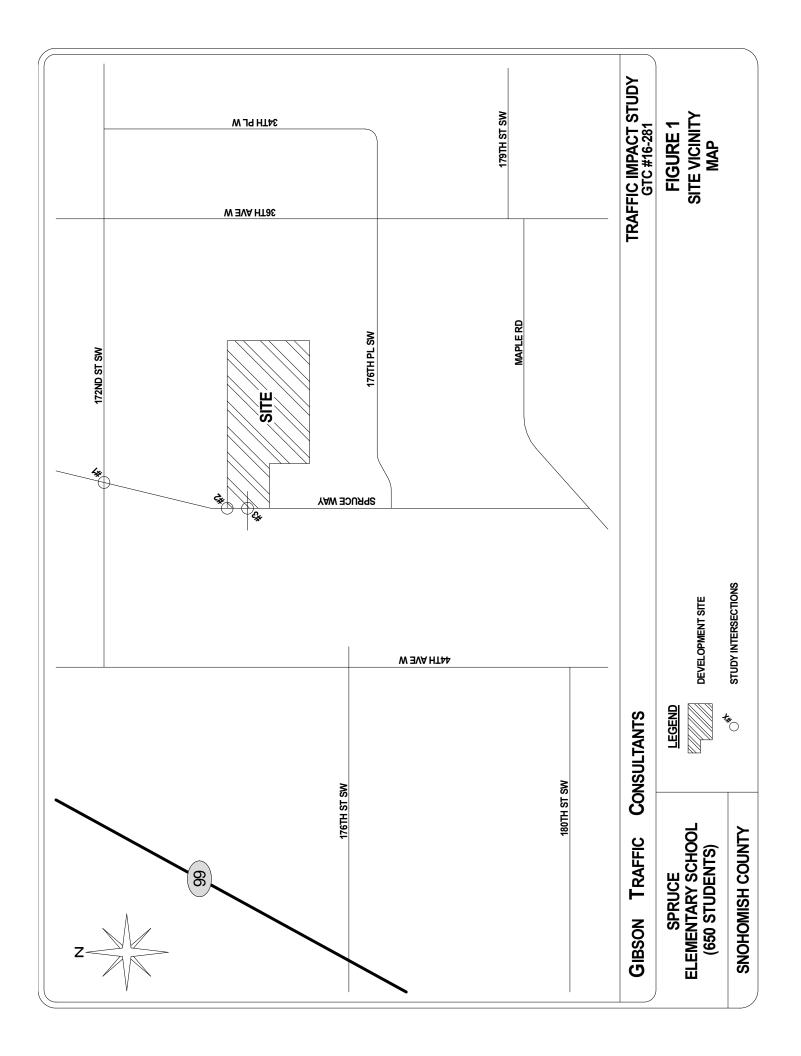
LIST OF FIGURES

Figure 1: Site Vicinity Map	4
Figure 2: Existing AM Peak-Hour Turning Movements	9
Figure 3: Existing School PM Peak-Hour Turning Movements	. 10
Figure 4: Development Trip Distribution – AM Peak-Hour	. 13
Figure 5: Development Trip Distribution – School PM Peak-Hour	. 14
Figure 6: 2020 Baseline Traffic Volumes – AM Peak-Hour	. 18
Figure 7: 2020 Baseline Traffic Volumes - School PM Peak-Hour	. 19
Figure 8: 2020 Future with Project Traffic Volumes - AM Peak-Hour	. 20
Figure 9: 2020 Future with Project Traffic Volumes - School PM Peak-Hour	. 21

LIST OF TABLES

Table 1: Level of Service Criteria for Intersections	. 6
Table 2: Collision Summary	. 7
Table 3: 6-Year Collision Rate Calculation	. 7
Table 4: Existing Level of Service Summary – AM Peak-Hour	. 8
Table 5: Existing Level of Service Summary – School PM Peak-Hour	. 8
Table 6: Elementary School Trip Generation Summary	11
Table 7: 2020 Baseline Level of Service Summary – AM Peak-Hour	15
Table 8: 2020 Baseline Level of Service Summary – School PM Peak-Hour	15
Table 9: 2020 Future Level of Service Summary – AM Peak-Hour	16
Table 10: 2020 Future Level of Service Summary – School PM Peak-Hour	16
Table 11: Expected Drop-off/pick-up Queuing	17

ATTACHMENTS


Count DataB
AM Turning Movement CalculationsC
School PM Turning Movement Calculations D
Existing AM Peak-Hour Level of Service AnalysisE
Existing School PM Peak-Hour Level of Service AnalysisF
2020 Baseline AM Peak-Hour Level of Service Analysis G
2020 Baseline School PM Peak-Hour Level of Service Analysis
2020 Future With Project AM Peak-Hour Level of Service AnalysisI
2020 Future With Project School PM Peak-Hour Level of Service AnalysisJ
Parking DataK
Queuing AnalysisL
Collision DataM
Site LayoutN

1. INTRODUCTION

Gibson Traffic Consultants, Inc. (GTC) has been retained to complete a traffic impact analysis (TIA) for the Spruce Elementary School reconstruction. Edmonds School District (ESD) is proposing to reconstruct Spruce Elementary School, which is located on the east side of Spruce Way between 176th Street SW and 172nd Street SW in the City of Lynnwood. A site vicinity map is included in Figure 1. The school will continue to be an elementary school serving grades kindergarten through 6th grade with school hours from 9:20 AM and to 3:50 PM. For this analysis, the school is anticipated to have a capacity of 650 students. A similar ratio of volunteers and staff currently serving the school was assumed for future conditions as well. The school's current district boundary extends from SR-99 to 25th Avenue W and from 176th Street SW.

2. PROPOSED SITE DEVELOPMENT & ACCESS

Spruce Elementary School is being reconstructed with a capacity of 650 students. Bus traffic will be separated from staff and parent drop-off/pick-up traffic. The number of buses servicing the school is not anticipated to change. Neither of the school's access points are planning on moving, however, the north access will be repurposed to service the bus loop while the south access will serve for parent drop-off/pick-up and parking. Additionally, the parent drop-off/pick-up area will expand to allow for additional drop-off/pick-up of simultaneous vehicles while allowing other vehicles to bypass the stopped vehicles. The number of available parking spaces on-site will also increase to 90 parking stalls. The proposed school is scheduled for full facility build-out and occupancy by the 2018-2019 school year. However, the project may get delayed; therefore, the year 2020 has been used as the opening year in the analysis.

3. METHODOLOGY & ANALYSIS SCOPING

Peak-hour level of service (LOS) is determined using the methodology described in the 2010 *Highway Capacity Manual* (HCM) and *Synchro 9.1* software developed by Trafficware. There are currently 558 students enrolled at Spruce Elementary School according to the Office of Superintendent of Public Instruction in May of 2016. The turning movement counts were performed during the next school year in November 2016. In order to analyze "worst case" traffic conditions at the school site, GTC has utilized existing driveway count data to estimate future peak-hour traffic volumes and peak-hour LOS conditions.

Traffic congestion on roadways is generally measured in terms of LOS at critical intersections. In accordance with the 2010 *Highway Capacity Manual*, roadway facilities and intersections are rated between LOS A and F, with LOS A being free flow and LOS F being forced flow or over-capacity conditions. The LOS at signalized intersections and all-way stop-controlled intersections are based on the average stopped delay for all entering vehicles. The LOS at two-way stop-controlled intersections is based on stopped delay times for the critical approach or movement(s). Geometric characteristics and conflicting traffic movements are taken into consideration when determining LOS values. A summary of the level of service criteria has been included in Table 1.

GTC utilized a 2.0-percent annual compounding growth rate to account for background traffic growth in the site vicinity based on projects located near the site. The street network surrounding the school is primarily comprised of stop-controlled intersections (all-way and two-way) and primarily serves single family-residential homes.

Matthew Palmer, responsible for the traffic analysis and report, is a licensed professional engineer (Civil) in the State of Washington and a current member of the Washington State section of ITE.

Level of ¹	Expected	Intersection Control Delay (Seconds per Vehicle)			
Service	Delay	Unsignalized Intersections	Signalized Intersections		
Α	Little/No Delay	<u><</u> 10	<u><</u> 10		
В	Short Delays	>10 and <u><</u> 15	>10 and <u><</u> 20		
С	Average Delays	>15 and <u><</u> 25	>20 and <u><</u> 35		
D	Long Delays	>25 and <u><</u> 35	>35 and <u><</u> 55		
E	Very Long Delays	>35 and <u><</u> 50	>55 and <u><</u> 80		
F	Extreme Delays ²	>50	>80		

Table 1: Level of Service Criteria for Intersections

The acceptable level of service at arterial intersections within the City of Lynnwood is LOS C for local streets at all times and LOS D for non-City Center arterials during the PM peak-hour.

GTC analyzed AM and School PM peak-hour level of service. Listed below are the intersections analyzed:

- Spruce Way at 172nd Street SW
- Spruce Way at North School Driveway
- Spruce Way at South School Driveway

¹ Source: *Highway Capacity Manual* 2010.

- LOS B: Generally stable traffic flow conditions.
- LOS C: Occasional back-ups may develop, but delay to vehicles is short term and still tolerable.
- LOS D: During short periods of the peak hour, delays to approaching vehicles may be substantial but are tolerable during times of less demand (i.e. vehicles delayed one cycle or less at signal).
- LOS E: Intersections operate at or near capacity, with long queues developing on all approaches and long delays.
- LOS F: Jammed conditions on all approaches with excessively long delays and vehicles unable to move at times.
- ² When demand volume exceeds the capacity of the lane, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection.

Gibson Traffic Consultants, Inc. info@gibsontraffic.com

LOS A: Free-flow traffic conditions, with minimal delay to stopped vehicles (no vehicle is delayed longer than one cycle at signalized intersection).

4. EXISTING CONDITIONS

4.1 Walking Conditions

Spruce Way is a two-lane road, one in each direction. Each lane is approximately 10 feet wide. There are paved sidewalks traveling north from the school and a walking path to the south. Per the City of Lynnwood's *Transportation Business Plan* draft dated May 2009, there are project to improve pedestrian and bicycle conditions along Spruce Way. Project B50/B51 will widen the street to allow for 5' bike lanes on both sides of the road and P50/P51 will build concrete sidewalks on both sides of the road.

There are two paved trails within proximity to Spruce Elementary, one across from the school on Spruce way connecting to 175th Street SW and one on the northeast corner of the school connecting to 174th Place SW. These connections allow easy access to 44th Avenue W and 36th Avenue W, both of which are primary north/south streets with three lanes, one in each direction with a two-way left-turn lane. 36th Avenue W has a paved shoulder on the east side and at-grade sidewalk separated with a c-curb on the west. 44th Avenue W has separated raised sidewalk on both sides of the street.

4.2 Collision Data

Collision data was provided by WSDOT for 5-years from January 1, 2012 through the available 2016 data at the study intersections. The collision data is summarized in **Table 2** and **Table 3**.

Intersection		Entering at Angle		Sideswipe	Same Dir. Other	Ped./Cyclist Involved	Fixed Object	Total Collisions	Collisions Per Year
172 nd St SW at Spruce Way	0	2	0	0	0	0	0	2	0.4

Table 2: Collision Summary

Table 3: 6-Year Collision Rate Calculation

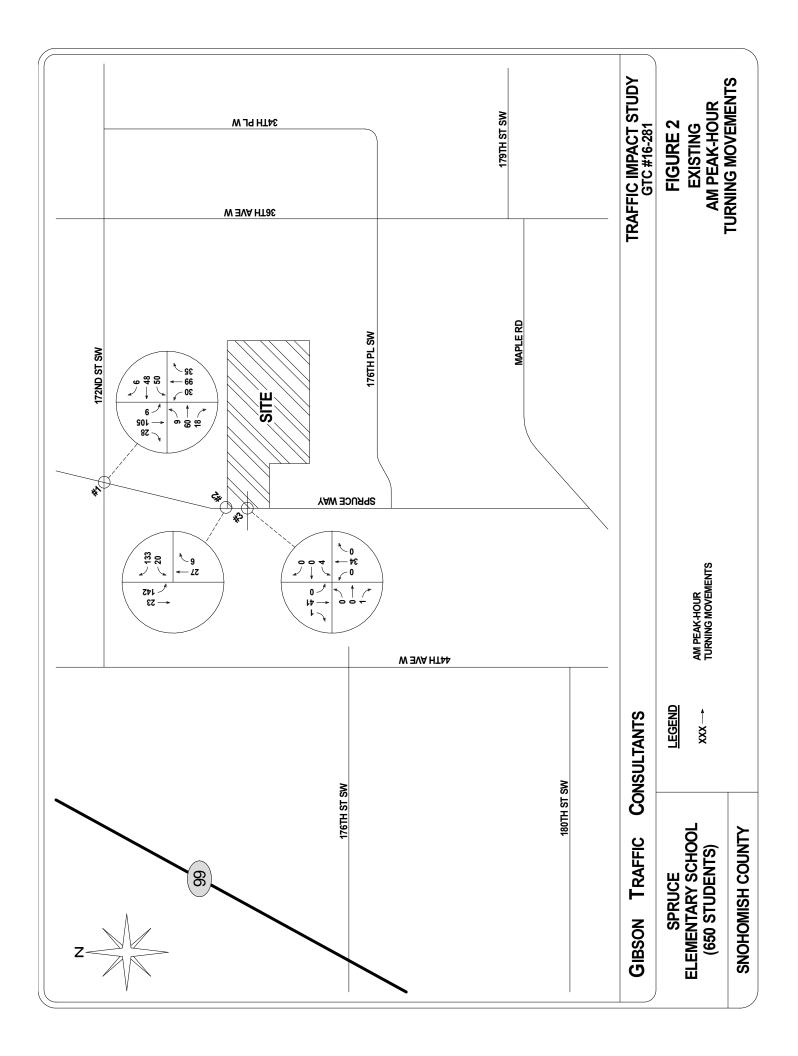
Intersection	PM Peak-Hour Intersection Vol.	K-Factor	Total Collisions	Collision Rate ³
172 nd St SW at Spruce Way	542	10	2	0.20

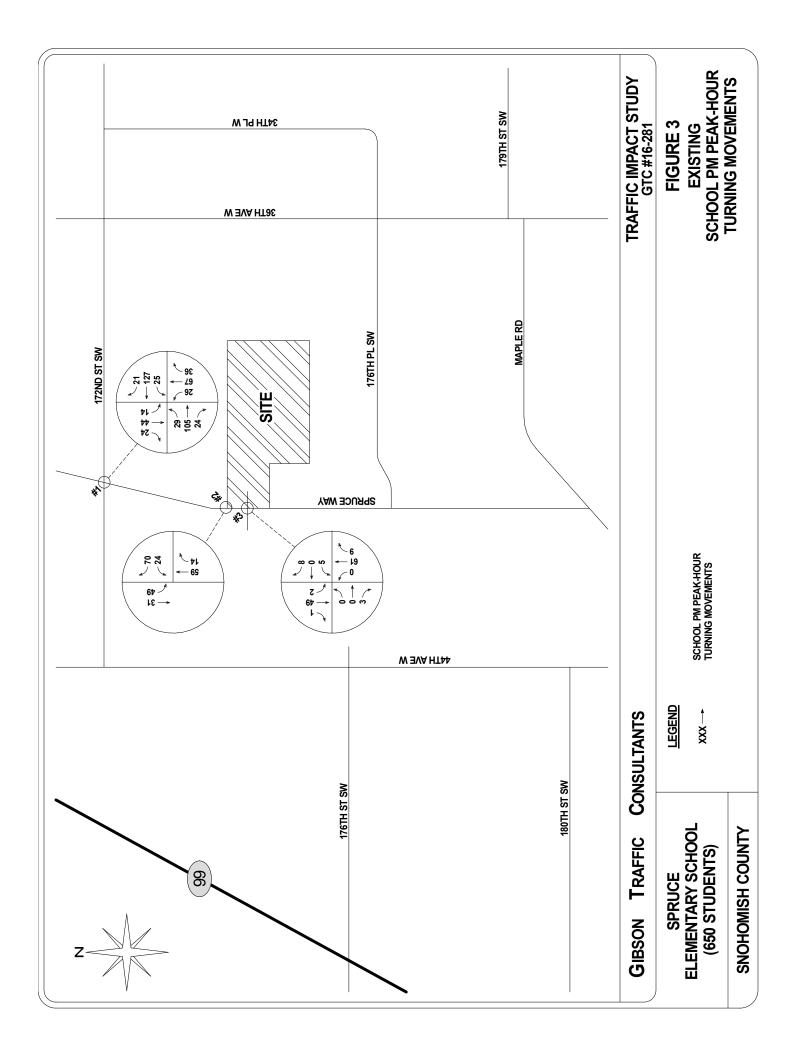
The intersection of 172nd Street SW at Spruce Way was the only location to have collisions. The intersection of 172nd Street SW at Spruce Way has a collision rate per million entering below 1.0, which corresponds to a relatively normal to low rate of accidents, and is below the average rate for the area.

³ The collision rate is based on Million Entering Vehicles.

4.3 Existing Parking Utilization

A parking survey was completed by the independent count firm, Traffic Data Gathering (TDG) staff after the morning peak period at 9:45 AM and prior to school dismissal at PM on November 16, 2016. Currently on site there are a total of 58 spaces. In the morning, there were a total of 46 vehicles parked for the site, 2 of which were utilizing the ADA stalls. Prior to the school dismissal/arrival of parent pick-up traffic, there were a total of 43 parked vehicles for the school, 1 of which utilized the ADA stalls. The parking generation per student based on 558 existing students is 0.08 vehicles per student for the AM and 0.08 vehicles per student at School PM peak-hours, this includes all vehicles parked on-site (staff and visitor).


4.4 Existing Volumes and Level of Service


Existing turning movement counts at all the study intersections were obtained by the independent count firm, Traffic Data Gathering (TDG) on Wednesday, November 16, 2016. The existing peak-hour turning movement volumes are shown at the study intersections during the AM peak-hour (8:45-9:45 AM) and School PM peak-hour (3:00-5:00 PM) in Figure 2 and Figure 3 respectively. Based on the existing counts, channelization and intersection control; all of the study intersections will operate at LOS B or better during AM peak-hour and School PM peak-hour. The existing level of service for the AM peak-hour and School PM peak-hour is summarized in Table 4 and Table 5 respectively. The existing level of service calculations are included in the attachments.

Intersections	Existing Conditions				
	LOS	Delay	Critical Approach		
1. Spruce Way at 172 nd Street SW	В	10.2 sec			
2. Spruce Way at North Driveway	В	11.8 sec	Westbound		
3. Spruce Way at South Driveway	В	10.5 sec	Westbound		

 Table 4: Existing Level of Service Summary – AM Peak-Hour

Intersections		Existing Conditions				
	LOS	Delay	Critical Approach			
1. Spruce Way at 172 nd Street SW	Α	9.4 sec				
2. Spruce Way at North Driveway	В	10.7 sec	Westbound			
3. Spruce Way at South Driveway	Α	9.8 sec	Westbound			

5. FUTURE CONDITIONS

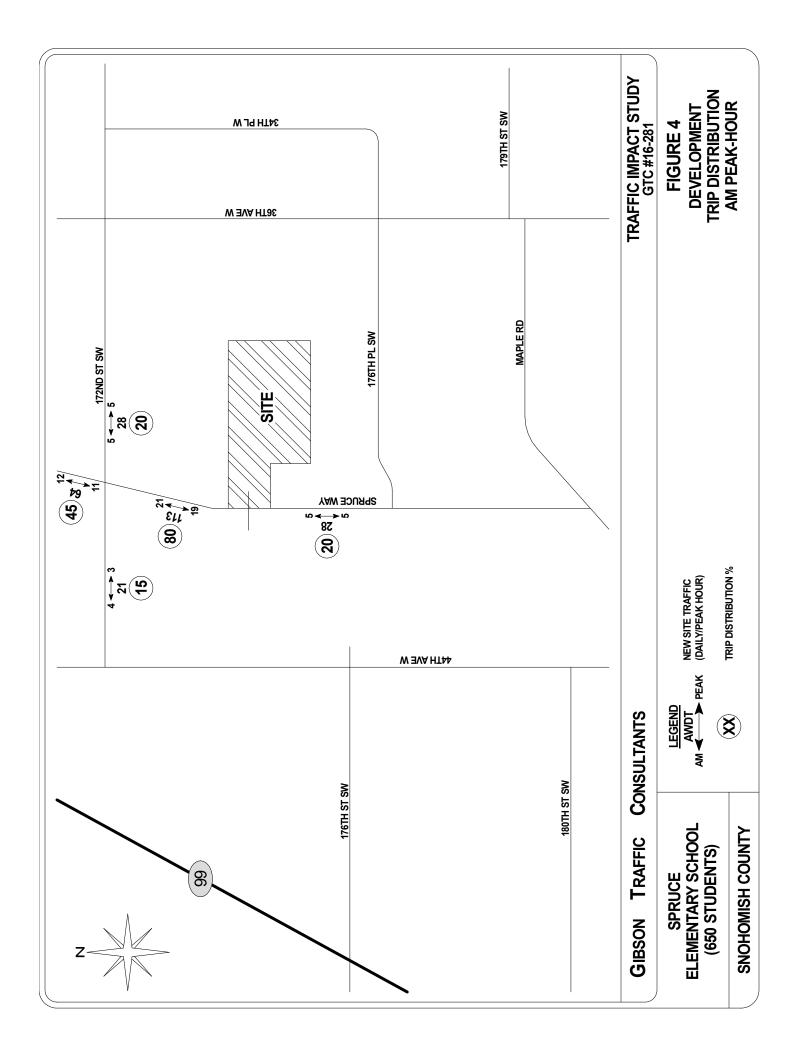
5.1 Trip Generation

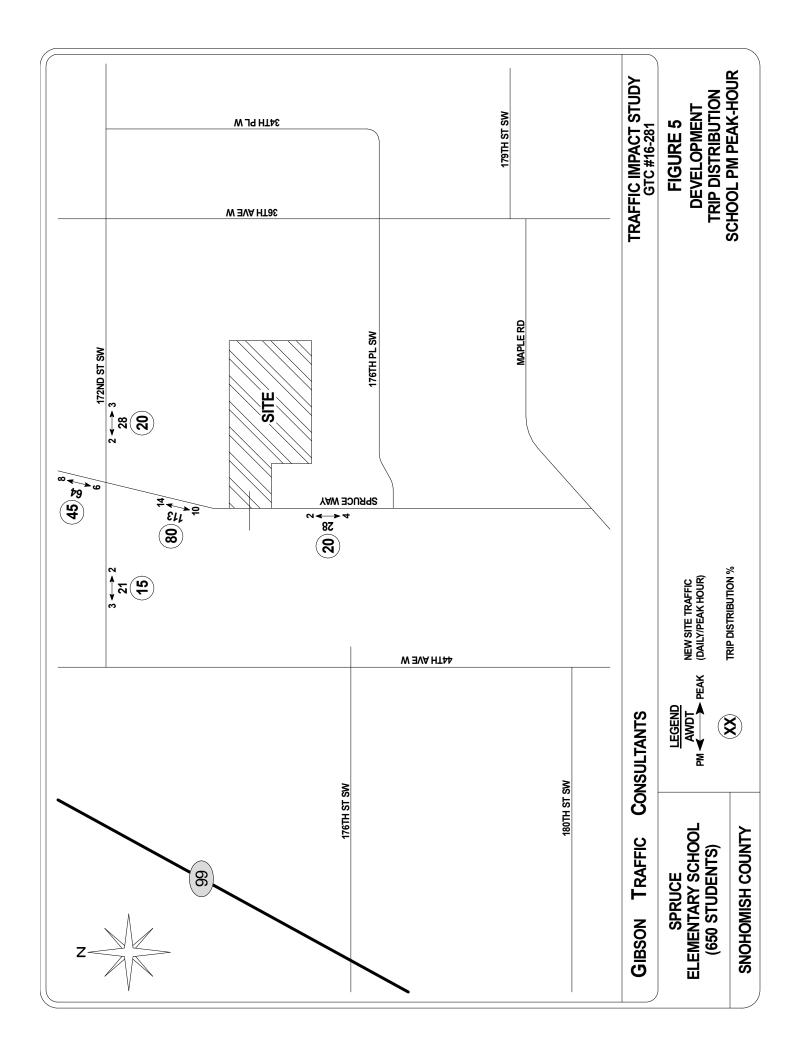
According to the Office of Superintendent of Public Instruction, there were 558 students enrolled in May of the 2015-2016 school year. Per ITE *Trip Generation* (9th Edition, 2012) Land Use Code: 520, Elementary School, the trip generation rate per student is 1.29 for daily, 0.45 for AM peak-hour and 0.28 for PM peak-hour and the existing 558-student school would have an ITE trip generation of 720 daily, 251 AM and 156 School PM peak trips on an average weekday or school day.

AM peak traffic counts at the school entrances and exits taken on Wednesday November 16, 2016 indicate school trip volumes are higher than the ITE trip estimates, with 307 peak-hour trips (150 inbound and 157 outbound) during the AM peak hour for existing conditions, approximately 22% higher than ITE estimates. School PM peak traffic counts taken on Wednesday November 16, 2016 indicate school traffic volumes are also higher than ITE trip estimates with 179 peak trips (73 inbound and 106 outbound) during the school PM peak hour, approximately 15% higher than ITE estimates. In order to analyze "worst case" traffic conditions at the school site, GTC has utilized existing driveway count data to estimate future peak-hour traffic volumes and peak-hour LOS conditions.

For future school traffic with the proposed school reconstruction, GTC assumed the same traffic generation characteristics as counted at the existing school driveways with new school traffic proportional to the expected growth in the student enrollment. The expected enrollment increase at Spruce Elementary School is to 650 students, or an increase of 92 students. For the critical AM peak period, school traffic would increase by an estimated 50.3 trips (24.4 inbound/25.9 outbound) and by 29.8 trips (12.2 inbound/17.6 outbound) for the School PM peak. During the street peak-hour it is anticipated that there would be an increase of 13.8 PM peak-hour trips (6.8 inbound/7.0 outbound). The trip generation is summarized in Table 6.

Studente	Average	AM Peak-Hour		School PM Peak-Hour			PM Peak-Hour ⁴			
Students	Daily Trips	Inbound	Outbound	Total	Inbound	Outbound	Total	Inbound	Outbound	Total
92	140.8 ⁵	24.4	25.9	50.3	12.2	17.6	29.8	6.8	7.0	13.8


Table 6: Elementary School Trip Generation Summary


⁴ Based on ITE rates

⁵ Uses a ratio of ITE and on site trip generation rates.

5.2 Trip Distribution

Trip distribution is based on the existing traffic counts in the site vicinity and potential school draw areas. It is estimated that 20% of the site traffic will travel to and from the south along Spruce Way. An estimated 15% will travel to and from the west on 172nd Street SW. An estimated 20% will travel to and from the east on 172nd Street SW. The remaining 45% is expected to travel to and from the north on Spruce Way. Detailed trip distributions are shown in Figure 4 and Figure 5 for the AM peak-hour and School PM peak-hour respectively.

5.3 2020 Baseline Volumes and Level of Service

The 2020 baseline (future without project) turning movement volumes are estimated by applying a 2.0% annual compounding growth rate to the existing turning movement volumes. The 2020 baseline turning movement volumes for the AM peak-hour and School PM peak-hour are shown in Figure 6 and Figure 7.

With the addition of baseline growth, all of the study intersections will continue to operate at LOS B or better during the AM and School PM peak-hours. The 2020 baseline level of service results for the AM peak-hour and School PM peak-hour are summarized in Table 7 and Table 8. The baseline level of service calculations are included in the attachments.

Table 7: 2020 Baseline Level of Service Summary – AM Peak-Hour

		xisting Co	nditions	2020 Baseline Conditions			
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach	
1. Spruce Way at 172 nd Street SW	В	10.2 sec		В	10.8 sec		
2. Spruce Way at North Driveway	В	11.8 sec	Westbound	В	12.5 sec	Westbound	
3. Spruce Way at South Driveway	В	10.5 sec	Westbound	В	10.6 sec	Westbound	

Table 8:	2020 Baseline	Level of Service	Summary –	School PM Peak-Hour
----------	---------------	------------------	-----------	---------------------

	E	xisting Co	onditions	2020 Baseline Conditions			
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach	
1. Spruce Way at 172 nd Street SW	Α	9.4 sec		Α	9.8 sec		
2. Spruce Way at North Driveway	В	10.7 sec	Westbound	В	11.0 sec	Westbound	
3. Spruce Way at South Driveway	Α	9.8 sec	Westbound	Α	9.9 sec	Westbound	

5.4 2020 Future with Project Volumes and Level of Service

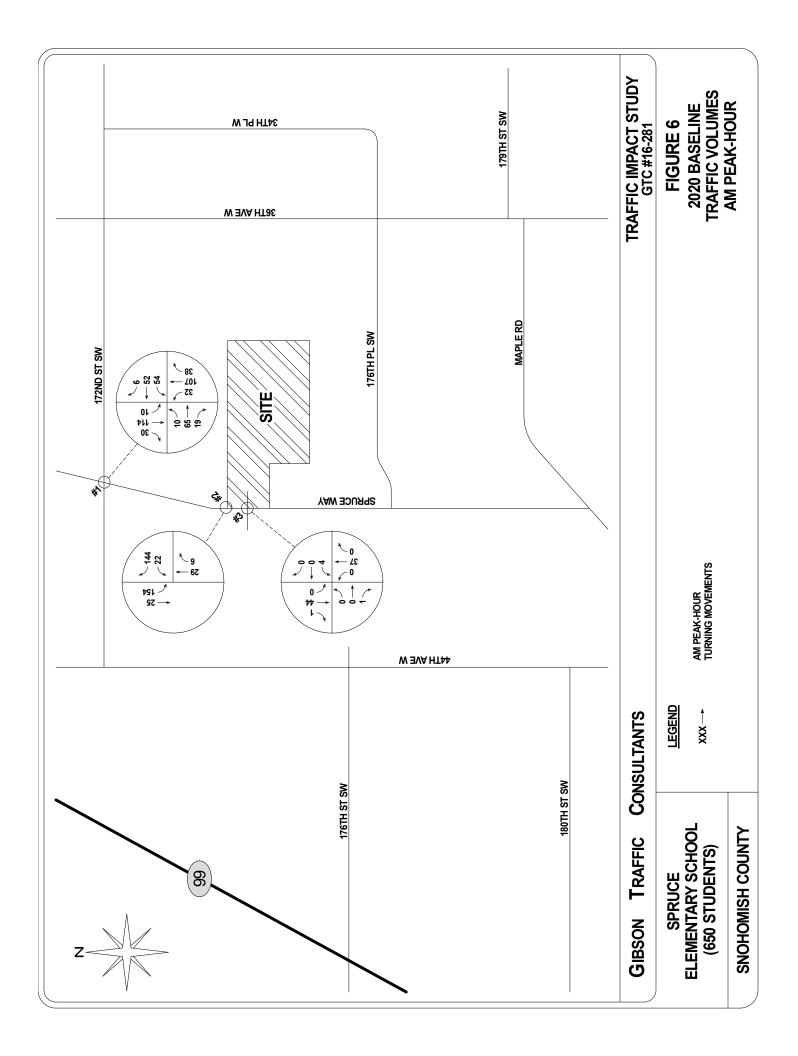
The 2020 future with project turning movement volumes are calculated by adding all of the school traffic based on the trip distribution to the 2020 baseline turning movement volumes. It was assumed that the number of buses did not change with the reconstruction based on the low increase in student population. Additionally, all of the traffic was rerouted so that all of the bus traffic was utilizing the north driveway while all of the parent traffic was utilizing the south driveway. The peak-hour factor and heavy vehicle percentage was also switched in conjunction with the driveway uses. The 2020 future with project turning movement volumes for the AM peak-hour and School PM peak-hour in Figure 8 and Figure 9.

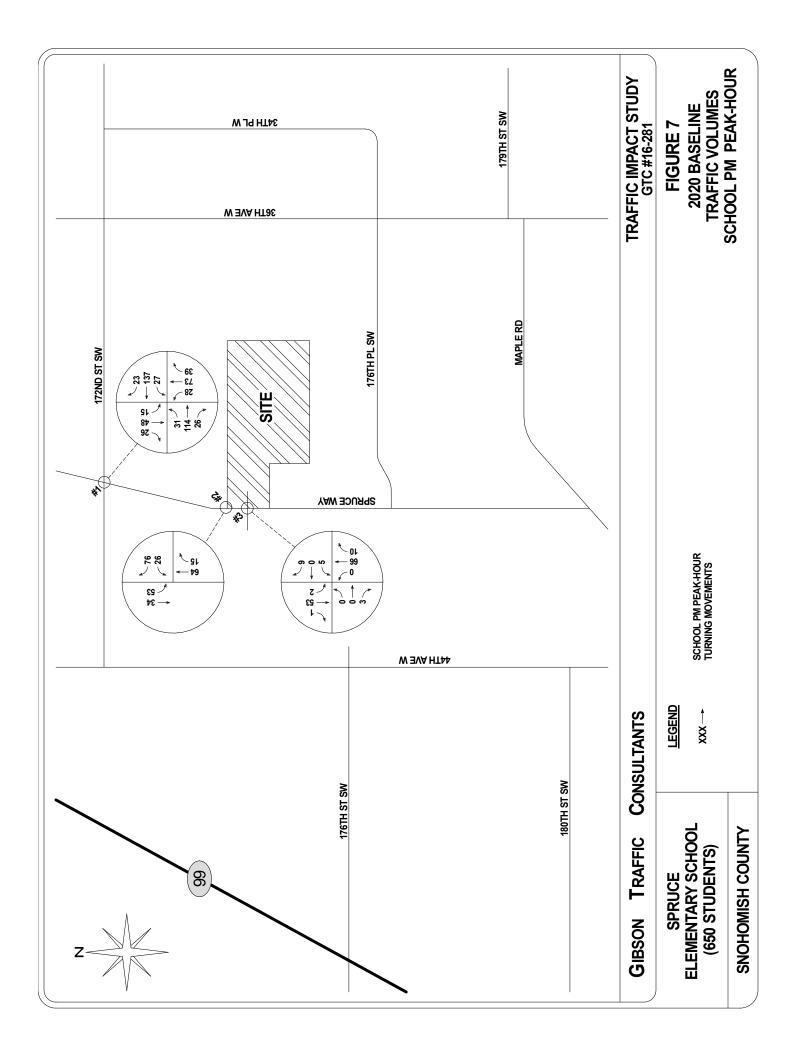
With the addition of school traffic, all the study intersections will continue to operate at LOS C or better during the AM peak-hour and LOS B or better during the School PM peak-hour. All of the off-site study intersections will operate at acceptable City of Lynnwood Intersection Standards used for SEPA impact evaluation. The 2020 future with project level of service results for the AM peak-hour and School PM peak-hour are summarized in Table 9 and Table 10. The 2020 future with project level of service calculations are included in the attachments.

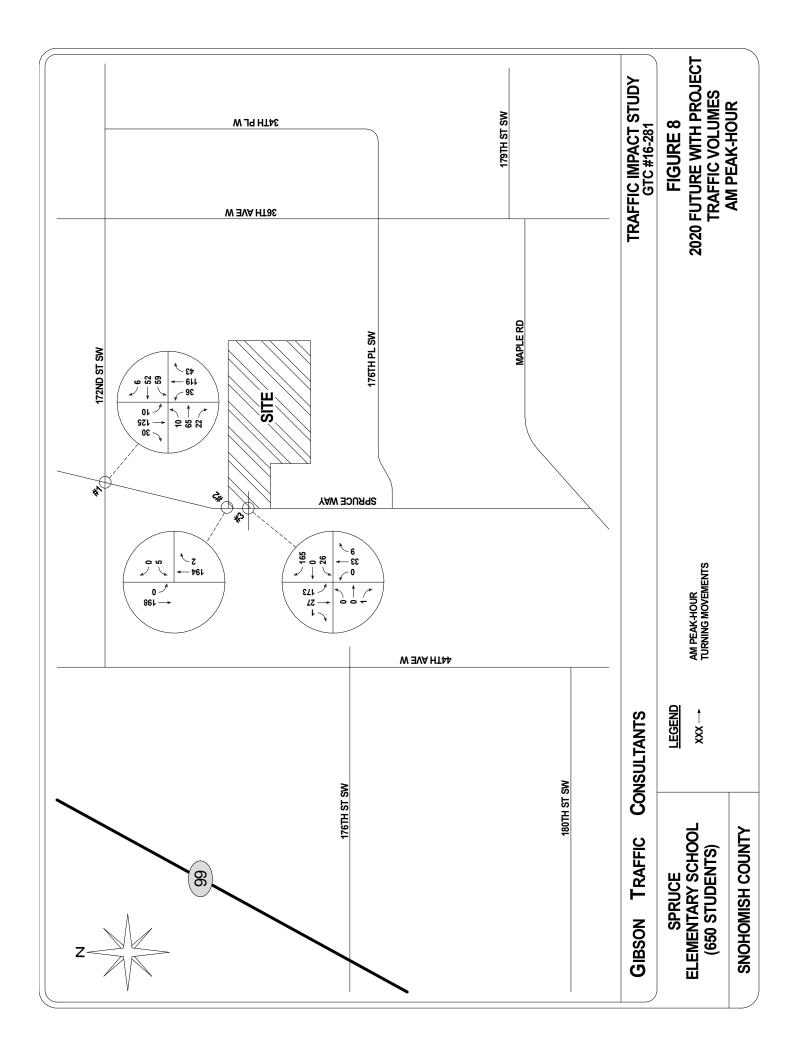
	202	0 Baseline	Conditions	2020 Future Conditions			
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach	
1. Spruce Way at 172 nd Street SW	В	10.8 sec		В	11.5 sec		
2. Spruce Way at North Driveway	В	12.5 sec	Westbound	С	17.9 sec	Westbound	
3. Spruce Way at North Driveway	В	12.5 sec	Westbound	В	12.7 sec	Westbound	

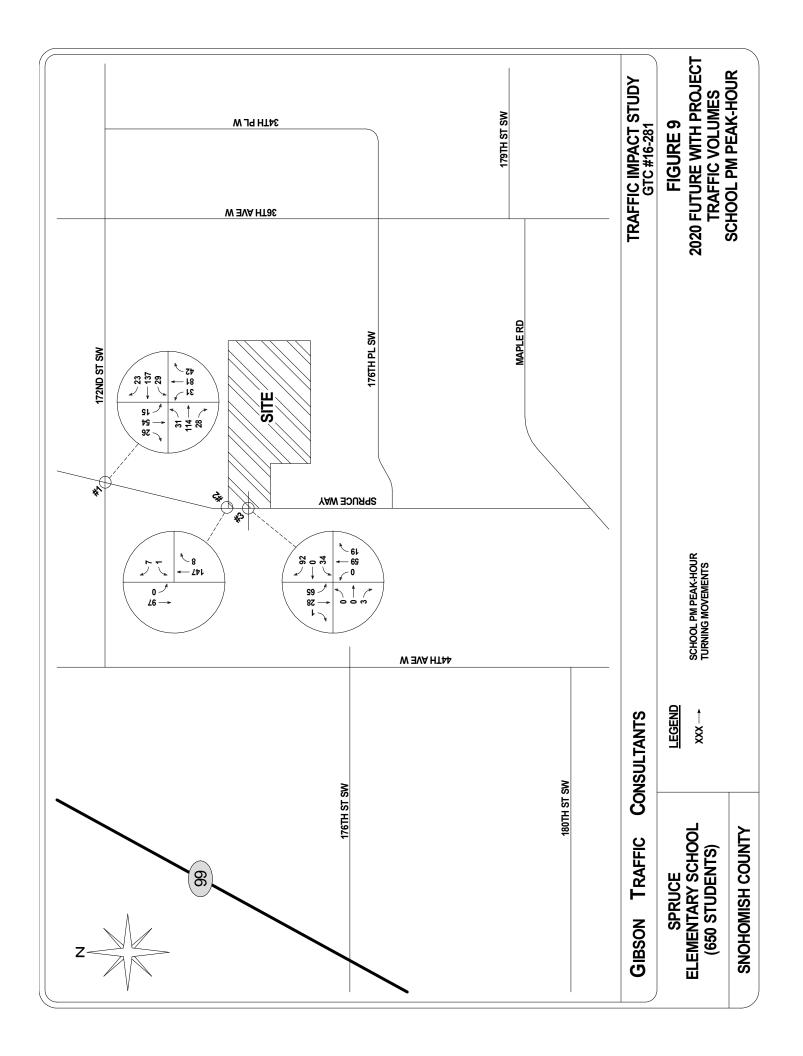
Table 10:	2020 Future Level	of Service Summary	y – School PM Peak-Hour
		of Sel vice Summary	School I fill I can libui

	2020 Baseline Conditions			2020 Future Conditions		
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach
1. Spruce Way at 172 nd Street SW	Α	9.8 sec		Α	10.0 sec	
2. Spruce Way at North Driveway	В	11.0 sec	Westbound	В	10.6 sec	Westbound
3. Spruce Way at North Driveway	А	9.9 sec	Westbound	В	11.2 sec	Westbound


5.5 2020 Opening Year Queuing


Table 11 below shows a comparison of vehicle queue lengths depending on the number of vehicles picking-up/dropping-off at one time. The proposed loop will provide about 830 feet of service and queueing space before impacting Spruce Way. This provides space for about 38 vehicles (between 20-22 feet per vehicle) which would satisfy the requirement if only 4 vehicles could be serviced simultaneously. With increased drop-off/pick-up efficiency due to increased service area and additional parking on-site the proposed parent loop would provide adequate queuing space to limit impacts to the City street system.


Vehicles Served Simultaneously	50% Queue [vehicles]	95% Queue [vehicles]	Queuing Required [feet]	Total Loop Length Required
4	1	8	176	330
5	0	4	88	286
6	0	3	66	308


Table 11: Expected Drop-off/pick-up Queuing

This projected queuing is based on 172 vehicles (anticipated future parent traffic to the site) arriving in a 15-minute period and having a service rate of 15 seconds to drop-off a student. The 15 seconds is the measured time for a vehicle to stop, drop-off the student, start moving again based on video observations. The queue identified as the additional queue beyond the area required for the vehicles being served simultaneously. It was assumed that the length required to service X vehicles was 22 feet multiplied by (2*X-1). It was assumed that there will be enough width for vehicles to by-pass those dropping off. The width would allow for double stacking if queuing becomes a problem.

5.6 2020 Opening Year Parking Demand

For the future parking assessment, GTC assumed that the student enrollment would increase from 558 existing students (latest student data on OSPI) to 650 students projected by the Edmonds School District. The City of Lynnwood requires one parking space per six students and sufficient off-street space for safe loading and unloading of buses. This would result in a parking demand of 108 parking spaces. A parking study performed by GTC in November of 2016 shows that Spruce Elementary School has a parking demand of 0.083 vehicles per student. Assuming 85% represents a parking lot reaching capacity, the school would have a total parking demand of 63 parking spaces. Spruce Elementary School is proposing to have a total of 90 parking spaces, this represents an 17% reduction in parking from the City Code requirement of 108 parking spaces.

The parent and bus loops would have sufficient off-street space to load and unload students onsite. The 90 spaces plus parking provided in the loops on campus along with the additional onstreet parking spaces in the surrounding neighborhoods would provide additional event parking.

6. CONCLUSIONS

Spruce Elementary School will continue to serve grades kindergarten through 6th grade with a capacity of 650 students by the future analysis year, 2020. The school hours are from 9:20 AM and to 3:50 PM.

The reconstruction of Spruce Elementary School is estimated to generate a total of 140.8 new average daily trips with 50.3 trips (24.4 inbound/25.9 outbound) during the AM peak-hour and 29.8 trips (12.2 inbound/17.6 outbound) during the School PM peak-hour. During the street peak-hour between 4 and 6 PM it is anticipated that there would be an increase of 13.8 PM peak-hour trips (6.8 inbound/7.0 outbound).

In the 2020 future with the reconstruction analysis all off-site study intersections will continue to operate at LOS C or better during the AM peak-hour and LOS B or better during the School PM peak-hour, thus meeting the City of Lynnwood Intersection Standards used for SEPA impact evaluation. The main parent access for the school, the south driveway, will operate at LOS B during the AM peak-hour and School PM peak-hour with the westbound leg (school driveway) operating as the critical approach. The bus loop, utilizing the north driveway, is anticipated to operate at acceptable LOS C during the AM peak-hour and LOS B in the school PM peak-hour.

The site is expected to have sufficient parking to satisfy the long-term parking needs. Additionally, the site will have sufficient queuing space to satisfy the drop-off and pick-up queuing needs without impacting Spruce Way.

Trip Generation Calculations

Spruce Elementary School

Count Data:

	,	AM (8:45 AN	1 to 9:45 Al	VI)		PM (3:00 PN	/I - 5:00 PM)
Location	In	% of Total	Out	% of Total	In	% of Total	Out	% of Total
N Driveway	148	100%	153	97%	63	85%	94	88%
S Driveway	0	0%	4	3%	11	15%	13	12%
Frontage	0	0%	0	0%	0	0%	0	0%
Total	148	49%	157	51%	74	41%	107	59%

Trip Generation per student:

556	students						
	0,	School Rate:	S	IT	E Comparis	on	+/- to Lynnwood
	Rate	% In	% Out	Rate	% In	% Out	Trips
AM	0.55	49%	51%	0.45	68%	32%	54
School PM	0.32	41%	59%	0.28	33%	55%	25

New Trips

92 students

52	students		
	Total	In	Out
AM	50.3	24.4	25.9
School PM	29.8	12.2	17.6

Total Trips

650 students

	Total	In	Out
AM	355	172	183
School PM	211	86	125

Trip Generation for: Development Peak Weekday (a.k.a.): Average Weekday Daily Trips (AWDT)

												N	ΕΤ ΕΧΤΕ	NET EXTERNAL TRIPS BY TYPE	PS BY	ТҮРЕ				
		4								N	IN BOTH DIRECTIONS	RECTIO	NS			DIRECT	ONAL	ASSIG	DIRECTIONAL ASSIGNMENTS	
				Gross	Trips		Inte Cross	Internal Crossover	TOTAL	PASSA9	S-BY	DIVE	DIVERTED LINK	NEW PASS-BY	PAS:		DIVERTED	TED K	NEW	
LAND USES	VARIABLE	ITE LU code	Trip Rate	% N	% ouT	% In+Out UT (Total)	% of Gross Trips	Trips In+Out (Total)	ut % of Trips In+Out % of In+Out Ext. (Total) Trips (Total) Trips (Total) Trips (Total) Trips (% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of In+Out Ext. (Total) (Total)		In Out In Out	5		E	Out
High School	92 students	stdy	1.53	50%	50%	140.8	%0	0.0	140.8 <mark>0%</mark>	%0	0.0	%0	0.0	140.8 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	70.4	70.4
Total						140.8		0.0	140.8		0.0		0.0	1408 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	70.4	70.4

Trip Generation for: Development Peak Weekday, Peak Hour of Adjacent Street Traffic, One Hour between 7 and 9 AM (a.k.a.): Weekday AM Peak Hour

												NET	NET EXTERNAL TRIPS BY TYPE	AL TRIPS	ВУ ТУ	ЪЕ				
		ļ								N	IN BOTH DIRECTIONS	IRECTIO	NS		D	RECTIC	NAL /	ASSIGN	DIRECTIONAL ASSIGNMENTS	
				Gross	Trips		Inte Cros	Internal Crossover	TOTAL	PAS	S-BY	DIVERT	PASS-BY DIVERTED LINK NEW PASS-BY	NEW	PASS		DIVERTED LINK	LED	NEW	
LAND USES	VARIABLE	ITE LU code	Trip Rate	% N	% out	In+Out (Total)		% of Trips Gross In+Out Trips (Total)	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out In+Out (Total)	In+Out (Total)	In Out		In Out	Out	о ч	Out
High School	92 students stdy		0.55	49%	51%	50.3	%0	0.0	50.3	%0	0.0	%0	0.0	50.3	0.0 0.0 0.0 0.0	0.0	0.0	0.0	24.4 2	25.9
Total						50.3		0.0	50.3		0.0		0.0	50.3 0.0 0.0 0.0 24.4	0.0	0.0	0.0	0.0		25.9

Trip Generation for: Development Peak Weekday, School PM Peak-Hour, One Hour between 1:30 and 3:30 PM (a.k.a.): Weekday School PM Peak Hour

												NET	NET EXTERNAL TRIPS BY TYPE	VL TRIPS	BY TY	Ы				Π
										N	IN BOTH DIRECTIONS	RECTIO	SN		DIR	ECTIC	NAL A	DIRECTIONAL ASSIGNMENTS	MENTS	
				Gross	Trips		Inte Cross	Internal Crossover	TOTAL		PASS-BY	DIVERTE	DIVERTED LINK NEW PASS-BY	NEW	-SSA-		DIVERTED	ED	NEW	
LAND USES	VARIABLE	ITE LU code	Trip Rate	NI	% ouT	In+Out (Total)	% of Gross Trips	% of Trips Gross In+Out Trips (Total)	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out In+Out (Total) (Total)	In+Out (Total)	In Out	Dut	u u	Out In		Out
High School	92 students stdy	stdy	0.32	41%	59%	29.8	%0	0.0	29.8	%0	0.0	%0	0.0	29.8	0.0 0.0	0.0	0.0 0.0	1.0 1	12.2	17.6
Total						29.8		0.0	29.8		0.0		0.0	29.8 0.0 0.0 0.0 0.0 12.2	0.0	0.0	0.0	0.0	2.2	17.6

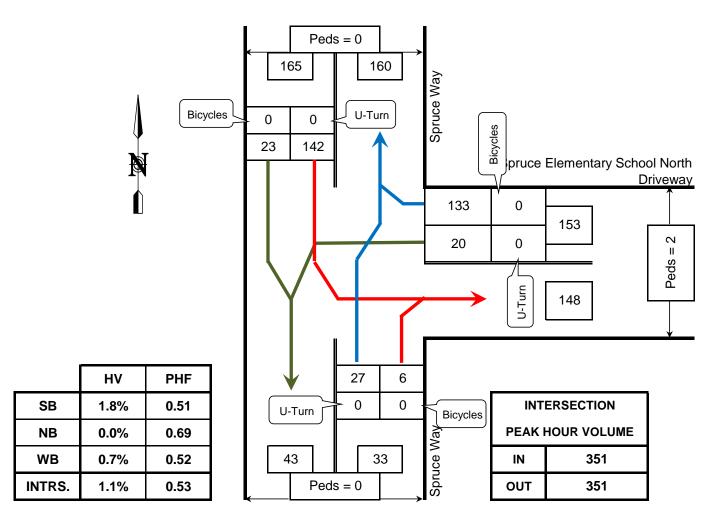
Trip Generation for: Development Peak Weekday, PM Peak-Hour of Adjacent Street Traffic, One Hour between 4 and 6 PM (a.k.a.): Weekday PM Peak Hour

												NET	NET EXTERNAL TRIPS BY TYPE	AL TRIPS	ВҮ ТҮ	Щ				
		1								N	IN BOTH DIRECTIONS	RECTIO	NS		DIF	ECTIC	NAL A	DIRECTIONAL ASSIGNMENTS	IENTS	
				Gross	Trips		Inte Cros	Internal Crossover	ΤΟΤΑΙ	PAS	S-BY	DIVERT	PASS-BY DIVERTED LINK NEW PASS-BY	NEW	PASS-		DIVERTED	ED	NEW	
LAND USES	VARIABLE	LU Code	Trip Rate	% N	% 0UT	In+Out (Total)	% of Trips Gross In+Out Trips (Total)	Trips In+Out (Total)	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out In+Out (Total)	In+Out (Total)	In Out	Dut	In Out	ut In	out	¥
High School	92 students 520	520	0.15 49%	49%	51%	51% 13.8	%0	0.0	13.8	%0	0.0	%0	0.0	13.8 0.0 0.0 0.0 0.0	0.0	0.0	0.0		6.8 7.0	0
Total						13.8		0.0	13.8		0.0		0.0	13.8 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	6.8 7.0	0

AM Peak-Hour

%	New	New AM	/I Peak Hou	ır Trips	%	New	New A	M Peak Hou	ır Trips
70	ADT	In	Out	Total	70	ADT	In	Out	Total
100%	141	24	26	50	100%	141	24	26	50
1%	1.41	0.24	0.26	0.50	51%	71.81	12.44	13.21	25.65
2%	2.82	0.49	0.52	1.01	52%	73.22	12.69	13.47	26.16
3%	4.22	0.73	0.78	1.51	53%	74.62	12.93	13.73	26.66
4%	5.63	0.98	1.04	2.01	54%	76.03	13.18	13.99	27.16
5%	7.04	1.22	1.30	2.52	55%	77.44	13.42	14.25	27.67
6%	8.45	1.46	1.55	3.02	56%	78.85	13.66	14.50	28.17
7%	9.86	1.71	1.81	3.52	57%	80.26	13.91	14.76	28.67
8%	11.26	1.95	2.07	4.02	58%	81.66	14.15	15.02	29.17
9%	12.67	2.20	2.33	4.53	59%	83.07	14.40	15.28	29.68
10%	14.08	2.44	2.59	5.03	60%	84.48	14.64	15.54	30.18
11%	15.49	2.68	2.85	5.53	61%	85.89	14.88	15.80	30.68
12%	16.90	2.93	3.11	6.04	62%	87.30	15.13	16.06	31.19
13%	18.30	3.17	3.37	6.54	63%	88.70	15.37	16.32	31.69
14%	19.71	3.42	3.63	7.04	64%	90.11	15.62	16.58	32.19
15%	21.12	3.66	3.89	7.55	65%	91.52	15.86	16.84	32.70
16%	22.53	3.90	4.14	8.05	66%	92.93	16.10	17.09	33.20
17%	23.94	4.15	4.40	8.55	67%	94.34	16.35	17.35	33.70
18%	25.34	4.39	4.66	9.05	68%	95.74	16.59	17.61	34.20
19%	26.75	4.64	4.92	9.56	69%	97.15	16.84	17.87	34.71
20%	28.16	4.88	5.18	10.06	70%	98.56	17.08	18.13	35.21
21%	29.57	5.12	5.44	10.56	71%	99.97	17.32	18.39	35.71
22%	30.98	5.37	5.70	11.07	72%	101.38	17.57	18.65	36.22
23%	32.38	5.61	5.96	11.57	73%	102.78	17.81	18.91	36.72
24%	33.79	5.86	6.22	12.07	74%	104.19	18.06	19.17	37.22
25%	35.20	6.10	6.48	12.58	75%	105.60	18.30	19.43	37.73
26%	36.61	6.34	6.73	13.08	76%	107.01	18.54	19.68	38.23
27%	38.02	6.59	6.99	13.58	77%	108.42	18.79	19.94	38.73
28%	39.42	6.83	7.25	14.08	78%	109.82	19.03	20.20	39.23
29%	40.83	7.08	7.51	14.59	79%	111.23	19.28	20.46	39.74
30%	42.24	7.32	7.77	15.09	80%	112.64	19.52	20.72	40.24
31%	43.65	7.56	8.03	15.59	81%	114.05	19.76	20.98	40.74
32%	45.06	7.81	8.29	16.10	82%	115.46	20.01	21.24	41.25
33%	46.46	8.05	8.55	16.60	83%	116.86	20.25	21.50	41.75
34%	47.87	8.30	8.81	17.10	84%	118.27	20.50	21.76	42.25
35%	49.28	8.54	9.07	17.61	85%	119.68	20.74	22.02	42.76
36%	50.69	8.78	9.32	18.11	86%	121.09	20.98	22.27	43.26
37%	52.10 53.50	9.03	9.58 9.84	18.61	87%	122.50	21.23	22.53 22.79	43.76
38%		9.27		19.11	88%	123.90	21.47		44.26
39%	54.91 56.32	9.52	10.10	19.62	89%	125.31	21.72	23.05	44.77
40% 41%		9.76	10.36	20.12	90% 91%	126.72	21.96	23.31	45.27
	57.73	10.00	10.62 10.88	20.62		128.13	22.20	23.57	45.77
42% 43%	59.14	10.25		21.13 21.63	92% 93%	129.54	22.45	23.83	46.28
43%	60.54	10.49	11.14		93%	130.94	22.69	24.09	46.78
44% 45%	61.95 63.36	10.74 10.98	11.40 11.66	22.13 22.64	94% 95%	132.35 133.76	22.94	24.35 24.61	47.28 47.79
45% 46%	64.77	10.98	11.00		95% 96%	133.76	23.18 23.42		47.79
40%			12.17	23.14	96%			24.86	48.79
47%	66.18 67.58	11.47 11.71	12.17	23.64 24.14	97%	136.58 137.98	23.67 23.91	25.12 25.38	40.79
48%	68.99	11.71	12.43	24.14	98%	137.98	23.91	25.30	49.29
49% 50%	70.40	12.20	12.09 12.95	24.05	100%	140.80	24.10 24.40	25.04 25.90	
50%	70.40	12.20	12.95	20.15	100%	140.00	24.40	25.90	50.30

School PM Peak-Hour


0/	New	New PM	l Peak Hou	ır Trips	0/	New	New P	M Peak Hou	ır Trips
%	ADT	In	Out	Total	%	ADT	In	Out	Total
100%	141	12	18	30	100%	141	12	18	30
1%	1.41	0.12	0.18	0.30	51%	71.81	6.22	8.98	15.20
2%	2.82	0.24	0.35	0.60	52%	73.22	6.34	9.15	15.50
3%	4.22	0.37	0.53	0.89	53%	74.62	6.47	9.33	15.79
4%	5.63	0.49	0.70	1.19	54%	76.03	6.59	9.50	16.09
5%	7.04	0.61	0.88	1.49	55%	77.44	6.71	9.68	16.39
6%	8.45	0.73	1.06	1.79	56%	78.85	6.83	9.86	16.69
7%	9.86	0.85	1.23	2.09	57%	80.26	6.95	10.03	16.99
8%	11.26	0.98	1.41	2.38	58%	81.66	7.08	10.21	17.28
9%	12.67	1.10	1.58	2.68	59%	83.07	7.20	10.38	17.58
10%	14.08	1.22	1.76	2.98	60%	84.48	7.32	10.56	17.88
11%	15.49	1.34	1.94	3.28	61%	85.89	7.44	10.74	18.18
12%	16.90	1.46	2.11	3.58	62%	87.30	7.56	10.91	18.48
13%	18.30	1.59	2.29	3.87	63%	88.70	7.69	11.09	18.77
14%	19.71	1.71	2.46	4.17	64%	90.11	7.81	11.26	19.07
15%	21.12	1.83	2.64	4.47	65%	91.52	7.93	11.44	19.37
16%	22.53	1.95	2.82	4.77	66%	92.93	8.05	11.62	19.67
17%	23.94	2.07	2.99	5.07	67%	94.34	8.17	11.79	19.97
18%	25.34	2.20	3.17	5.36	68%	95.74	8.30	11.97	20.26
19%	26.75	2.32	3.34	5.66	69%	97.15	8.42	12.14	20.56
20%	28.16	2.44	3.52	5.96	70%	98.56	8.54	12.32	20.86
21%	29.57	2.56	3.70	6.26	71%	99.97	8.66	12.50	21.16
22%	30.98	2.68	3.87	6.56	72%	101.38	8.78	12.67	21.46
23%	32.38	2.81	4.05	6.85	73%	102.78	8.91	12.85	21.75
24%	33.79	2.93	4.22	7.15	74%	104.19	9.03	13.02	22.05
25%	35.20 36.61	3.05	4.40	7.45	75% 76%	105.60 107.01	9.15	13.20	22.35
26% 27%	38.02	3.17 3.29	4.58 4.75	7.75 8.05	76%	107.01	9.27 9.39	13.38 13.55	22.65 22.95
27 %	39.42	3.29	4.73	8.34	78%	100.42	9.59	13.53	22.93
20%	40.83	3.54	5.10	8.64	70%	111.23	9.64	13.90	23.54
30%	42.24	3.66	5.28	8.94	80%	112.64	9.76	14.08	23.84
31%	43.65	3.78	5.46	9.24	81%	114.05	9.88	14.26	24.14
32%	45.06	3.90	5.63	9.54	82%	115.46	10.00	14.43	24.44
33%	46.46	4.03	5.81	9.83	83%	116.86	10.13	14.61	24.73
34%	47.87	4.15	5.98	10.13	84%	118.27	10.25	14.78	25.03
35%	49.28	4.27	6.16	10.43	85%	119.68	10.37	14.96	25.33
36%	50.69	4.39	6.34	10.73	86%	121.09	10.49	15.14	25.63
37%	52.10	4.51	6.51	11.03	87%	122.50	10.61	15.31	25.93
38%	53.50	4.64	6.69	11.32	88%	123.90	10.74	15.49	26.22
39%	54.91	4.76	6.86	11.62	89%	125.31	10.86	15.66	26.52
40%	56.32	4.88	7.04	11.92	90%	126.72	10.98	15.84	26.82
41%	57.73	5.00	7.22	12.22	91%	128.13	11.10	16.02	27.12
42%	59.14	5.12	7.39	12.52	92%	129.54	11.22	16.19	27.42
43%	60.54	5.25	7.57	12.81	93%	130.94	11.35	16.37	27.71
44%	61.95	5.37	7.74	13.11	94%	132.35	11.47	16.54	28.01
45%	63.36	5.49	7.92	13.41	95%	133.76	11.59	16.72	28.31
46%	64.77	5.61	8.10	13.71	96%	135.17	11.71	16.90	28.61
47%	66.18	5.73	8.27	14.01	97%	136.58	11.83	17.07	28.91
48%	67.58	5.86	8.45	14.30	98%	137.98	11.96	17.25	29.20
49%	68.99	5.98	8.62	14.60	99%	139.39	12.08	17.42	29.50
50%	70.40	6.10	8.80	14.90	100%	140.80	12.20	17.60	29.80

Count Data

TURNING MOVEMENTS DIAGRAM

8:45 AM - 9:45 AM PEAK HOUR: 8:45 AM TO 9:45 AM

HV = Heavy Vehicles PHF = Peak Hour Factor

Spruce Elementary School North Driveway @ Spruce Way

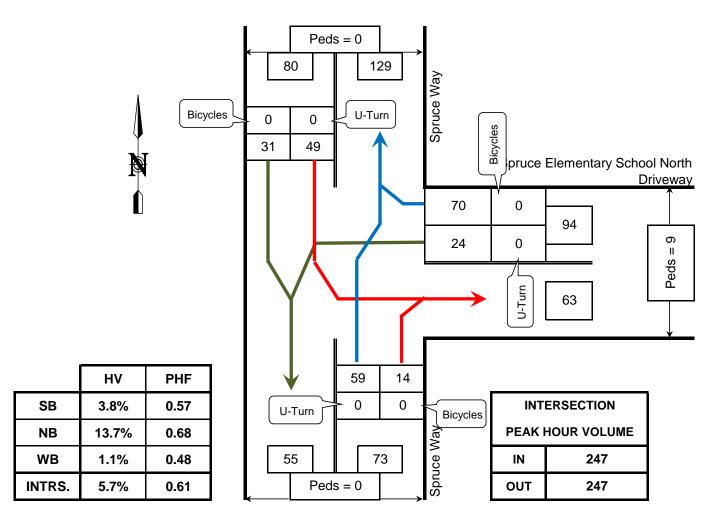
Lynnwood, WA

COUNTED BY:	VT	

REDUCED BY: <u>CN</u>

REDUCTION DATE: Fri. 11/18/16

DATE OF COUNT:	Wed. 11/16/16
TIME OF COUNT:	8:45 AM - 9:45 AM
WEATHER:	Sunnv


INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruc Lynnv	Spruce Elementary School North Driveway @ Spruce Way Lynnwood, W.A	tary Sch	ool North	h Drive	way @	Spruce	Way					DATE TIME (DATE OF COUNT: TIME OF COUNT:	:TNI TN	S	Wed. 11/16/16 8:45 AM - 9:45	Wed. 11/16/16 8:45 AM - 9:45 AM							CO ME	COUNTED BY: WEATHER:	BY: R:	VT Sunny	
ТІМЕ			FROM	FROM NORTH ON	NO	1		1		FRON	FROM SOUTH ON	NOF	1				FROM	FROM EAST ON	z	1	-			FROM WEST ON	EST ON				
INTERVAL ENDING			Spr	Spruce Way						ß	Spruce Way	ž			Spi	Spruce Elementary School North Driveway	nentary	School N	lorth Dr	'iveway								INTERVAL	
AT	Peds	Peds Bicycle	Η	U-Turn	Left	Thru	Right	Peds	Bicycle	Η	U-Turn	Left	Thru	Right	Peds B	Bicycle	ΗV	U-Turn	Left -	ThruR	Right Pe	Peds Bic	Bicycle H	L-U VH	U-Turn Le	Left Th	Thru Right		
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0		0	
06:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
06:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
06:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
09:00 AM	0	0	0	0	45	8	0	0	0	0	0	0	10	-	0	0	0	0	9	0	33	0	0	0	0 0	0	0	103	
09:15 AM	0	0	0	0	77	4	0	0	0	0	0	0	8	4	2	0	0	0	6	0	64	0	0	0	0 0	0	0	166	1
09:30 AM	0	0	3	0	18	5	0	0	0	0	0	0	4	0	0	0	0	0	4	0	31	0	0	0	0 0	0	0	62	
09:45 AM	0	0	0	0	2	9	0	0	0	0	0	0	5	-	0	0	1	0	٢	0	5	0 0	0	0	0 0	0	0	20	
PEAK HOUR TOTALS	0	0	3	0	142	23	0	0	0	0	0	0	27	9	2	0	-	0	20	0	133	0	0	0	0	0	0	INTERSECTION	NO
ALL MOVEMENTS		ſ			165	5			ſ			3	33			ŀ	1		153		+		╞	+		0		351	
VH %			1.8%							0.0%							0.7%						#	#N/A				1.1%	1
PEAK HOUR FACTOR					0.51	+						0.	0.69						0.52							#N/A		0.53	
HV - Heavy Vehicle																													
PHF = Peak Hour Factor	tor									8:45 A	8:45 AM - 9:45 AM PEAK HOUR:	5 AM F	EAK F	IOUR:	8:4	8:45 AM			TO 9	9:45 AM	_								
														•]								
REDUCED BY:	S	ı																			ď	DATE OF REDUCTION:	REDUCT	NOL				11/18/2016	
												RC	DLLIN	G HOL	ROLLING HOUR COUNT	UNT													
			FROM	FROM NORTH ON	N					FRON	FROM SOUTH ON	NOF					FROM	FROM EAST ON	z		┢			FROM WEST ON	EST ON				
			Spr.	Spruce Way						sp	Spruce Way	Ň			Spi	Spruce Elementary School North Driveway	nentary	School N	lorth Dr	iveway								INTERVAL TOTALS	
TIME INTERVAL	Peds	Peds Bicycle	٨H	U-Turn Left Thru	Left	Thru	Right	Peds	Bicycle	¥	U-Turn	Left	Thru	Right	Peds	Bicycle	٨H	U-Turn	Left -	ThruR	Right Pe	Peds Bic	Bicycle F	L-U VH	U-Turn Le	Left Th	Thru Right		
5:45 AM - 6:45 AM	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0 0	0	0 0	0 0	0		0	
	0			,	e		-			•		•		-				,	-										

		FRO	FROM NORTH ON	NO H					FROM SOUTH ON	OUTH C	N				Ϊ.	FROM EAST ON	ST ON					FROM	FROM WEST ON	N			
		S	Spruce Way	'ay					Spruc	Spruce Way				Spruc	Spruce Elementary School North Driveway	tary Sch	100 Nor	th Drive	way								INTERVAL TOTALS
TIME INTERVAL Per	ads Bicy	Peds Bicycle HV U-Turn Left Thru	U-Tur	n Left	t Thru	-	Right Peds	Bicycle	HV U	U-Turn	Left 1	Thru R	tight Pe	Right Peds Bicycle	sycle HV		U-Turn Left	oft Thru	ru Right	ht Peds	Bicycle	Ч	U-Turn	Left	Thru	Right	
5:45 AM - 6:45 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:15 AM - 7:15 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:30 AM - 7:30 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:45 AM - 7:45 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
7:00 AM - 8:00 AM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 8:15 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 8:30 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:45 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 9:00 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 9:15 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 9:30 AM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:45 AM 0	0	e	0	142	23	0	0	0	0	0	0	27	9	2	0	0	20	•	133	0	0	0	0	0	0	0	351

TURNING MOVEMENTS DIAGRAM

3:00 PM - 5:00 PM PEAK HOUR: 3:30 PM TO 4:30 PM

HV = Heavy Vehicles PHF = Peak Hour Factor

Spruce Elementary School North Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY: VT

REDUCED BY: <u>CN</u>

REDUCTION DATE: Fri. 11/18/16

DATE OF COUNT:	Wed. 11/16/16
TIME OF COUNT:	3:00 PM - 5:00 PM
WEATHER:	Sunny

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruce Elementary School North Driveway @ Spruce Way Lynnwood, WA	mentary WA	School	North Dr	iveway	@ Spri	uce Wa					DAT	DATE OF COUNT: TIME OF COUNT:	OUNT: NUNT:		Wed. 11/16/16 3:00 PM - 5:00	Wed. 11/16/16 3:00 PM - 5:00 PM	M		1 1					COUNTED WEATHER:	COUNTED BY: WEATHER:		VT Sunny
TIME		FR	FROM NORTH ON	NO HTS					FR(FROM SOUTH ON	NO HL					FRO	FROM EAST ON	r on					FRON	FROM WEST ON	NO			
INTERVAL			Spruce Way	Way						Spruce Way	Nay			57	Spruce Elementary School North Driveway	ementar	Ty Schot	ol North	Drivew	ay								INTERVAL TOTAL S
AT	Peds Bicycle	/cle HV	V U-Turn	urn Left	t Thru	u Right	ht Peds	s Bicycle	HV HV	/ U-Turn	urn Left	ft Thru	ru Right	ht Peds	Bicycle	₽	U-Turn	n Left	Thru	Right	Peds	Bicycle	ΛН	U-Turn	Left	Thru	Right	
01:15 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0 0	0	0	9	9	0	0	0	0	0	0	8	0	2	0	1	0	2	0	4	0	0	0	0	0	0	0	26
03:30 PM	0 0	2	0	9	7	0	0	0	0	0	0	e	-	2	0	0	0	-	0	3	0	0	0	0	0	0	0	21
03:45 PM	0 0	-	0	7	12	0	0	0	0	0	0	12	2	-	0	0	0	-	0	0	0	0	0	0	0	0	0	34
04:00 PM	0 0	2	0	27	80	0	0	0	4	0	0	11	9	5	0	0	0	9	0	43	0	0	0	0	0	0	0	101
04:15 PM	0 0	0	0	13	7	0	0	0	5	0	0	22	5	2	0	1	0	8	0	22	0	0	0	0	0	0	0	77
04:30 PM	0 0	0	0	2	4	0	0	0	-	0	0	14	-	-	0	0	0	6	0	5	0	0	0	0	0	0	0	35
04:45 PM	0 1	0	0	4	10	0	0	0	-	0	0	15	-	0	0	0	0	-	0	-	0	0	0	0	0	0	0	32
05:00 PM	0 0	0	0	2	5	0	0	0	2	0	0	14	-	0	0	0	0	е	0	10	0	0	0	0	0	0	0	35
PEAK HOUR TOTALS	0		3 0	49	31	0	0	0	10	0	0	59	9 14	6	0	-	0	24	0	70	0	0	0	0	0	0	0	INTERSECTION
ALL MOVEMENTS					80				-			73						6	94				T		0			247
VH %		3.8%	3%						13.7%	%						1.1%							#N/A					5.7%
PEAK HOUR FACTOR				-	0.57							0.68						0.	0.48						W/N#	A		0.61
HV = Heavy Vehicle																												
PHF = Peak Hour Factor	or								3:00	3:00 PM - 5:00 PM PEAK HOUR:	:00 PM	1 PEAK	K HOUR		3:30 PM			5	TO 4:30 PM	M								
REDUCED BY:	CN																				DATE C	DATE OF REDUCTION:	JCTION:				ļ	11/18/2016
											æ	SOLLI	NG HC	ROLLING HOUR COUNT	OUNT													
_		Ħ	FROM NORTH ON	NO HTS					FR(FROM SOUTH ON	NO HL					FRO	FROM EAST ON	LON					FROM	FROM WEST ON	NO			
_			Spruce Way	Way						Spruce Way	Nay			57	Spruce Elementary School North Driveway	lementar	ry Schoo	ol North	Drivew:	ay								INTERVAL TOTALS
TIME INTERVAL	Peds Bicycle	/cle HV	V U-Turn	urn Left	tThru	Thru Right		Peds Bicycle	le HV	v U-Turn	urn Left	ft Thru	ru Right	nt Peds	Peds Bicycle	₽	U-Turn	n Left	Thru	Right	Peds	Bicycle	ΛH	U-Turn	Left	Thru	Right	101 413
1:00 PM - 2:00 PM	0 0			0	0	0	0	0	0	0	0	0		0	0		0	0		0	0	0	0	0	0	0	0	0

									FROM	FROM SOUTH ON	z				Ē	ROM E4	FROM EAST ON					2 E		z			
		Spru	Spruce Way	>					Spru	Spruce Way				Spruc	Spruce Elementary School North Driveway	tary Scl	100 Nor	th Driv	eway								INTERVAL TOTALS
TIME INTERVAL Peds Bicycle HV U-Turn Le	Bicycle	HV	U-Turn	Left	Thru	Right	Peds	Bicycle	HV L	U-Turn	Left 1	Thru R	light P	Right Peds Bicycle	ycle HV		U-Turn Le	Left Thru	ru Right	tht Peds	Is Bicycle	HV	U-Turn	Left	Thru	Right	
1:00 PM - 2:00 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
1:15 PM - 2:15 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0
1:30 PM - 2:30 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
1:45 PM - 2:45 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
2:00 PM - 3:00 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0
2:15 PM - 3:15 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0
2:30 PM - 3:30 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:45 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 4:00 PM 0	0	5	0	46	33	0	0	0	4	0	0	34	9	10 C	0 1		0 10	0 0	50	0	0	0	0	0	0	0	182
3:15 PM - 4:15 PM 0	0	5	0	53	34	0	0	0	6	0	0	48	14 1	10 C	0 1	5	0 16	16 0	68	0	0	0	0	0	0	0	233
3:30 PM - 4:30 PM 0	0	ю	0	49	31	0	0	0	10	0	0	59	14	9	0 1	-	0 24	4	70	0	0	0	0	0	0	0	247
3:45 PM - 4:45 PM 0	٢	2	0	46	29	0	0	0	11	0	0	62	13	8	0 1		0 24	4	71	0	0	0	0	0	0	0	245
4:00 PM - 5:00 PM 0	-	0	0	21	26	0	0	0	6	0	0	65		3	0	5	0 21	1	38	0	0	0	0	0	0	0	179

TURNING MOVEMENTS DIAGRAM 8:45 AM - 9:45 AM PEAK HOUR: 8:45 AM TO 9:45 AM Peds = 0Bicycles U-Turn Spruce Way 43 34 0 1 1 41 0 Spruce Elementary School South Private Driveway Driveway 0 0 Bicycles 0 1 4 = 2 Peds = 04 0 U-Turn Peds : 0 0 U-Turn 0 0 1 Bicycles 0 1 0 34 0 PHF ΗV Spruce Way 0 0 INTERSECTION SB 4.7% 0.72 PEAK HOUR VOLUME 46 34 2.9% 0.61 NB U-Tum Bicycles IN 82 WB 100.0% 0.25 OUT 82 EΒ 0.0% 0.25 Peds = 0INTRS. 8.5% 0.71

PHF = Peak Hour Factor HV = Heavy Vehicle

Spruce Elementary School South Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY:	VT	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	8:45 AM - 9:45 AM
REDUCTION DATE:	Wed. 11/16/16	WEATHER:	Sunny

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruce Elementary School South Driveway @ Spruce Way	mentary	v Schoo	I South	Drivewa	v @ Sr	oruce W	٨e,				á	ATE OF	DATE OF COUNT:		Wed.	Wed. 11/16/16								COUNT	COUNTED BY:	5	F
	Lynnwood, WA	I, WA										F	ME OF (TIME OF COUNT:		8:45 /	8:45 AM - 9:45 AM	5 AM							WEATHER:	ER:		Sunny
TIME		Ľ	ROM N	FROM NORTH ON	z		-		[FROM S	FROM SOUTH ON	z		╞		FR	FROM EAST ON	ST ON					FRON	FROM WEST ON	NO			
INTERVAL			Spruc	Spruce Way						Spruc	Spruce Way				Spruce	Spruce Elementary School South Driveway	ary Sch	ool South	Drivew	/ay			Privat	Private Driveway	vay			INTERVAL
ENDING	Pade Ricycla		HV	11-Turn	1 off Th	Thru Di	Picht Do	Dade Ric	Ricycle	ни	1 LTurn	T #el	Thru Pi	Picht Pode	de Biovela	UN PI	11-Turn	rn left	Thru	Picht	Pade	Bicycle	Н	11-Turn	1 oft	- International Provide Provid	Picht	TOTALS
DR:DD AM												-						-			0		-					-
06:15 AM			0		0				0	0						0) O		0	0	0	, o	0	0	0	0	0	
06:30 AM			0		0				0	0						0			0	0		0	0	0	0	0	0	0
06:45 AM			0						0	0					-	0	0		0	0	0	0	0	0	0	0	0	• •
07:00 AM	-		0		0 0			-	0	0		_			-	0	0		0	0	0	0	0	0	0	0	0	0
07:15 AM	-		0	0	0	-		-	0	0	_	-	_		-	0	0	_	0	0	0	0	0	0	0	0	0	0
07:30 AM	0		0	0	0 0		0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0 0	0	0	0	0 0		0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00 AM	0	0	0	0	0	15 (0	0	0	0	0	0	14 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	29
09:15 AM	0	0	0	0	0	12 (0	0	0	0	0	0	10 0	0 2	0	4	0	4	0	0	0	0	0	0	0	0	0	26
09:30 AM	0	0	-	-	3	8	0	0	0	1	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
09:45 AM	0	0	+	0	0 6	. 9	1	0	0	0	0	0	5 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	13
PEAK HOUR TOTALS	0	0	2	-	0 4	41	-	0	0	-	0	0	34 (0 2	0	4	0	4	0	0	0	0	0	0	0	0	-	INTERSECTION
ALL MOVEMENTS		ŀ			43				ŀ			34				-			4			Ī			-			82
VH %		4	4.7%				_		.,	2.9%						100.0%	%						0.0%					8.5%
PEAK HOUR FACTOR					0.72							0.61						5	0.25						0.25	2		0.71
HV = Heavy Vehicle																					_							
PHF = Peak Hour Factor	ctor								ø	:45 AM	8:45 AM - 9:45 AM PEAK HOUR:	AM PE/	AK HOL	Ë	8:45 AM	Σ		10	9:45 AM	AM								
REDUCED BY:	CN																				DATE C	DATE OF REDUCTION:	JCTION:					11/16/2016
												ROLI		HOUR	ROLLING HOUR COUNT	F												
		Ľ.	ROM N	FROM NORTH ON	z		╞		[FROM S	FROM SOUTH ON	z				Ę	FROM EAST ON	ST ON					FRON	FROM WEST ON	NO			
			Spruc	Spruce Way						Spruc	Spruce Way				Spruce	Spruce Elementary School South Driveway	ary Sch	ool Soutl	n Drivew	'ay			Privat	Private Driveway	vay			INTERVAL TOTALS
TIME INTERVAL	Peds Bic	Bicycle	HV U	U-Turn L	Left Th	Thru Ri	Right Pe	Peds Bic	Bicycle	HV U	U-Turn L	Left T	Thru Ri	Right Peds	ds Bicycle	cle HV	U-Turn	urn Left	t Thru	Right	Peds	Bicycle	Η	U-Turn	Left	Thru	Right	
5:45 AM - 6:45 AM	0		0	0	0	-		0	0	0	0			0	-	0	0		0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 AM		+	0		0			+	0	0					-	0	0		0	0	0	0	0	0	0	0	0	0
6:15 AM - 7:15 AM					0			_		0						0	0		0	0	0	0	0	0	0	0	0	0
6:30 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

B - 6

<

0 0 0

~

c

c 0 0 0 0

0 0 0

c 0 0 0

0 0

c

0 0

c c

8:45 AM - 7:45 AM 7:00 AM - 8:00 AM 7:15 AM - 8:15 AM 7:45 AM - 8:45 AM 7:45 AM - 8:45 AM 8:00 AM - 9:00 AM 8:50 AM - 9:30 AM 8:45 AM - 9:45 AM

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

~ ~

0 0

0 0

0 0 0 0

0 0

< c

0 0 0 0

0 0 0

0 0

0 0

0 0 0

0 0 0

3 0 0

0 0

0 0 0

0 0 0 4

0 0

0 0

0 0 0 -

.

0 0

0 0 0 0

TURNING MOVEMENTS DIAGRAM 3:00 PM - 5:00 PM PEAK HOUR: 3:45 PM TO 4:45 PM Peds = 0Bicycles U-Turn Spruce Way 52 69 0 1 1 49 2 Spruce Elementary School South Private Driveway Driveway 8 0 Bicycles 0 1 13 9 || Peds = 15 0 U-Turn Peds -0 0 U-Turn 3 0 11 Bicycles 0 3 0 61 9 PHF ΗV Spruce Way 0 0 INTERSECTION SB 1.9% 0.87 PEAK HOUR VOLUME 57 70 NB 12.9% 0.80 U-Tum Bicycles IN 138 WB 53.8% 0.54 OUT 138 EΒ 0.0% 0.25 Peds = 10INTRS. 12.3% 0.84

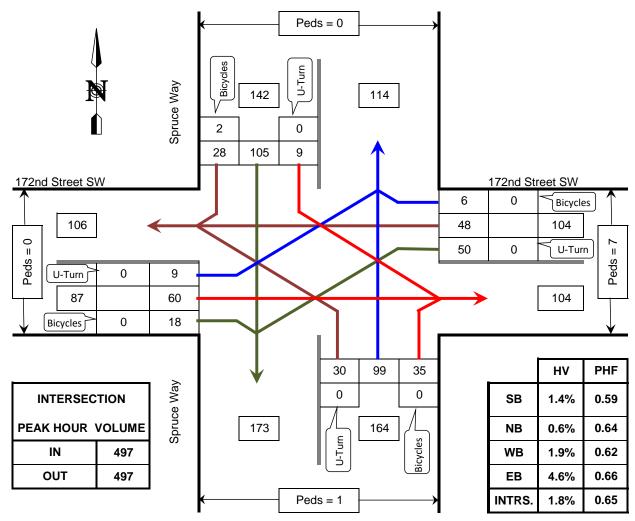
PHF = Peak Hour Factor HV = Heavy Vehicle

Spruce Elementary School South Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY:	VT	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	3:00 PM - 5:00 PM
REDUCTION DATE:	Sat. 11/19/16	WEATHER:	Sunny

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET


LOCATION:	Spruce Elementary School South Driveway @ Spruce Way Lynnwood, WA	nentary S WA	chool	South Dr	riveway	@ Spr	ruce Wa	2				DATI TIME	DATE OF COUNT: TIME OF COUNT:	UNT: UNT:		Wed. 11/16/16 3:00 PM - 5:00 PM	/16/16 - 5:00 P	×						0 5	COUNTED BY: WEATHER:	D BY: R:	VT Sunny	Ń
TIME		FRO	M NOF	FROM NORTH ON			_		FR	FROM SOUTH ON	NO HT					FRON	FROM EAST ON	NO		╞			FROM V	FROM WEST ON	z			
INTERVAL		S	Spruce Way	Way					-	Spruce Way	Vay			ŝ	pruce Ele	Spruce Elementary School South Driveway	School	South L	Drivewa				Private Driveway	Drivewa	~		-	INTERVAL TOTALS
AT	Peds Bicycle	cle HV	U-Turn	urn Left	ft Thru	u Right	ht Peds	ls Bicycle	cle HV	/ U-Turn	Irn Left	ft Thru	u Right	Peds	Bicycle	۶	U-Turn	Left	Thru	Right F	Peds Bio	Bicycle	HV U	U-Turn	Left T	Thru Ri	Right	101813
01:15 PM	0 0			0	0	0	0	0	0	0	0	0	0	0	0		0			0	0		0	0	0	0	0	0
01:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0 0	-	0	0	8	0	0	0	0	0	0	80	-	е	0	0	0	0	0	0	0	0	0	0	0	0	0	17
03:30 PM	0 0	-	0	0	9	0	0	0	0	0	0	e	0	2	0	0	0	2	0	-	-	0	0	0	0	0	1	13
03:45 PM	0 0	-	0	3	6	0	-	0	0	0	0	16	0	1	0	0	0	0	0	0	-	0	0	0	0	0	0	28
04:00 PM	0 0	1	0	٢	11	0	4	0	4	0	0	14	9	3	0	4	0	3	0	3	0	0	0	0	0	0	0	38
04:15 PM	0 0	0	0	-	14	0	9	0	2	0	0	21	-	2	0	з	0	0	0	4	0	0	0	0	0	0	0	41
04:30 PM	0 0	0	0	0	13	0	0	0	-	0	0	14	-	٢	0	0	0	2	0	0	0	0	0	0	0	0	0	30
04:45 PM	0 1	0	0	0	11	-	0	0	2	0	0	12	-	0	0	0	0	0	0	-	-	0	0	0	0	0	e	29
05:00 PM	0	0	0	0	8	0	0	0	-	0	0	13	0	0	0	1	0	0	0	-	0	0	0	0	1	0	0	23
PEAK HOUR TOTALS	S 0 1	-	0	2	49	-	10	0	6	0	0	61	6	6	0	7	0	5	0	8	-	0	0	0	0	0	3 INT	INTERSECTION
ALL MOVEMENTS		-			52				-			70						13				ŀ			3			138
VH %		1.9%							12.9%	%						53.8%						5	0.0%				_	12.3%
PEAK HOUR FACTOR					0.87						5	0.80						0.54	4						0.25			0.84
HV = Heavy Vehicle PHF = Peak Hour Factor	tor								3:00	3:00 PM - 5:00 PM PEAK HOUR:	:00 PM	PEAK	HOUR		3:45 PM			5	4:45 PM	5								
REDUCED BY:	CN																			Δ	DATE OF REDUCTION:	REDUC	:NOIT					11/19/2016
											Ľ	SOLLIN	NG HO	ROLLING HOUR COUNT	DUNT													
		FRO	M NOF	FROM NORTH ON			╞		FR	FROM SOUTH ON	TH ON			L		FROM	FROM EAST ON	NO		┢			FROM V	FROM WEST ON	z			
		s	Spruce Way	Way					-	Spruce Way	Vay			ด้	pruce Elé	Spruce Elementary School South Driveway	School	South L	Drivewa				Private Driveway	Drivewa	~		-	INTERVAL TOTALS
TIME INTERVAL	Peds Bicycle	cle HV	U-Turn	urn Left	ft Thru	u Right	ht Peds	s Bicycle	cle HV	/ U-Turn	urn Left	ft Thru	u Right	Peds	Bicycle	Ν	U-Turn	Left	Thru	Right F	Peds Bid	Bicycle	HV U	U-Turn	Left T	Thru Ri	Right	
1:00 PM - 2:00 PM	_	0	0		0	0		0	0	0			0	0	0	0	0	0	0	0		0	0	0			0	0
1:15 PM - 2:15 PM	-	+	0		0	0		0	0	0			0	0	0	0	0	0	0	0		0	0	0			0	0
1:30 PM - 2:30 PM 1:45 PM - 2:45 PM		0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
IN 1 CH:7 - INI 1 CH:1		+	2	+	2	+		>	>	>	-		2	>	>	>	2	>	2	5	+	5	5	2	+	-	_	>

			FROM P	FROM NORTH ON	N				FR	FROM SOUTH ON	TH ON					FRON	FROM EAST ON	NO					FROM \	FROM WEST ON	N			
			Spru	Spruce Way						Spruce Way	/ay			S	Spruce Elementary School South Driveway	mentary	School	South I	Jrivewa	×			Private Driveway	Drivewa	ау			INTERVAL TOTALS
TIME INTERVAL	Peds E	Peds Bicycle HV	NH	U-Turn Left		Thru Ri	Right Pe	Peds Bicycle	cle HV	/ U-Turn	rn Left	t Thru	u Right		Peds Bicycle	ΗV	U-Turn	Left	Thru	Right	Peds B	Bicycle	ר HA ר	U-Turn	Left	Thru R	Right	
1:00 PM - 2:00 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 PM - 2:15 PM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:30 PM - 2:30 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:45 PM - 2:45 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM - 3:00 PM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM - 3:15 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM - 3:30 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:45 PM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 4:00 PM	0	0	4	0	4	34 (0 5	5 0	4	0	0	41	7	6	0	4	0	5	0	4	2	0	0	0	0	0	1	96
3:15 PM - 4:15 PM	0	0	3	0	5	40 (0 11	1 0	9	0	0	54	7	8	0	7	0	5	0	8	2	0	0	0	0	0	1	120
3:30 PM - 4:30 PM	0	0	2	0	5	47 (0 11	1 0	7	0	0	65	8	7	0	7	0	5	0	7	1	0	0	0	0	0	0	137
3:45 PM - 4:45 PM	0	-	-	0	2	49	1	10 0	6	0	0	61	ი	9	0	7	0	5	0	80	-	0	0	0	0	0	e	138
4:00 PM - 5:00 PM	0	2	0	0	-	46	1	6 0	9	0	0	09	ю	3	0	4	0	2	0	9	-	0	0	c		C	e.	123

TURNING MOVEMENTS DIAGRAM

8:45 AM - 9:45 AM PEAK HOUR: 8:45 AM TO 9:45 AM

PHF = Peak Hour Factor HV = Heavy Vehicle

Spruce Way @ 172nd Street SW

Lynnwood, WA

COUNTED BY:	CN	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	8:45 AM - 9:45 AM
REDUCTION DATE:	Wed. 11/16/16	WEATHER:	Sunny

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruce Way @ 172nd Street SW Lynnwood, WA	ay @ 17 I, WA	'2nd Str	eet SW								DATE (TIME G	date of count: Time of count:	Ϊ	8	Wed. 11/16/16 8:45 AM - 9:45	Wed. 11/16/16 8:45 AM - 9:45 AM							S IN	COUNTED BY: WEATHER:	ж В	CN Sunny
TIME		-	FROM NORTH ON	ORTH C	NC		-		FRC	FROM SOUTH ON	TH ON					FROM	FROM EAST ON	-		<u> </u>			FROM WEST ON	EST ON			
INTERVAL ENDING			Spru	Spruce Way					5	Spruce Way	łay					172nd S	172nd Street SW	>				-	172nd Street SW	reet SW			INTERVAL TOTALS
АТ	Peds Bicycle		HV U	U-Turn	Left Th	Thru Ri	Right Pe	Peds Bicycle	cle HV	U-Turn	rn Left	Thru	Right	Peds Bicycle		HV U	U-Turn	Left 1	Thru R	Right Pe	Peds Bicycle		L-U VH	U-Turn L	Left Tr	Thru Right	ht
06:00 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	_	0	0	0 0	0	0
06:15 AM	0 0	0	0	0	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0 0	0
06:30 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	_	0	0	0 0	0	0
06:45 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
07:00 AM	0 0	0	0	0	0 0	_	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0	0	0 0	0 0	0
07:15 AM	0 0	0	0	0	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0 0	0
07:30 AM	0 0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
07:45 AM	0 0	0	0	0	0 0	_	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
08:00 AM	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0
08:15 AM	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
08:30 AM	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
08:45 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	_	0	0	0 0	0	0
09:00 AM	0	0	0	0	1 29		4 0	0	0	0	9	22	6	2	0	0	0	18	5	1	0 0		0	0	0 8	3	105
09:15 AM	0	0	-	0	2 49		0 6	0	0	0	14	36	14	5	0	0	0	28	12	2	0 0		-	0	2 14	4 8	190
09:30 AM	0	2	0	0	2 20		3	0	-	0	7	35	10	0	0	1	0	е	18	3	0 0		+	0	2 12	2 6	121
09:45 AM	0	0	+	0	4 7	7 1	12 0	0	0	0	e	9	2	0	0	1	0	-	13	0	0 0		2	0	5 26	6 2	81
PEAK HOUR TOTALS	0	2	2	0	9 10	105 2	28 1	1 0	-	0	30	66	35	7	0	2	0	50	48	6	0	0	4	0	9 6	60 18	8 INTERSECTION
ALL MOVEMENTS		ŀ			142				-		7	164			-			104				ŀ			87		497
% HV		•	1.4%						0.6%	ي					•	1.9%				_		4.	4.6%				1.8%
PEAK HOUR FACTOR					0.59						o.	0.64						0.62							0.66		0.65
HV = Heavy Vehicle PHF - Peak Hour Factor	ž								8-45	- M 4-	8-45 AM - 9-45 AM PEAK HOUR-	н и		8-4	8-45 AM			0 D	TO 9-45 AM	Γ							
	5								ł				1	5				2]							
REDUCED BY:	CN																			DA	DATE OF REDUCTION:	REDUCT	NO				11/16/2016
											RC	ILLING	ROLLING HOUR COUNT	R COU	INT												
-							╞						ľ							ŀ							-

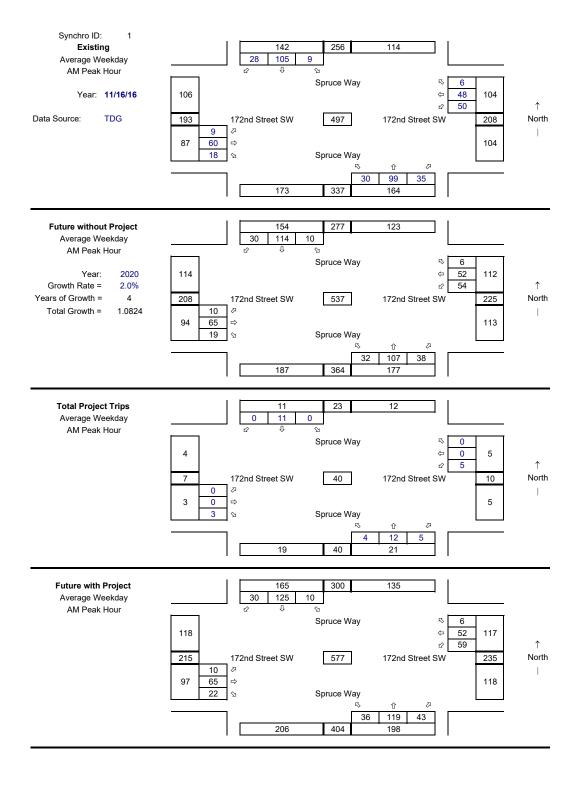
			FROM P	FROM NORTH ON	N				FRC	FROM SOUTH ON	TH ON					FROM	FROM EAST ON	NC					FROM V	FROM WEST ON			
			Spru	Spruce Way					.,	Spruce Way	łay					172nc	172nd Street SW	M					172nd S	172nd Street SW			INTERVAL TOTALS
TIME INTER VAL	Peds	Peds Bicycle HV	٩	U-Turn L	Left 7	Thru F	Right F	Peds Bicycle		HV U-Turn	rn Left		Righ	t Peds	Thru Right Peds Bicycle	ΛH	U-Turn	Left	Thru	Right P	Peds Bicycle	icycle	HV U	U-Turn Left		Thru Ri	Right
5:45 AM - 6:45 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
6:00 AM - 7:00 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
6:15 AM - 7:15 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
6:30 AM - 7:30 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
6:45 AM - 7:45 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
7:00 AM - 8:00 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
7:30 AM - 8:30 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
7:45 AM - 8:45 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
8:00 AM - 9:00 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
8:15 AM - 9:15 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
8:30 AM - 9:30 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
8:45 AM - 9:45 AM	0	2	2	0	9	105	28	1 0	1	0	30	66	35	7	0	2	0	50	48	6	0	0	4	0	9 6	60 1	18 497

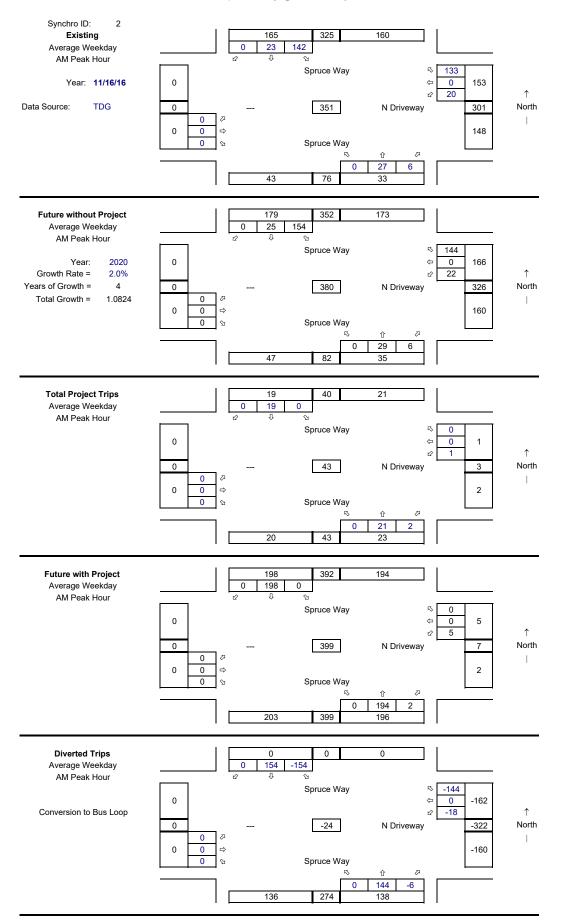
TURNING MOVEMENTS DIAGRAM 3:00 PM - 5:00 PM PEAK HOUR: 3:30 PM TO 4:30 PM Peds = 0Bicycles U-Turn Spruce Way 82 117 0 0 24 44 14 172nd Street SW 172nd Street SW 21 0 Bicycles 177 127 173 Peds = 26Peds = 00 25 U-Turn U-Turn [0 29 158 105 155 Bicycles 0 24 26 67 36 ΗV PHF Spruce Way 0 0 INTERSECTION SB 3.7% 0.89 PEAK HOUR VOLUME 93 129 NB 8.5% 0.58 U-Tum Bicycles IN 542 WB 2.3% 0.92 OUT 542 EΒ 3.8% 0.82 Peds = 1 INTRS. 4.4% 0.83

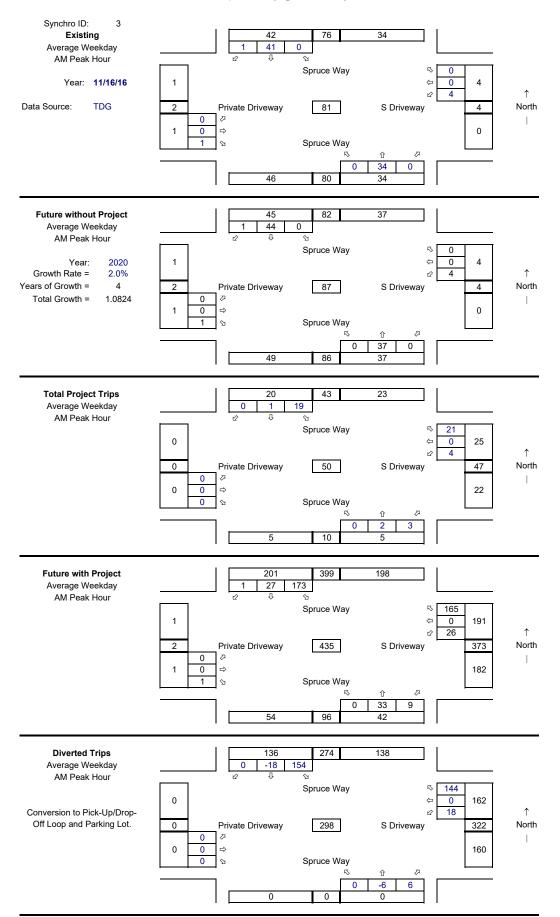
PHF = Peak Hour Factor HV = Heavy Vehicle

Spruce Way @ 172nd Street SW

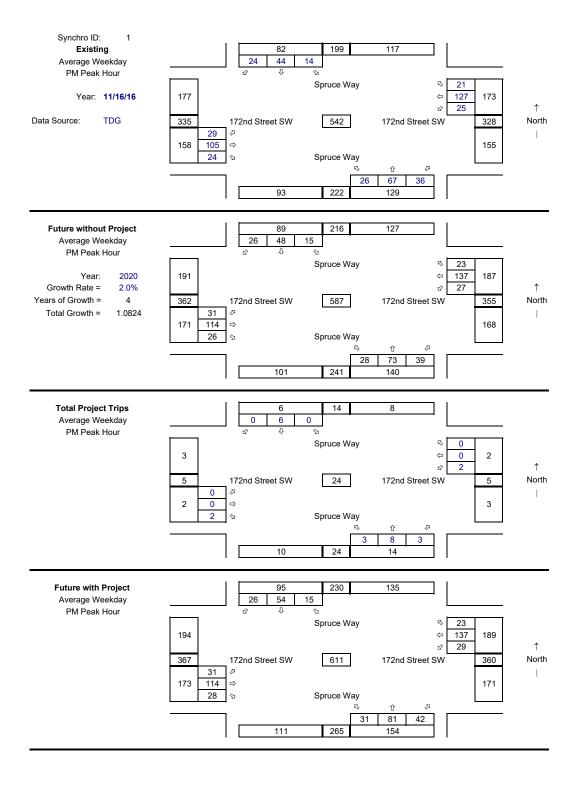
Lynnwood, WA

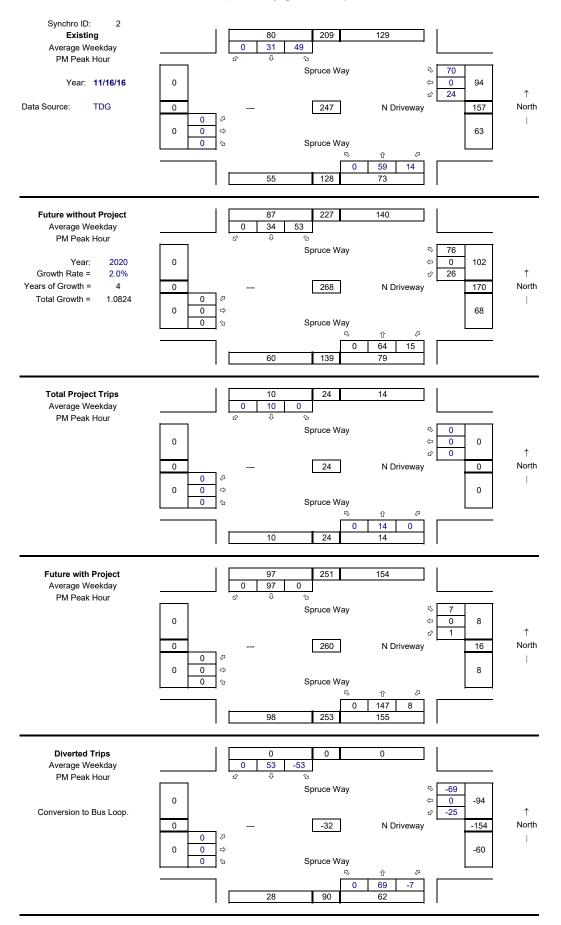

COUNTED BY:	CN	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	3:00 PM - 5:00 PM
REDUCTION DATE:	Wed. 11/16/16	WEATHER:	Sunny

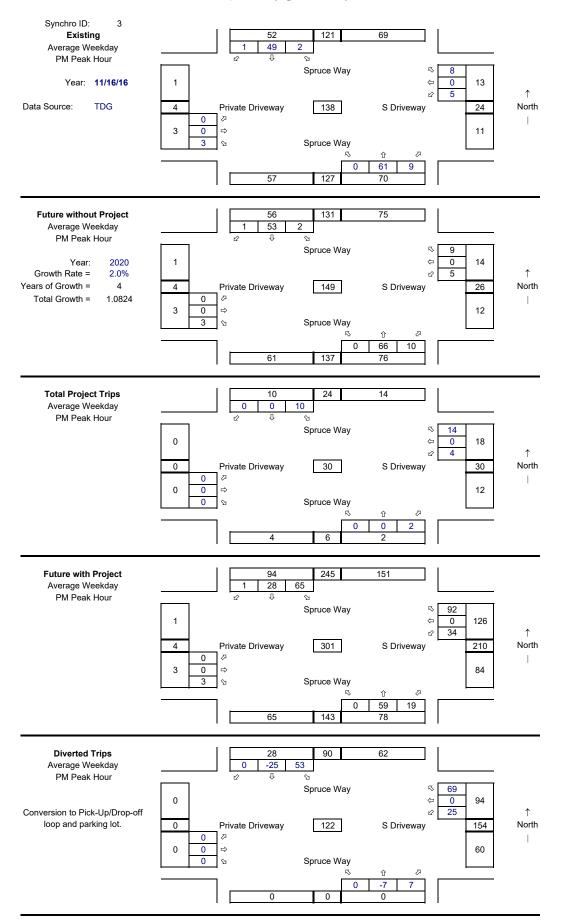

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET


LOCATION:	Spruce Way @ 172nd Street SW Lynnwood, WA	ay @ 172r I, WA	d Stre	et SW								.PA	DATE OF COUNT: TIME OF COUNT:	DATE OF COUNT: TIME OF COUNT:		Wed. 3:00 F	Wed. 11/16/16 3:00 PM - 5:00 PM	M		1 1					COUNTED E WEATHER:	COUNTED BY: WEATHER:		CN Sunny
TIME		FR	OM NC	FROM NORTH ON	x				Ē	30M SC	FROM SOUTH ON	-				Ē	FROM EAST ON	T ON					FRO	FROM WEST ON	NO.			
INTERVAL ENDING			Spruce Way	e Way						Spruce Way	• Way					172	172nd Street SW	et SW					172r.	172nd Street SW	SW			INTERVAL TOTALS
АТ	Peds Bicycle	cycle HV		U-Turn	Left 1	Thru	Right	Peds Bic	Bicycle H	-n NH	U-Turn L	Left Th	Thru Right		Peds Bicycle	ile HV	U-Turn	rn Left	t Thru	u Right		Peds Bicycle	e HV	U-Turn	n Left	Thru	Right	
01:15 PM	0	0 0		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0	0 0		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0 0		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 PM	0	0 0		0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0	0 0		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 PM	0	0 0		0	0	0	0	0 0		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0	0 1		0	2	7	4	0 0	0 0		7 0	4	0	3	0	0	0	2	24	е	0	0	0	0	4	24	2	11
03:30 PM		0 0		0	5	7	e					1 6				0	0	4	29	4	0	0	0	0	7	34	5	108
03-45 PM				c		14	4					9		e		-	C	σ	6	LC.	c	c	-	c	5	25	5	115
04:00 PM				0		15	5						7 11			-	0	~	29	9	0	0	5	•	-	21	1	136
04:15 PM	0	0 0		0	3	11	5	0 0	0	6	0 1	15 26	6 15	2 2	0	2	0	9	29	5	0	0	2	0	13	30	5	163
04:30 PM				0		4	10		-					0					3 68	ы С	0	0	-		10	29		128
04:45 PM	-	-		0		. o	5 4								-	2	0	, -	31	~ ~	0	0	• •	• •	16	31		115
05:00 PM				0		9	2									0	0	2	21	4	0	0	0	0	10	31	e	104
						:	3		-					-			ſ	ł				•		•	ő	107		
ALL MOVEMENTS		°	-		2 *	ŧ	ŧ	-			•	129	90	07		*		3	173	7	>	>	Þ		158	60 8	= *	EN LENSECTION
% HV		3.7%	%		5		T		8	8.5%		2				2.3%							3.8%		2			4.4%
PEAK HOUR			-		0.89		F			-		0.58		_					0.92						0.82	2		0.83
HV = Heavy Vehicle			-							-											 r						_	
PHF = Peak Hour Factor	tor								3:(- M 4 00	3:00 PM - 5:00 PM PEAK HOUR:	M PEAI	КНОU	ë	3:30 PM	Σ		10	0 4:30 PM	M								
REDUCED BY:	CN																				DATE	OF REC	DATE OF REDUCTION:				I	11/16/2016
												ROLLI	H SNI	our c	ROLLING HOUR COUNT													
		FR	OM NC	FROM NORTH ON	N				E	ROM SC	FROM SOUTH ON	-		┝		FR	FROM EAST ON	TON					FRO	FROM WEST ON	NO.		-	
			Spruce Way	e Way						Spruce Way	Way					172	172nd Street SW	et SW					172r.	172nd Street SW	SW			INTERVAL TOTALS
TIME INTERVAL	Peds Bicycle	cycle HV		U-Turn	Left 1	Thru	Right I	Peds Bic	Bicycle H	-0 NH	U-Turn L	Left Th	Thru Right		Peds Bicycle	ile HV	U-Turn	rn Left	t Thru	u Right	nt Peds	Bicycle	e HV	U-Turn	n Left	Thru	Right	
1:00 PM - 2:00 PM	0 0	0		0 0	0	0	0	0 0	0 0	0 0	0 0	0	• •	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:13 FM - 2:13 FM	+				-								-		+													
1:30 FM - 2:30 FM	-			0		0	0								-	0	0	0	_	0	0	0	0	0	0	0	0	0
2:00 PM - 3:00 PM	0	0 0		0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM - 3:15 PM	_	-		0		0	0							_	_	0	0	0		0	0	0	0	0	0	0	0	0
2:30 PM - 3:30 PM		+		0		0	0		-						+	0	0	0		0	0	0	0	0	0	0	0	0
2:45 PM - 3:45 PM 3:00 PM - 4:00 PM	0 0	0 0 4		0 0	1 0	43	0 16	0 -	0 0	- 0	0 0	0 0 14 40	0 15	0 82	o c	0 ~	0 0	20 0	112	18	0 0	0 0	0 %	o c	17	104	0 %	436
3:15 PM - 4:15 PM		-		0		47	17	1		10						4	0	26			0	0	5	0	26	110	26	522
3:30 PM - 4:30 PM	0	0 3		0	14	44	24	-	0	11	0 2	26 67	7 36	5 26	0	4	0	25	127	21	0	0	9	0	29	105	24	542
3:45 PM - 4:45 PM	_			0	13	39	24							3 23		2	0	17		_	0	0	2	•	40	111	22	542
4:00 PM - 5:00 PM	-	0 0		0	13	30	24	0	0	13	0	24 59	9 28	2	0	4	0	12	120	16	0	0	e	0	49	121	14	510

B - 12


AM Turning Movement Calculations





School PM Turning Movement Calculations

Existing AM Peak-Hour Level of Service Analysis

Intersection Intersection Delay, sveh Intersection LOS	10.2 B											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4 :			c.	÷			d	4 8	L L
LTATIC VOL VENT		م	00 04	2 0		20	40	0 4		30	66	30 25
r uure voi, venni Peak Hnir Factor	0 00	7 0.65	00 0 65	0 65	0 00	0.65	40 0.65	0.65	0 0 0	0.65	77 0.65	0.65
Heavy Vehicles. %	2	20-20 C	20.00	20.0	27.5	20.0		20.00	2	2000	2000	20.00
Mumt Flow	10	14	92	28	0	11	74	- 6	10	46	152	54
Number of Lanes	0	0	-	0	0	0		0	0	0	-	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		-				-				-		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		-				, -				-		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		-				-				-		
HCM Control Delay		9.6				10.2				10.6		
HCM LOS		A				Β				Β		
Lane	Z	NBLn1	EBLn1 \	WBLn1	SBLn1							
Vollef %		18%	10%	48%	704							
Vol Thru %		%0%	%0%	70%	7/0V							
Vol Rinht %		21%	21%	%9	%UC							
		C+on	C+on	Cton	Cton Cton							
Jugit Colinio Traffic Vol by Lane		164	87	104	147							
I T Vol		30	0	20	6							
Through Vol		66	90	48	105							
RT Vol		35	18	9	28							
I ane Flow Rate		252	134	160	218							
Geometry Gro		-	-		-							
Dearee of Util (X)		0.349	0.197	0.241	0.305							
Departure Headway (Hd)		4.986	5.299	5.414	5.019							
Convergence V/N		VPc VPc	VPC	YPC VPC	VPR VPR							
		VCL	114	664	710							
Cap Sanica Tima		100 0	2 2 2 2	2 446	3 0.26							
Delvice Time		012.00	2001 0	144.0	0.202							
ILCM Control Dolori		0+C.U	0.1.70	147.0	CUC.U							
		0.0	0. <	7.01	7.0I							
		14			- - -							
				×.0	9							

Existing AM Conditions.syn 1: Spruce Way & 172nd Street SW

Spruce Reconstruction (16-281) 28 28 0.65 43 0 SBR 105 105 0.65 162 162 SBT SBL 0 0.92 0 0 SBU Approach Opposing Lanes Conflicting Approach Left Conflicting Approach Left Conflicting Lanes Left Conflicting Lanes Right HCM LOS HCM LOS Intersection Intersection Delay, s/veh Intersection LOS Movement Lane Configurations Traffic Vol, veh/h Fedure Vol, veh/h Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes

Existing Conditions AM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

Existing Conditions AM Peak-Hour

nt Delay, s/veh 8	.5						
Novement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	Y		4î			ب ا	
Fraffic Vol, veh/h	20	133	27	6	142	23	
Future Vol, veh/h	20	133	27	6	142	23	
Conflicting Peds, #/hr	0	0	0	2	2	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	_	0	-	-	0	
Grade, %	0	_	0	-	-	0	
Peak Hour Factor	52	52	69	69	51	51	
Heavy Vehicles, %	1	1	0	0	2	2	
Nort Flow	38	256	39	9	278	45	
	30	200	34	7	270	40	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	647	45	0	0	50	0	
Stage 1	45	-	-	-	-	-	
Stage 2	602	-	-	-	-	-	
Critical Hdwy	6.41	6.21	-	-	4.12	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.309	-	-	2.218	-	
Pot Cap-1 Maneuver	437	1028	-	-	1557	-	
Stage 1	980	-	-	-	-	-	
Stage 2	549	-	-	-	-	-	
Platoon blocked, %	577		_	-		_	
Nov Cap-1 Maneuver	356	1026	_	-	1557	_	
Nov Cap-2 Maneuver	356	-	_	_	1007	_	
Stage 1	978	-	-	-	-	-	
	978 449	-	-	-	-	-	
Stage 2	447	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	11.8		0		6.7		
HCM LOS	В						
	_						
Vinor Lane/Major Mvmt	NBT	NBRWBLn1 SBL	SBT				
Capacity (veh/h)	-	- 823 1557	-				
HCM Lane V/C Ratio	-	- 0.358 0.179	-				
HCM Control Delay (s)	-	- 11.8 7.8	0				
HCM Lane LOS	-	- B A	А				
HCM 95th %tile Q(veh)	-	- 1.6 0.7	-				

Intersection												
Int Delay, s/veh 1	.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	_	- 4 >			4			- 4 >	_		4	
Traffic Vol, veh/h	0	0	1	4	0	0	0	34	0	0	41	1
Future Vol, veh/h	0	0	1	4	0	0	0	34	0	0	41	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	_ 2	_ 2	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	25	25	25	61	61	61	72	72	72
Heavy Vehicles, %	0	0	0	100	100	100	3	3	3	5	5	5
Mvmt Flow	0	0	4	16	0	0	0	56	0	0	57	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	114	116	58	118	116	58	58	0	0	58	0	0
Stage 1	58	58	-	58	58	-	-	-	-	-	-	-
Stage 2	56	58	-	60	58	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	8.1	7.5	7.2	4.13	-	-	4.15	-	-
Critical Hdwy Stg 1	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	4.4	4.9	4.2	2.227	-	-	2.245	-	-
Pot Cap-1 Maneuver	868	778	1014	674	624	789	1540	-	-	1527	-	-
Stage 1	959	851	-	756	688	-	-	-	-	-	-	-
Stage 2	961	851	-	754	688	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	868	777	1014	670	623	787	1540	-	-	1527	-	-
Mov Cap-2 Maneuver	868	777	-	670	623	-	-	-	-	-	-	-
Stage 1	959	851	-	755	687	-	-	-	-	-	-	-
Stage 2	961	849	-	751	688	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.6			10.5			0			0		
HCM LOS	A			В			, c			Ū		
Minor Lane/Major Mvmt	NBL	NBT		EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1540	NUT		1014 670	1527	501	501					
HCM Lane V/C Ratio	1040	-	-	0.004 0.024	1027	-	-					
HCM Control Delay (s)	-	-	-	8.6 10.5	0	-	-					
HCM Lane LOS	0	-	-	A B		-	-					
HCM 95th %tile Q(veh)	A 0	-	-	а в 0 0.1	A 0	-	-					
	U	-	-	0 0.1	U	-	-					

Existing School PM Peak-Hour Level of Service Analysis

Exis	Inters Inters Inters	Move Lane F Fatur Peaku	
-281)		NBR 36 0.833 4 4 4 0 0 0 1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Spruce Reconstruction (16-281)		NBT 0 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Reconstr		NBL 26 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28	
Spruce		MBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		WBR 21 21 21 21 23 0.83 25 0	
		WBT 127 127 127 133 0.83 113 1 1	
		WBL 25 25 25 25 25 25 25 25 25 25 25 25 25 2	
		WBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C'D
		EBR 24 24 24 29 29 29 29 27 21 22 29 29 29 29 20 22 29 20 22 20 20	2
<		EBT EBR 105 24 105 24 105 24 105 24 127 29 127 29 128 133 148 14 147 29 158 133 158 158 133 158	-
s.syn reet S\		EBL 29 29 29 29 29 29 29 29 29 29 28 28 28 28 28 28 28 28 28 28 28 28 28	0.0
ndition 2nd St	9.4 A	EBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Existing Sch PM Conditions.syn 1: Spruce Way & 172nd Street SW	Intersection Intersection Delay, s/veh Intersection LOS	Movement Lane Configurations Traffic Vol, verMh Peak Hour Factor Heavy Venices. % Munner fol Lanes Munner of Lanes Approach Opposing Janes Left Confilding Approach Left Confilding Janes Left Confilding Janes Left Confilding Janes Left Confilding Janes Right HCM Control Delay HCM Control Delay	

xisting Sch PM Conditions.syn Spruce Way & 172nd Street SW ≆section

Spruce Reconstruction (16-281)

tersection					
tersection Delay, s/veh tersection LOS					
ovement	SBU	SBL	SBT	SBR	
ane Configurations			¢		
affic Vol, veh/h	0	14	44	24	
uture Vol, veh/h	0	14	44	24	
eak Hour Factor	0.92	0.83	0.83	0.83	
avy Vehicles, %	2	4	4	4	
vmt Flow	0	17	53	29	
umber of Lanes	0	0	-	0	
oproach		SB			
pposing Approach		NB			
pposing Lanes		-			
onflicting Approach Left		WB			
onflicting Lanes Left		-			
onflicting Approach Right		EB			
onflicting Lanes Right		-			
CM Control Delay		8.9			
CM LOS		A			

Existing Conditions Sch PM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

ntersection nt Delay, s/veh 6	.2							
Novement	WBL	WBR		NBT	NBR	SBL	SBT	
ane Configurations	Υ			¢Î			ર્સ	
Fraffic Vol, veh/h	24	70		59	14	49	31	
Future Vol, veh/h	24	70		59	14	49	31	
Conflicting Peds, #/hr	0	0		0	9	9	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized		None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	48	48		68	68	57	57	
Heavy Vehicles, %	1	1		14	14	4	4	
Nymt Flow	50	146		87	21	86	54	
	00	110		07	21	00	01	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	332	106		0	0	116	0	
Stage 1	106	-		-	-	-	-	
Stage 2	226	-		-	-	-	-	
Critical Hdwy	6.41	6.21		-	-	4.14	-	
Critical Hdwy Stg 1	5.41	-		-	-	-	-	
Critical Hdwy Stg 2	5.41	-		-	-	-	-	
Follow-up Hdwy	3.509	3.309		-	-	2.236	-	
Pot Cap-1 Maneuver	665	951		-	-	1460	-	
Stage 1	921	-		-	-	-	-	
Stage 2	814	-		-	-	-	-	
Platoon blocked, %				-	-		-	
Nov Cap-1 Maneuver	619	943		-	-	1460	-	
Nov Cap-2 Maneuver	619	-		-	-	-	-	
Stage 1	913	-		-	-	-	-	
Stage 2	764	-		-	-	-	-	
						00		
Approach	WB			NB		SB		
HCM Control Delay, s	10.7			0		4.7		
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-	- 832	1460	-				
HCM Lane V/C Ratio	-	- 0.235		-				
HCM Control Delay (s)	-	- 10.7	7.6	0				
HCM Lane LOS	-	- B	A	Ă				
HCM 95th %tile Q(veh)		- 0.9	0.2	-				

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4 >			- 4 >			- 42			- 4 >	
Traffic Vol, veh/h	0	0	3	5	0	8	0	61	9	2	49	1
Future Vol, veh/h	0	0	3	5	0	8	0	61	9	2	49	1
Conflicting Peds, #/hr	0	0	10	10	0	0	1	0	6	6	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	54	54	54	80	80	80	87	87	87
Heavy Vehicles, %	0	0	0	54	54	54	13	13	13	2	2	2
Mvmt Flow	0	0	12	9	0	15	0	76	11	2	56	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	151	156	68	165	151	88	58	0	0	94	0	0
Stage 1	62	62	-	88	88	-	-	-	-	-	-	-
Stage 2	89	94	-	77	63	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.64	7.04	6.74	4.23	-	-	4.12	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.986	4.486	3.786	2.317	-	-	2.218	-	-
Pot Cap-1 Maneuver	821	740	1001	696	655	844	1479	-	-	1500	-	-
Stage 1	954	847	-	806	731	-	-	-	-	-	-	-
Stage 2	923	821	-	817	751	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	805	734	991	677	650	839	1465	-	-	1500	-	-
Mov Cap-2 Maneuver	805	734	-	677	650	-	-	-	-	-	-	-
Stage 1	953	845	-	801	727	-	-	-	-	-	-	-
Stage 2	907	816	-	799	750	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.7			9.8			0			0.3		
HCM LOS	A			A			0			0.0		
Minor Lane/Major Mvmt	NBL	NBT	NRRF	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1465	וטמ		991 768	1500	- 301	-					
HCM Lane V/C Ratio	1400	-	-	0.012 0.031		-	-					
HCM Control Delay (s)	-	-	-	8.7 9.8	0.002	-	-					
HCM Control Delay (S) HCM Lane LOS	0	-	-	A A	7.4 A	0 A	-					
HCM Lane LOS HCM 95th %tile Q(veh)	A 0	-	-	0 0.1		А	-					
	U	-	-	U U.I	0	-	-					

2020 Baseline AM Peak-Hour Level of Service Analysis

2020 E 1: Spru	Intersection Intersection Intersection	Movemen Lane Con Future Vo Peak Hou Number of Approach Opposing Opposing Conflictin, Conflictin, HCM LOS
Spruce Reconstruction (16-281)		NBT NBR 107 38 107 38 0.65 0.53 165 0.65 165 58 1 0 1 0
Spruce Recon		NBU NBU NBL 032 0,92 0.652 0 49 0 0 0 0 11.13 B B B B B B B B B B 11.13 B B B B B B B B B B B B B B B B B B B
		WBR 6 6 6 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		WBL WBT WB1
		WBU WBL 0 54 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 11 1 11 1 11 1 11 1 11 1 1333 30 237 237 114 11 114 11 114 10 114 10 114 10 115 10 1.5 10 1.5 1.5
_ ≥		EBT EBR 65 19 65 19 65 10 65 0.65 0.65 2 2 2 2 2 2 2 2 2 2 100 2 69% 46% 69% 46% 69% 46% 69% 46% 94 112 10 54 13 12 10 54 145 125 69 860 56 10 54 11 12 25 63 7 65 125 10 0.61 10 261 10 261 10 10 261 10 261 10 261 10 261 10 261 10 261 10 261 10 261 10 261
ons.sy reet S		EBL 10 10 10 15 15 15 15 10 10 10 10 10 10 10 10 10 10
Conditio 72nd St	10.8 B	EBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2020 Baseline AM Conditions.syn 1: Spruce Way & 172nd Street SW	Intersection Intersection Delay, s/veh Intersection LOS	Movement Lane Configurations Traffic Vol, vehh Future Vol, vehh Heaxt Vehicles, % Mumber of Lanes Approach Opposing Lanes Conflicting Approach Left Conflicting Approach Right HCM LOS Vol Thu, % Vol Riptu, % Sign Control Lane Vol Lane Vol Control Delay HCM Lane VIC RT Vol Lane Low Rate Geometry Grp Degree of UII (X) Degrature Headway (Hd) Convergence, YN Convergence, YN

) Baseline AM Conditions.syn pruce Way & 172nd Street SW :clion

Spruce Reconstruction (16-281)

tersection					
tersection Delay, s/veh					
tersection LOS					
ovement	SBU	SBL	SBT	SBR	
ane Configurations			¢		
affic Vol, veh/h	0	10	114	30	
tture Vol, veh/h	0	10	114	30	
eak Hour Factor	0.92	0.65	0.65	0.65	
savy Vehicles, %	2	2	2	2	
wmt Flow	0	15	175	46	
umber of Lanes	0	0	-	0	
pproach		SB			
pposing Approach		NB			
pposing Lanes					
onflicting Approach Left		WB			
onflicting Lanes Left		-			
onflicting Approach Right		EB			
onflicting Lanes Right		-			
CM Control Delay		10.8			
CMLOS		8			

2020 Baseline Conditions AM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

2020 Baseline Conditions AM Peak-Hour

ntersection nt Delay, s/veh 8	.8							
Vovement	WBL	WBR		NBT	NBR	SBL	SBT	
Lane Configurations	Υ			¢.			र्भ	
Traffic Vol, veh/h	22	144		29	6	154	25	
Future Vol, veh/h	22	144		29	6	154	25	
Conflicting Peds, #/hr	0	0		0	2	2	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized		None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	52	52		69	69	51	51	
Heavy Vehicles, %	1	1		0	0	2	2	
Mvmt Flow	42	277		42	9	302	49	
	12	211		12	,	002	17	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	701	48		0	0	53	0	
Stage 1	48	-		-	-	-	-	
Stage 2	653	-		-	-	-	-	
Critical Hdwy	6.41	6.21		-	-	4.12	-	
Critical Hdwy Stg 1	5.41	-		-	-	-	-	
Critical Hdwy Stg 2	5.41	-		-	-	-	-	
Follow-up Hdwy	3.509	3.309		-	-	2.218	-	
Pot Cap-1 Maneuver	406	1024		-	-	1553	-	
Stage 1	977	-		-	-	-	-	
Stage 2	520	-		-	-	-	-	
Platoon blocked, %				-	-		-	
Mov Cap-1 Maneuver	324	1022		-	-	1553	-	
Mov Cap-2 Maneuver	324	-		-	-	-	-	
Stage 1	975	-		-	-	-	-	
Stage 2	416	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	12.5			0		6.8		
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-		1553	-				
HCM Lane V/C Ratio	-	- 0.402 (-				
HCM Control Delay (s)	-	- 12.5	7.9	0				
HCM Lane LOS	-	- B	A	Å				
HCM 95th %tile Q(veh)		- 1.9	0.7	-				

Intersection												
Int Delay, s/veh	.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4 >			- 4 >			- 4 >			- 42	
Traffic Vol, veh/h	0	0	1	4	0	0	0	37	0	0	44	1
Future Vol, veh/h	0	0	1	4	0	0	0	37	0	0	44	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	2	2	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	25	25	25	61	61	61	72	72	72
Heavy Vehicles, %	0	0	0	100	100	100	3	3	3	5	5	5
Mvmt Flow	0	0	4	16	0	0	0	61	0	0	61	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	123	125	62	127	126	63	63	0	0	63	0	0
Stage 1	62	62	-	63	63	-	-	-	-	-	-	-
Stage 2	61	63	-	64	63	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	8.1	7.5	7.2	4.13	-	-	4.15	-	-
Critical Hdwy Stg 1	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	4.4	4.9	4.2	2.227	-	-	2.245	-	-
Pot Cap-1 Maneuver	856	769	1009	664	615	784	1533	-	-	1521	-	-
Stage 1	954	847	-	751	684	-	-	-	-	-	-	-
Stage 2	955	846	-	750	684	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	856	768	1009	660	614	783	1533	-	-	1521	-	-
Mov Cap-2 Maneuver	856	768	-	660	614	-	-	-	-	-	-	-
Stage 1	954	847	-	750	683	-	-	-	-	-	-	-
Stage 2	955	844	-	747	684	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.6			10.6			0			0		
HCM LOS	A			В			, c			Ũ		
Minor Lane/Major Mvmt	NBL	NBT	NRDI	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1533	NUT		1009 660	1521	501	501					
HCM Lane V/C Ratio	1003	-		0.004 0.024	1321	-	-					
HCM Control Delay (s)	0	-	-	8.6 10.6	0	-	-					
HCM Control Delay (S) HCM Lane LOS	0 A	-	-	A B	A	-	-					
HCM Lane LOS HCM 95th %tile Q(veh)	A 0	-	-	а в 0 0.1	A 0	-	-					
	U	-	-	0 0.1	U	-	-					

2020 Baseline School PM Peak-Hour Level of Service Analysis

1: Spruce Way & 172nd Street SW	2nd Stree	ANC IS										
Intersection Intersection Delay, s/veh Intersection LOS	9.8 A											
Movement Lane Configurations						WBL	WBT	WBR	NBU	NBL	NBT	NBR 20
Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, % Mrmt Flow Number of Lanes	0 0.92 0 0		114 114 0.83 0.83 137 1	26 26 0.83 4 31 0	0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 27 4 33 0	137 137 0.83 4 165 1	23 23 23 0.83 28 0	0 0.92 0 0	28 28 0.83 4 34 0	73 73 0.83 4 88 1	39 39 4 47 0
Approach Opposing Approach Opposing Lanes Conflicting Approach Left Conflicting Lanes Left Conflicting Lanes Stight HCM Control Delay HCM Control Delay		EB WB A 9.9 A 9.9				WB EB 10.1 - 1 B 10.1 - 1 B				NB SB A 9.7 A A		
Lane Vol Left, % Vol Right, % Sign Control Traffic Vol by Lane	NBLn1 20% 52% 28% Stop 140		EBLn1 WBLn1 18% 14% 67% 73% 15% 12% Stop Stop 171 187	5	SBLn1 17% 54% 29% Stop 89							
LT Vol Through Vol Lane Flow Rate Geometry Grp Degree of UII (X) Convergence, YIN Cap Service Time HCM Lane V/C Ratio HCM Control Delay		0.14	31 27 114 137 26 23 26 23 206 225 1 1 0.28 0.305 4.887 4.873 4.887 4.873 730 730 730 8.9 9.101		15 48 48 26 107 5.098 5.098 5.098 3.188 3.188 0.154							
HCM Lane LOS HCM 95th-tile Q		А 0.9	A 1.1	1.3 E	A 0.5							

20 Baseline Sch PM Conditions.syn Spruce Way & 172nd Street SW

 Induction
 Spruce Reconstruction (16-281)

 Inductor
 Inductor
 Spruce Reconstruction (16-281)

 Inductor
 Inductor
 Inductor
 Spruce Reconstruction (16-281)

 Inductor
 Inductor
 Inductor
 Inductor
 Spruce Reconstruction (16-281)

 Inductor
 Inductor
 Inductor
 SBU
 SBI
 SBI

 Inductor
 Inductor
 Inductor
 Inductor
 Inductor
 Inductor

 Inductor
 Inductor
 Inductor
 Inductor
 Inductor
 Inductor

 Inductor
 Inductor
 Inductor
 Inductor
 Inductor
 Inductor
 Inductor

 Index, %
 Inductor
 Inductor
 Induc

2020 Baseline Conditions Sch PM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

2020 Baseline Conditions Sch PM Peak-Hour

ntersection	()						
nt Delay, s/veh	6.3						
Vovement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		eî 👘			- सी	
Traffic Vol, veh/h	26	76	64	15	53	34	
Future Vol, veh/h	26	76	64	15	53	34	
Conflicting Peds, #/hr	0	0	0	9	9	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
/eh in Median Storage, #	0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	48	48	68	68	57	57	
Heavy Vehicles, %	1	1	14	14	4	4	
Mvmt Flow	54	158	94	22	93	60	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	360	114	0	0	125	0	
Stage 1	114	-	-	-	-	-	
Stage 2	246	-	-	-	-	-	
Critical Hdwy	6.41	6.21	-	-	4.14	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	_	-	-	_	_	
Follow-up Hdwy	3.509	3.309	_		2.236	_	
Pot Cap-1 Maneuver	641	941			1449		
Stage 1	913	741		_	-	_	
Stage 2	797						
Platoon blocked, %	171		-	-		-	
Nov Cap-1 Maneuver	594	933	-	-	1449	-	
Nov Cap-2 Maneuver	594 594	733	-	-	1449	-	
	594 905	-	-	-	-	-	
Stage 1	905 744	-	-	-	-	-	
Stage 2	/44	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	11		0		4.7		
HCM LOS	В		0		,		
	D						
Minor Lane/Major Mvmt	NBT	NBRWBLn1 SBL	SBT				
Capacity (veh/h)	-	- 815 1449	-				
HCM Lane V/C Ratio	-	- 0.261 0.064	-				
HCM Control Delay (s)	-	- 11 7.7	0				
HCM Lane LOS	-	- B A	Å				
HCM 95th %tile Q(veh)		- 1 0.2	-				

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4 >			- 4 >			- 42			- 42	
Traffic Vol, veh/h	0	0	3	5	0	9	0	66	10	2	53	1
Future Vol, veh/h	0	0	3	5	0	9	0	66	10	2	53	1
Conflicting Peds, #/hr	0	0	10	10	0	0	1	0	6	6	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	54	54	54	80	80	80	87	87	87
Heavy Vehicles, %	0	0	0	54	54	54	13	13	13	2	2	2
Mvmt Flow	0	0	12	9	0	17	0	83	13	2	61	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	164	168	72	177	163	95	63	0	0	101	0	0
Stage 1	67	67	-	95	95	-	-	-	-	-	-	-
Stage 2	97	101	-	82	68	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.64	7.04	6.74	4.23	-	-	4.12	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.986	4.486	3.786	2.317	-	-	2.218	-	-
Pot Cap-1 Maneuver	805	728	996	683	645	836	1472	-	-	1491	-	-
Stage 1	948	843	-	799	726	-	-	-	-	-	-	-
Stage 2	914	815	-	812	747	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	788	722	986	664	640	831	1458	-	-	1491	-	-
Mov Cap-2 Maneuver	788	722	-	664	640	-	-	-	-	-	-	-
Stage 1	947	841	-	794	722	-	-	-	-	-	-	-
Stage 2	896	810	-	794	746	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.7			9.9			0			0.3		
HCM LOS	A			A			J. J			0.0		
Minor Lane/Major Mvmt	NBL	NBT	NRDI	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1458			986 763	1491	501	501					
HCM Lane V/C Ratio	1400	-	-	986 763 0.012 0.034		-	-					
HCM Control Delay (s)	0	-	-	8.7 9.9	0.002	-	-					
HCM Control Delay (S) HCM Lane LOS		-	-	8.7 9.9 A A	7.4 A	0	-					
HCM 25th %tile Q(veh)	A 0	-	-	0 0.1	A 0	А	-					
	U	-	-	0 0.1	U	-	-					

2020 Future With Project AM Peak-Hour Level of Service Analysis

Intersection Intersection Delay, siveh 11.5 Intersection LOS B Movement EBU Lane Configurations Traffic Vol, veh/h 0 Future Vol, veh/h 0 Peak Hour Factor 0.2 Momt Flow 0 Number of Lanes 0 Number of Lanes 0 Number of Lanes 2 Approach Approach Left Conflicting Lanes Right HCM Control Delay HCM LOS	EBL 10 10 10 10 10 10 10 10 10 10 10 10	EBT 65 65 0.65 100 1 100 1	EBR 22 22 22 22 23 2								
s EBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL 10.455 10.455 110.4 10.4 10.4	EBT 100 100 100 100 100 100 100 10	EBR 22 0.65								
s 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 0.65 0.65 0.65 0.65 1.2 1.2 1.2 1.0 1.4 1.0 1.4 1.0 1.4	€ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 22 0.65	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
0 22 22 22 23 20 0 0 22 23 20 0 0 22 22 22 22 22 22 22 22 22 22 22	10 0.65 15 15 15 16 15 10 10 4	65 65 0.65 100 1	22 22 0.65			4				¢	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 2 2 1 15 1 15 15 15 15 15 15 15 15 15 15 15	65 0.65 100 1	22 0.65 2 2	0	26	22	9	0	36	119	43
0.02 0 0 1.h Left i.h Right tight	0.65 15 15 15 15 15 15 15 110 10 10	2 0 1 1 0 0 1	0.65 2 2/	0 0	59	52	9 1, 0	0 0	36	119	43
r ent ch Right v Right	15 15 10 10.4 10.4 10.4	100	7 %	0.92	0.65	0.65	0.65	0.92	0.65	0.65	G0.0
	EB 0 0 10.4 NB 18 10.4 0 10.4 18 19 0 10.4 10 0 10.4 10000000000000000000000000000000000	<u>8</u> –			7 10	7 UB	7 0		7 7 7	182	74
Approach Opposing Approach Comilicing Approach Left Comilicing Approach Left Comilicing Approach Right Comilicing James Right HCM Control Delay HCM LOS	EB WB SB 10.4 D.4 D.4		ţ 0	00	0	0 -	- 0	0 0	0	col (-	30
Opposing Approach Opposing Lanes Conflicting Approach Left Conflicting Approach Left Conflicting Lanes Left Conflicting Lanes Right HCM Control Dalay HCM LOS	WB NB 10.4 NB 10.4 NB 10.4 NB				A/R				an		
opposing Lanes Copposing Lanes Conflicting Approach Left Conflicting Lanes Left Conflicting Lanes Right HCM Control Dalay HCM LOS	WB 1 1 1 1 10.4 P										
composing trans- conflicting Approach Left conflicting Approach Reght conflicting Approach Right HCM Control Delay HCM LOS	SB 10.4 10.4				0 7				00		
connicting Approach Leit Conflicting Approach Leit Conflicting Approach Right Conflicting Lames Right HCM Control Delay HCM LOS	NB 10.4				- 2				- 6		
cominding Lanes Letr Conflicting Approach Right Conflicting Lanes Right HCM Control Delay HCM LOS	- NB 10.4 B				S P				- E		
Conflicting Approach Right Conflicting Lanes Right HCM Control Delay HCM LOS	NB 10.4 P				- 6						
Contlicting Lanes Kight HCM Control Delay HCM LOS	10.4 D				SB				WB		
HCM Control Delay HCM LOS	10.4 P				- ;						
HCM LUS					11.1				12.3		
	۵				29				20		
- Parts	NDI n1 E	EDIN1 MDIN1		CDI n1							
				107							
	18%	%01	%09	9%9							
	%09	67%	44%	/6%							
	22%	23%	2%	18%							
	Stop	Stop	Stop	Stop							
r Lane	198	79	117	165							
	36	10	59	10							
Through Vol	119	65	52	125							
	43	22	9	30							
niv Rate	305	140	180	254							
	сос Г		3 -	104							
			0.28/	0.371							
(Pd)	5.188		5./45	5.259							
ergence, Y/N	Yes	Yes	Yes	Yes							
		636	625	683							
	3.229	3.678	3.794	3.302							
HCM Lane V/C Ratio 0		0.234	0.288	0.372							
		10.4	11.1	11.4							
	8	æ	В	8							
HCM 95th-tile O	00	0 0	1 2	17							

Approach Opposing Approach Opposing Approach Conflicting Approach Left Conflicting Lanes Right HCM Control Delay HCM LOS

2020 Future with Development AM Conditions.syn 1: Spruce Way & 172nd Street SW

Intersection Intersection Delay, s/veh Intersection LOS

Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Vehr Factor Heavy Vehicles, % Mvmnt Flow Number of Lanes

2020 Future with Development Conditions AM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

2020 Future with Development Conditions AM Peak-Hour

ntersection nt Delay, s/veh 0	.5							
Novement	WBL	WBR		NBT	NBR	SBL	SBT	
ane Configurations	Y	TIBIN		<u>العار</u>	HBR	002	<u>ارون</u>	
Traffic Vol, veh/h	5	0		194	2	0	1 98	
Future Vol, veh/h	5	0		194	2	0	198	
Conflicting Peds, #/hr	0	0		0	2	2	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized	Stop	None		-	None	-	None	
Storage Length	0	None			None		None	
Veh in Median Storage, #	0			0	_		0	
Grade, %	0			0	_		0	
Peak Hour Factor	25	25		69	69	51	51	
Heavy Vehicles, %	100	100		07	09	2	2	
Nymt Flow	20	0		281	3	0	388	
	20	U		201	5	0	300	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	673	285		0	0	286	0	
Stage 1	285	-		-	-	-	-	
Stage 2	388	-		-	-	-	-	
Critical Hdwy	7.4	7.2		-	-	4.12	-	
Critical Hdwy Stg 1	6.4	-		-	-	-	-	
Critical Hdwy Stg 2	6.4	-		-	-	-	-	
Follow-up Hdwy	4.4	4.2		-	-	2.218	-	
Pot Cap-1 Maneuver	301	570		-	-	1276	-	
Stage 1	584	-		-	-	-	-	
Stage 2	515	-		-	-	-	-	
Platoon blocked, %				-	-		-	
Nov Cap-1 Maneuver	300	569		-	-	1276	-	
Nov Cap-2 Maneuver	300			-	-	-	-	
Stage 1	583	-		-	-	-	-	
Stage 2	515	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	17.9			0		0		
HCM LOS	С							
Vinor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-	- 300	1276	-				
HCM Lane V/C Ratio	-	- 0.067		-				
HCM Control Delay (s)	-	- 17.9	0	-				
HCM Lane LOS	-	- C	Ă	-				
HCM 95th %tile Q(veh)		- 0.2	0					

nt Delay, s/veh 9	.2							
Vovement	WBL	WBR		NBT	NBR	SBL	SBT	
ane Configurations	Y			4			र्भ	
Fraffic Vol, veh/h	26	165		33	9	173	27	
Future Vol, veh/h	26	165		33	9	173	27	
Conflicting Peds, #/hr	0	0		0	2	2	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized	-	None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
/eh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	52	52		61	61	72	72	
Heavy Vehicles, %	1	1		3	3	5	5	
Vivmt Flow	50	317		54	15	240	38	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	581	63		0	0	71	0	
Stage 1	63	-		-	-	-	-	
Stage 2	518	-		-	-	-	-	
Critical Hdwy	6.41	6.21		-	-	4.15	-	
Critical Hdwy Stg 1	5.41	-		-	-	-	-	
Critical Hdwy Stg 2	5.41	-		-	-	-	-	
Follow-up Hdwy	3.509	3.309		-	-	2.245	-	
Pot Cap-1 Maneuver	478	1004		-	-	1510	-	
Stage 1	962	-		-	-	-	-	
Stage 2	600	-		-	-	-	-	
Platoon blocked, %				-	-		-	
Nov Cap-1 Maneuver	400	1002		-	-	1510	-	
Nov Cap-2 Maneuver	400	-		-	-	-	-	
Stage 1	960	-		-	-	-	-	
Stage 2	503	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	12.7			0		6.8		
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-		1510	-				
HCM Lane V/C Ratio	-	- 0.441		_				
HCM Control Delay (s)	-	- 12.7	7.8	0				
HCM Lane LOS	-	- 12.7 - B	7.0 A	A				
HCM 95th %tile Q(veh)	-	- 2.3	0.6	П				

2020 Future With Project School PM Peak-Hour Level of Service Analysis

Intersection											
Intersection Delay, s/veh Intersection LOS	10 A										
Movement	EBU EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations		÷				÷				¢	
Fraffic Vol, veh/h	0 31	114	28	0	29	137	23	0	31	81	42
Future Vol, veh/h	0 31		28	0	29	137	23	0	31	81	42
Peak Hour Factor		Ŭ	0.83	0.92	0.83	0.83	0.83	0.92	0.83	0.83	0.83
Heavy Vehicles, %		4	4	2	4	4	4	2	4	4	4
Wvmt Flow	0 37		34	0	35	165	28	0	37	98	51
Number of Lanes	0	_	0	0	0		0	0	0		0
Approach	EB				WB				NB		
Opposing Approach	WB				EB				SB		
Opposing Lanes	-				-				-		
Conflicting Approach Left	SB				NB				EB		
Conflicting Lanes Left	-								-		
Conflicting Approach Right	NB				SB				WB		
Conflicting Lanes Right	-				-				-		
HCM Control Delay	10.1				10.3				10		
HCM LOS	ш				8				A		
ane	NBI n1	FBI n1	WBI n1	SBI n1							
11.04.07	2000	1 00/	1 50/	1 4.07							
ИОІ LETT, %	20%		%G1	10%							
/ol Thru, %	53%	66%	12%	57%							
JI KIGIII, %	217		0.71	0/.17							
Sign Control		dols -	Stop	doly L							
TIAIIIC VUI DY LAIRE	104		60	C, 1							
LT VUI Through Vol	2 0	111	47 LC1	0 1							
			101	5 2							
	701	C	0000	114							
Laire riuw Nate	101		1	± -							
deditieury dip Dograd of Hiti (V)	196.0		0 212	147							
Deperture Headman (HA)	0.201	0.207 A DE 2	2404	0.10/							
eparture neauway (nu)	0.0		4.740	107.0							
Convergence, Y/N	Yes		Yes	Yes							
Cap			/1/	100							
	3.135	ŝ	3.039	107.5							
HCM Lane V/C Ratio	G07.U	-	0.318	0.166							
HCM Control Delay	<u> </u>	1.01	5.01 10.3	5.4							
HCM Lane LOS		B	9	A							

2020 Future with Development Sch PM Conditions.syn 1: Spruce Way & 172nd Street SW

Spruce Reconstruction (16-281)

Intersection					
Intersection Delay, s/veh Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations	4	1	¢;		
Traffic Vol, veh/h	0	15	54	26	
Future Vol, veh/h	0	15	54	26	
Peak Hour Factor	0.92	0.83	0.83	0.83	
Heavy Vehicles, %	2	4	4	4	
Mvmt Flow	0	18	65	31	
Number of Lanes	0	0		0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		, -			
Conflicting Approach Left		WB			
Conflicting Lanes Left		. 			
Conflicting Approach Right		EB			
Conflicting Lanes Right					
HCM Control Delay		9.3			
HCM LOS		A			

2020 Future with Development Conditions Sch PM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

2020 Future with Development Conditions Sch PM Peak-Hour

J - 1

nt Delay, s/veh 0	.4							
Novement	WBL	WBR		NBT	NBR	SBL	SBT	
ane Configurations	- Y			eî			्र	
Traffic Vol, veh/h	1	7		147	8	0	97	
Future Vol, veh/h	1	7		147	8	0	97	
Conflicting Peds, #/hr	0	0		0	9	9	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized	-	None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	54	54		68	68	57	57	
Heavy Vehicles, %	54	54		14	14	4	4	
Nymt Flow	2	13		216	12	0	170	
	2	13		210	12	0	170	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	401	231		0	0	237	0	
Stage 1	231	-		-	-	-	-	
Stage 2	170	-		-	-	-	-	
Critical Hdwy	6.94	6.74		-	-	4.14	-	
Critical Hdwy Stg 1	5.94	-		-	-	-	-	
Critical Hdwy Stg 2	5.94	-		-	-	-	-	
Follow-up Hdwy	3.986	3.786		-	-	2.236	-	
Pot Cap-1 Maneuver	516	695		-	-	1318	-	
Stage 1	699	-		-	_	-	-	
Stage 2	748	-		-	_	-	-	
Platoon blocked, %	7 70			-	_		-	
Nov Cap-1 Maneuver	512	689		-	_	1318	_	
Nov Cap-2 Maneuver	512	007		-	-	1510	-	
•	693	-		-	-	-	-	
Stage 1	093 748	-		-	-	-	-	
Stage 2	/40	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	10.6			0		0		
HCM LOS	В			Ū		· · ·		
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-	- 660	1318	-				
HCM Lane V/C Ratio	-	- 0.022	-	-				
HCM Control Delay (s)	-	- 10.6	0	-				
HCM Lane LOS	-	- B	A	-				
HCM 95th %tile Q(veh)	_	- 0.1	0	_				

Intersection												
Int Delay, s/veh	7.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						4			4	
Traffic Vol, veh/h	0	0	3	34	0	92	0	59	19	65	28	1
Future Vol, veh/h	0	0	3	34	0	92	0	59	19	65	28	1
Conflicting Peds, #/hr	0	0	10	10	0	0	1	0	6	6	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	48	48	48	80	80	80	87	87	87
Heavy Vehicles, %	0	0	0	1	1	1	13	13	13	2	2	2
Mvmt Flow	0	0	12	71	0	192	0	74	24	75	32	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	364	287	44	290	276	92	34	0	0	104	0	0
Stage 1	183	183	-	92	92	-	-	-	-	-	-	_
Stage 2	181	104	-	198	184	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.11	6.51	6.21	4.23	-	-	4.12	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.509	4.009	3.309	2.317	-	-	2.218	-	-
Pot Cap-1 Maneuver	596	626	1032	664	633	968	1509	-	-	1488	-	-
Stage 1	823	752	-	918	821	-	-	-	-	-	-	-
Stage 2	825	813	-	806	749	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	458	590	1021	621	597	962	1495	-	-	1488	-	-
Mov Cap-2 Maneuver	458	590	-	621	597	-	-	-	-	-	-	-
Stage 1	822	713	-	913	816	-	-	-	-	-	-	-
Stage 2	661	808	-	749	710	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.6			11.2			0			5.2		
HCM LOS	A			В			-					
Minor Lane/Major Mvmt	NBL	NBT	NRRI	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1495	וטמ		1021 838	1488	501	501					
HCM Lane V/C Ratio	1470	-	-	0.012 0.313	0.05	-	-					
HCM Control Delay (s)	0	-	-	8.6 11.2	0.05 7.5	0	-					
HCM Lane LOS	A	-	-	A B	7.5 A	A	-					
HCM 95th %tile Q(veh)	A 0	-	-	0 1.3	0.2	A	-					
	0	-	-	0 1.3	0.2	-	-					

Parking Data

Matt

From:	Carla Nasr <carlan@trafficdatagathering.com></carlan@trafficdatagathering.com>
Sent:	Sunday, November 20, 2016 10:30 PM
То:	Matt
Subject:	RE: Spruce ES, GTC 16-281
Attachments:	Spruce ES N Drvwy @ Spruce Way AM.pdf; Spruce ES N Drvwy @ Spruce Way PM.pdf; Spruce ES S
	Drvwy @ Spruce Way AM.pdf; Spruce ES S Drvwy @ Spruce Way PM.pdf; Spruce Way @ 172 St SW
	AM.pdf; Spruce Way @ 172 St SW PM.pdf

Hi Matt,

Attached are the Spruce ES counts.

The number of vehicles parked at 9:45 AM in the school's parking lot is: 44 cars including 2 in the ADA stalls. The number of vehicles parked at 3:00 PM in the school's parking lot is: 42 cars including 1 in the ADA stalls.

Number of Vehicles parked on Street at South Driveway:

At 8:45 AM	0	at 3:00 PM 2
9:00 AM	1	3:15 PM 4
9:15 AM	(-1,1,-1) 0	3:30 PM 5
9:30 AM	0	3:45 PM 3
9:45 AM	0	4:00 PM (+1, -3) 1
		4:15 PM 0
		4:30 PM 0
		4:45 PM 0
		5:00 PM 0
	•	4:00 PM (+1, -3) 1 4:15 PM 0 4:30 PM 0 4:45 PM 0

I observed Queuing at the North driveway between 9:00-9:15AM of 2 cars coming from the South and turning Right into the driveway. As well as queuing of about 14 cars coming from the North and turning Left into the driveway. And a constant queuing coming out of the North Driveway during this 15 minutes period.

Regards,

Carla Nasr

Traffic Data Gathering 11410 13th Street SE Lake Stevens, WA 98258 (425) 345-1148 C (425) 334-3348 O CarlaN@TrafficDataGathering.com

From: Matt [mailto:Mattp@gibsontraffic.com]
Sent: Tuesday, November 15, 2016 9:26 AM
To: Carla Nasr <CarlaN@trafficdatagathering.com>
Subject: RE: Spruce ES, GTC 16-281

Queuing Analysis

Arrivals	172 / 15 mins	λ
Service	240 / 15 mins	μ

Average number of cars in the system	$\lambda/(\mu - \lambda)$	2.529412	2.529412 vehicles
Average waiting time in the system	$1/(\mu \!-\! \lambda)$	0.014706 1	.80 2.647059 minutes
Average number of cars in the queue	λ ~2 $/\mu(\mu-\lambda)$	1.812745	1.812745 vehicles
Average waiting time in the queue	$\lambda/\mu(\mu{-}\lambda)$	0.010539 1	.80 1.897059 minutes
Average system utilization	λ/μ	0.716667	72%
Probability of no cars in system	$1 - \lambda / \mu$	0.283333	28%
Probability of n cars in system	$(1\!-\!\lambda/\mu)(\lambda/\mu)\!\!\sim\!\!{\sf n}$		

- max queue available

		$(1{-}\lambda/\mu)$ (λ/μ) ^n		P(n)	
P(0)	0	0.283333333	1	0.283333	
P(1)	1	0.283333333	0.716666667	0.203056	49%
P(2)	2	0.283333333	0.513611111	0.145523	4570
P(3)	3	0.283333333	0.368087963	0.104292	
P(4)	4	0.283333333	0.263796373	0.074742	
P(5)	5	0.283333333	0.189054068	0.053565	
P(6)	6	0.28333333	0.135488748	0.038388	
P(7)	7	0.28333333	0.09710027	0.027512	
P(8)	8	0.28333333	0.069588527	0.019717	95%
		Probability of	8 or fewer Cars	95.01%	

Probability of 8 or fewer Cars95.01%Probability of more than 8 Cars4.99%

Arrivals	172 / 15 mins	λ
Service	300 / 15 mins	μ

Average number of cars in the system	$\lambda/(\mu{-}\lambda)$	1.34375	1.34375 vehicles
Average waiting time in the system	$1/(\mu \!-\! \lambda)$	0.007813	180 1.40625 minutes
Average number of cars in the queue	λ ~2/ $\mu(\mu-\lambda)$	0.770417	0.770417 vehicles
Average waiting time in the queue	$\lambda/\mu(\mu{-}\lambda)$	0.004479	180 0.80625 minutes
Average system utilization	λ/μ	0.573333	57%
Probability of no cars in system	$1\!-\!\lambda/\mu$	0.426667	43%
Probability of n cars in system	$(1\!-\!\lambda/\mu)(\lambda/\mu)\!\!\sim\!\!{\sf n}$		
and the second sec			

- max queue available

		$(1{-}\lambda/\mu)$ (λ/μ) ^n		P(n)	
P(0)	0	0.426666667	1	0.426667	43%
P(1)	1	0.426666667	0.573333333	0.244622	67%
P(2)	2	0.426666667	0.328711111	0.14025	
P(3)	3	0.426666667	0.188461037	0.08041	
P(4)	4	0.426666667	0.108050995	0.046102	94%
		Probability of	4 or fewer Cars	93.81%	

Probability of more than 4 Cars 6.19%

Arrivals	172 / 15 mins	λ
Service	360 / 15 mins	μ

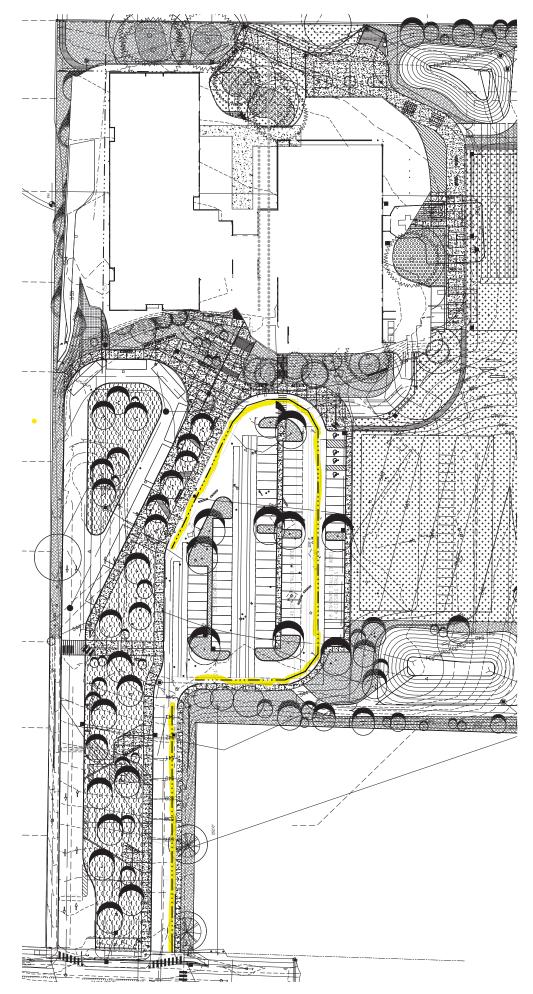
Average number of cars in the system	$\lambda/(\mu{-}\lambda)$	0.914894	0.914894 vehicles
Average waiting time in the system	$1/(\mu\!-\!\lambda)$	0.005319	180 0.957447 minutes
Average number of cars in the queue	λ ~2 $/\mu(\mu-\lambda)$	0.437116	0.437116 vehicles
Average waiting time in the queue	$\lambda/\mu(\mu{-}\lambda)$	0.002541	180 0.457447 minutes
Average system utilization	λ/μ	0.477778	48%
Probability of no cars in system	$1\!-\!\lambda/\mu$	0.522222	52%
Probability of n cars in system	$(1\!-\!\lambda/\mu)(\lambda/\mu)\!\!\sim\!\!{\sf n}$		

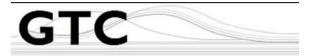
- max queue available

		$(1{-}\lambda/\mu)$ $(\lambda/\mu$) ^ n	P(n)	
P(0)	0	0.52222222	1	0.522222	52%
P(1)	1	0.52222222	0.477777778	0.249506	
P(2)	2	0.52222222	0.228271605	0.119209	
P(3)	3	0.52222222	0.1090631	0.056955	95%
			ty of 3 or fewer Cars of more than 3 Cars	94.79% 5.21%	

Collision Data

OFFICER REPORTED CRASHES THAT OCCURRED ON ALL ROADS IN THE CITY OF LYNNWOOD

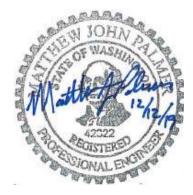

01/01/2012 - available 2016


purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or Under 23 U.S. Code § 409 and 23 U.S. Code § 148, safety data, reports, surveys, schedules, lists compiled or collected for the considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or such reports, surveys, schedules, lists, or data.

			FIRST COLLISION TYPE /	OBJECT STRUCK	0 0 2 0 0 Entering at angle	0 0 2 0 0 Entering at angle
#	В	\leq	ш	S	0	0
#	Р	ш		S	0	0
	#	>	ш	Η	1 2	2
	# # # P BI	ΙFVEK	NAED	Η	0 (0
	#	-	Ζ	ſ	С	0
			MOST SEVERE	INJURY TYPE J T H S S	No Injury	No Injury
				TIME	12:57	17:54
				DATE	E233883 03/20/2013 12:57 No Injury	E397346 02/02/2015 17:54 No Injury
			REPORT	CWAY B NUMBER	E233883	E397346
		\triangleleft		В		
			BLOCK INTERSECTING	NUMBER TRAFFICWAY	3900 SPRUCE WAY	3900 SPRUCE WAY
			BLOCK	NUMBER	3900	3900
			PRIMARY	TRAFFICWAY	172ND ST SW	172ND ST SW
				JURISDICTION	City Street	City Street

M - 1

Site Layout



Gibson Traffic Consultants, Inc. 2813 Rockefeller Avenue Suite B Everett, WA 98201 425.339.8266

Spruce Elementary School Updated Traffic Impact Analysis

Prepared for: Edmonds School District Jurisdiction: City of Lynnwood

December 2019

TABLE OF CONTENTS

	FRODUCTION OPOSED SITE DEVELOPMENT & ACCESS	
	THODOLOGY & ANALYSIS SCOPING	
4. EX	ISTING CONDITIONS	
4.1	Walking Conditions	7
4.2	Collision Data	
4.3	Existing Parking Utilization	8
4.4	Existing Volumes and Level of Service	8
5. FU	TURE CONDITIONS	. 11
5.1	Trip Generation	. 11
5.2	Trip Distribution	. 12
5.3	2021 Baseline Volumes and Level of Service	
5.4	2021 Future with Project Volumes and Level of Service	. 16
5.5	2021 Opening Year Queuing	
5.6	2021 Opening Year Parking Demand	. 22
6. CO	NCLUSIONS	

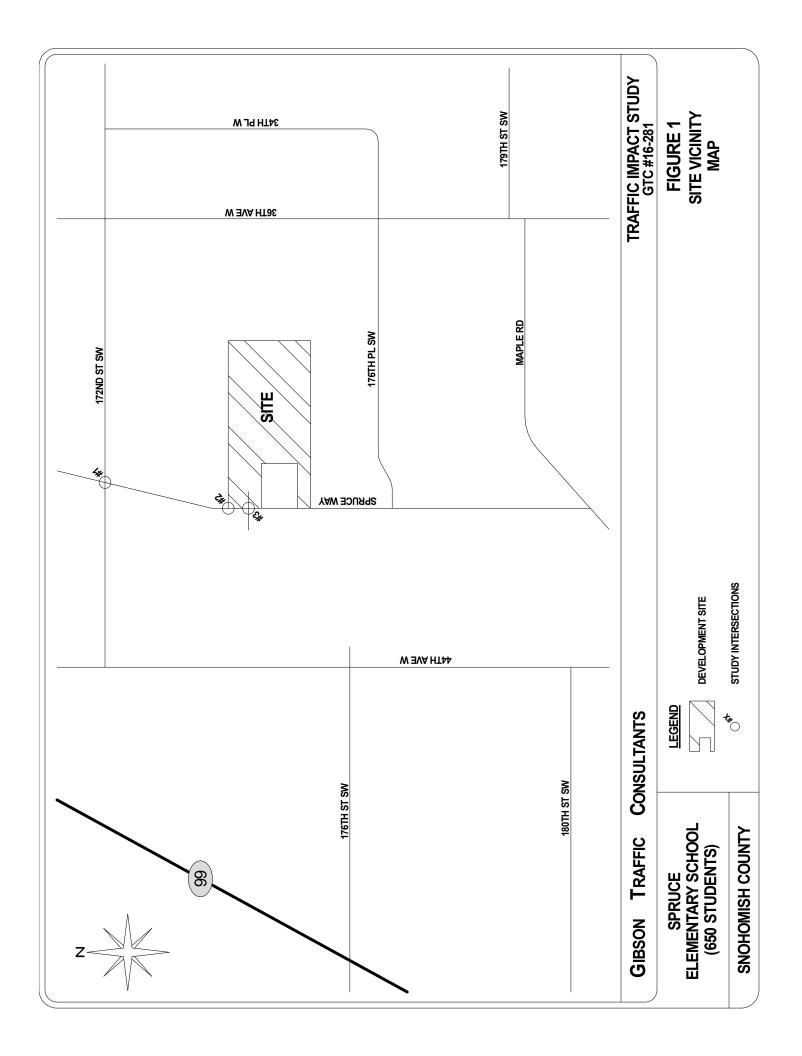
LIST OF FIGURES

Figure 1: Site Vicinity Map	4
Figure 2: Existing AM Peak-Hour Turning Movements	
Figure 3: Existing School PM Peak-Hour Turning Movements	10
Figure 4: Development Trip Distribution – AM Peak-Hour	13
Figure 5: Development Trip Distribution – School PM Peak-Hour	14
Figure 6: 2021 Baseline Traffic Volumes – AM Peak-Hour	18
Figure 7: 2021 Baseline Traffic Volumes – School PM Peak-Hour	19
Figure 8: 2021 Future with Project Traffic Volumes – AM Peak-Hour	20
Figure 9: 2021 Future with Project Traffic Volumes - School PM Peak-Hour	21

LIST OF TABLES

Table 1: Level of Service Criteria for Intersections	. 6
Table 2: Collision Summary	. 7
Table 3: 6-Year Collision Rate Calculation	. 7
Table 4: Existing Level of Service Summary – AM Peak-Hour	. 8
Table 5: Existing Level of Service Summary - School PM Peak-Hour	8
Table 6: Elementary School Trip Generation Summary	11
Table 7: 2021 Baseline Level of Service Summary – AM Peak-Hour	15
Table 8: 2021 Baseline Level of Service Summary - School PM Peak-Hour	15
Table 9: 2021 Future Level of Service Summary – AM Peak-Hour	16
Table 10: 2021 Future Level of Service Summary – School PM Peak-Hour	16
Table 11: Expected Drop-off/pick-up Queuing	17

ATTACHMENTS


Trip Generation Calculations	
Count Data	B
AM Turning Movement Calculations	C
School PM Turning Movement Calculations	D
Existing AM Peak-Hour Level of Service Analysis	E
Existing School PM Peak-Hour Level of Service Analysis	F
2021 Baseline AM Peak-Hour Level of Service Analysis	G
2021 Baseline School PM Peak-Hour Level of Service Analysis	H
2021 Future With Project AM Peak-Hour Level of Service Analysis	I
2021 Future With Project School PM Peak-Hour Level of Service Analysis	
Parking Data	K
Queuing Analysis	L
Collision Data	
Site Layout	N
•	

1. INTRODUCTION

Gibson Traffic Consultants, Inc. (GTC) has been retained to complete an updated traffic impact analysis (TIA) for the Spruce Elementary School reconstruction. This is an update to the April 2017 TIA to address the change in horizon year from 2020 to 2021, the movement of the parent access further south with the acquisition of an additional property, and changes to queuing length/parking on-site. All the following information has not changed from the April 2017 TIA. Edmonds School District (ESD) is proposing to reconstruct Spruce Elementary School, which is located on the east side of Spruce Way between 176th Street SW and 172nd Street SW in the City of Lynnwood. A site vicinity map is included in Figure 1. The school will continue to be an elementary school serving grades kindergarten through 6th grade with school hours from 9:20 AM and to 3:50 PM. For this analysis, the school is anticipated to have a capacity of 650 students. A similar ratio of volunteers and staff currently serving the school was assumed for future conditions as well. The school's current district boundary extends from SR-99 to 25th Avenue W and from 176th Street SW to 148th Street SW.

2. PROPOSED SITE DEVELOPMENT & ACCESS

Spruce Elementary School is being reconstructed with a capacity of 650 students. Bus traffic will be separated from staff and parent drop-off/pick-up traffic. The number of buses servicing the school is not anticipated to change. The school's existing bus access point will turn into the parent/staff access and move approximately 250 feet to the south while the north access will be repurposed to service the bus loop. Additionally, the parent drop-off/pick-up area will expand to allow for additional drop-off/pick-up of simultaneous vehicles while allowing other vehicles to bypass the stopped vehicles. The number of available parking spaces on-site will also increase to 96 parking stalls (90 parking stalls identified in the April 2017 TIA). The proposed school is scheduled for full facility build-out and occupancy by the 2021-2022 school year. Therefore, the year 2021 has been used as the opening year in the analysis.

3. METHODOLOGY & ANALYSIS SCOPING

Peak-hour level of service (LOS) is determined using the methodology described in the 2010 *Highway Capacity Manual* (HCM) and *Synchro 10* software developed by Trafficware. The traffic analysis methodology has not been changed to stay consistent with the April 2017 TIA.

Traffic congestion on roadways is generally measured in terms of LOS at critical intersections. In accordance with the 2010 *Highway Capacity Manual*, roadway facilities and intersections are rated between LOS A and F, with LOS A being free flow and LOS F being forced flow or over-capacity conditions. The LOS at signalized intersections and all-way stop-controlled intersections are based on the average stopped delay for all entering vehicles. The LOS at two-way stop-controlled intersections is based on stopped delay times for the critical approach or movement(s). Geometric characteristics and conflicting traffic movements are taken into consideration when determining LOS values. A summary of the level of service criteria has been included in Table 1.

GTC utilized a 2.0-percent annual compounding growth rate to account for background traffic growth in the site vicinity based on projects located near the site. The street network surrounding the school is primarily comprised of stop-controlled intersections (all-way and two-way) and primarily serves single family-residential homes.

Matthew Palmer, responsible for the traffic analysis and report, is a licensed professional engineer (Civil) in the State of Washington and a current member of the Washington State section of ITE.

Level of ¹	Expected	Intersection Control Delay (Seconds per Vehicle)				
Service	Delay	Unsignalized Intersections	Signalized Intersections			
Α	Little/No Delay	<u><</u> 10	<u><</u> 10			
В	Short Delays	>10 and <u><</u> 15	>10 and <u><</u> 20			
С	Average Delays	>15 and <u><</u> 25	>20 and <u><</u> 35			
D	Long Delays	>25 and <u><</u> 35	>35 and <u><</u> 55			
E	Very Long Delays	>35 and <u><</u> 50	>55 and <u><</u> 80			
F	Extreme Delays ²	>50	>80			

Table 1: Level of Service Criteria for Intersections

The acceptable level of service at arterial intersections within the City of Lynnwood is LOS C for local streets at all times and LOS D for non-City Center arterials during the PM peak-hour.

GTC analyzed AM and School PM peak-hour level of service. Listed below are the intersections analyzed:

- Spruce Way at 172nd Street SW
- Spruce Way at North School Driveway
- Spruce Way at South School Driveway

¹ Source: *Highway Capacity Manual* 2010.

- LOS B: Generally stable traffic flow conditions.
- LOS C: Occasional back-ups may develop, but delay to vehicles is short term and still tolerable.
- LOS D: During short periods of the peak hour, delays to approaching vehicles may be substantial but are tolerable during times of less demand (i.e. vehicles delayed one cycle or less at signal).
- LOS E: Intersections operate at or near capacity, with long queues developing on all approaches and long delays.
- LOS F: Jammed conditions on all approaches with excessively long delays and vehicles unable to move at times.
- ² When demand volume exceeds the capacity of the lane, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection.

Gibson Traffic Consultants, Inc. info@gibsontraffic.com

LOS A: Free-flow traffic conditions, with minimal delay to stopped vehicles (no vehicle is delayed longer than one cycle at signalized intersection).

4. EXISTING CONDITIONS

4.1 Walking Conditions

Spruce Way is a two-lane road, one in each direction. Each lane is approximately 10 feet wide. There are paved sidewalks traveling north from the school and a walking path to the south.

There are two paved trails within proximity to Spruce Elementary, one across from the school on Spruce way connecting to 175th Street SW and one on the northeast corner of the school connecting to 174th Place SW. These connections allow easy access to 44th Avenue W and 36th Avenue W, both of which are primary north/south streets with three lanes, one in each direction with a two-way left-turn lane. 36th Avenue W has a paved shoulder on the east side and at-grade sidewalk separated with a c-curb on the west. 44th Avenue W has separated raised sidewalk on both sides of the street.

4.2 Collision Data

Collision data was provided by WSDOT for 5-years from January 1, 2014 through December 31, 2018 data at the study intersections. The collision data is summarized in **Table 2** and **Table 3**.

Intersection	Rear -end	Entering at Angle		Sideswipe	Same Dir. Other	Ped./Cyclist	Fixed Object	Total Collisions	Collisions Per Year
172 nd St SW at Spruce Way	0	2	0	0	0	0	0	2	0.4

Table 2: Collision Summary

Table 3: 5-Year Collision Rate Calculation

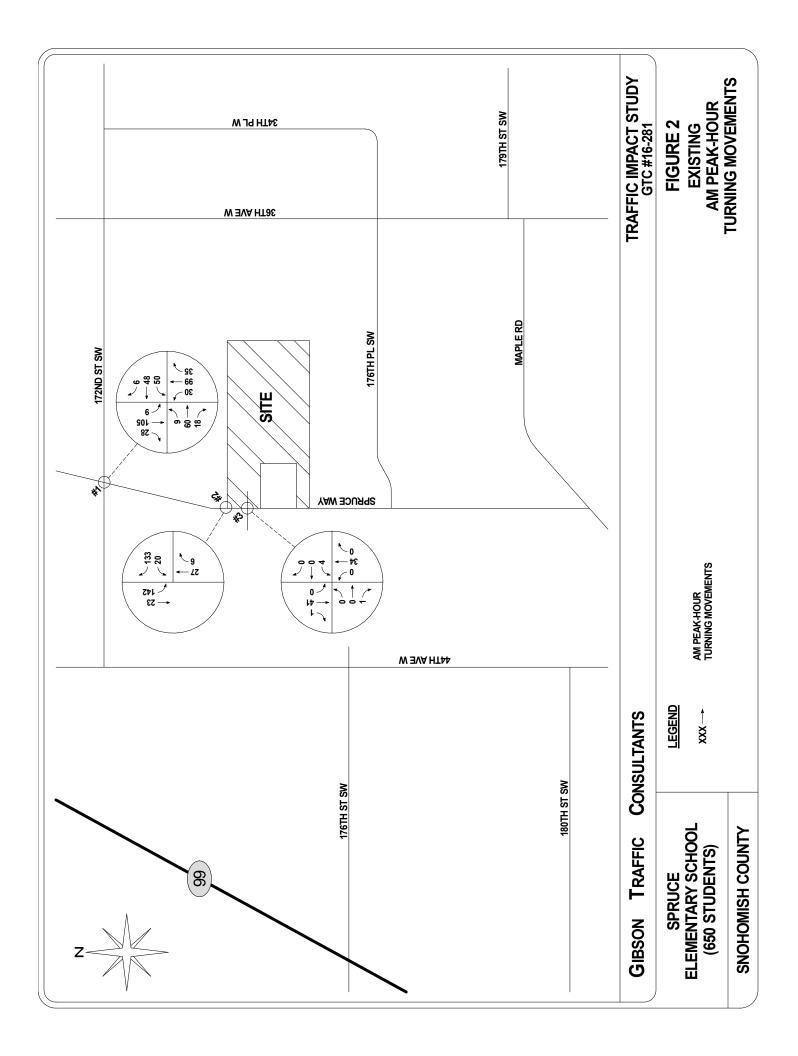
Intersection	PM Peak-Hour Intersection Vol.	K-Factor	Total Collisions	Collision Rate ³
172 nd St SW at Spruce Way	542	10	2	0.20

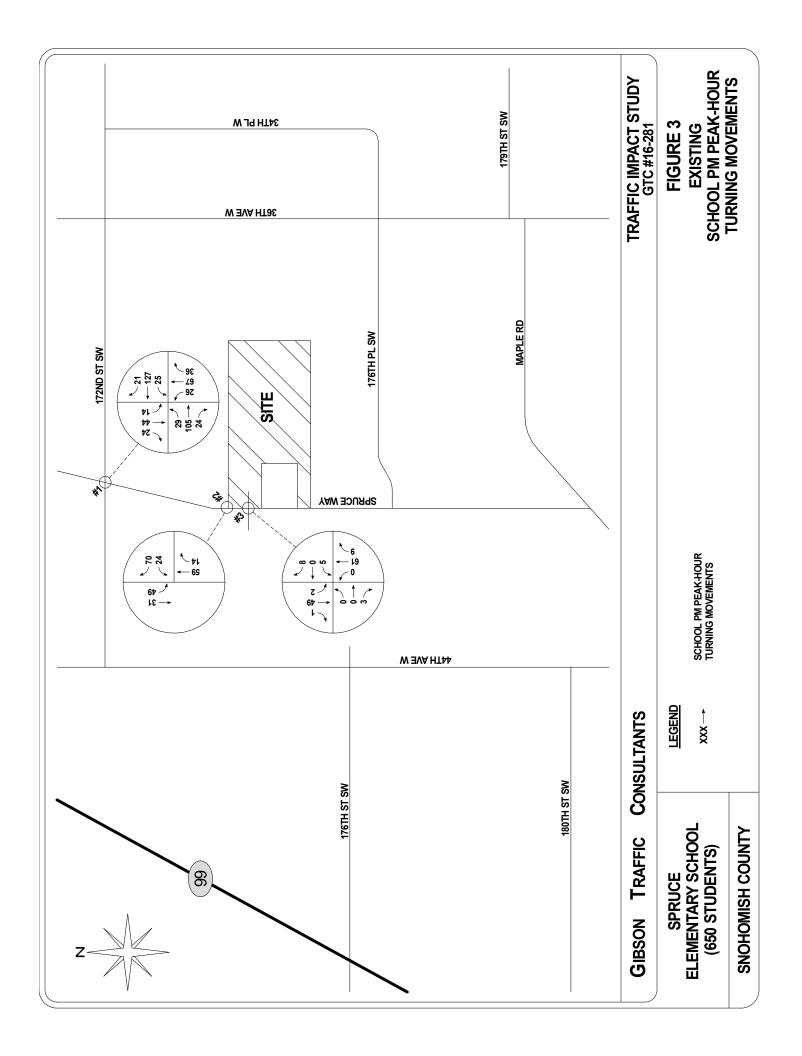
The intersection of 172nd Street SW at Spruce Way was the only location to have collisions. The intersection of 172nd Street SW at Spruce Way has a collision rate per million entering below 1.0, which corresponds to a relatively normal to low rate of accidents, and is below the average rate for the area.

³ The collision rate is based on Million Entering Vehicles.

4.3 Existing Parking Utilization

A parking survey was completed by the independent count firm, Traffic Data Gathering (TDG) staff after the morning peak period at 9:45 AM and prior to school dismissal at PM on November 16, 2016. Currently on site there are a total of 58 spaces. In the morning, there were a total of 46 vehicles parked for the site, 2 of which were utilizing the ADA stalls. Prior to the school dismissal/arrival of parent pick-up traffic, there were a total of 43 parked vehicles for the school, 1 of which utilized the ADA stalls. The parking generation per student based on 558 existing students is 0.08 vehicles per student for the AM and 0.08 vehicles per student at School PM peak-hours, this includes all vehicles parked on-site (staff and visitor).


4.4 Existing Volumes and Level of Service


Existing turning movement counts at all the study intersections were obtained by the independent count firm, Traffic Data Gathering (TDG) on Wednesday, November 16, 2016. The existing peak-hour turning movement volumes are shown at the study intersections during the AM peak-hour (8:45-9:45 AM) and School PM peak-hour (3:00-5:00 PM) in Figure 2 and Figure 3 respectively. Based on the existing counts, channelization and intersection control; all the study intersections will operate at LOS B or better during AM peak-hour and School PM peak-hour. The existing level of service for the AM peak-hour and School PM peak-hour is summarized in Table 4 and Table 5 respectively. The existing level of service calculations are included in the attachments.

	Intersections	Existing Conditions						
		LOS	Delay	Critical Approach				
1.	Spruce Way at 172 nd Street SW	В	10.2 sec					
2.	Spruce Way at North Driveway	В	11.8 sec	Westbound				
3.	Spruce Way at South Driveway	В	10.5 sec	Westbound				

 Table 4: Existing Level of Service Summary – AM Peak-Hour

Intersections	Existing Conditions						
	LOS	Delay	Critical Approach				
1. Spruce Way at 172 nd Street SW	Α	9.4 sec					
2. Spruce Way at North Driveway	В	10.7 sec	Westbound				
3. Spruce Way at South Driveway	Α	9.8 sec	Westbound				

5. FUTURE CONDITIONS

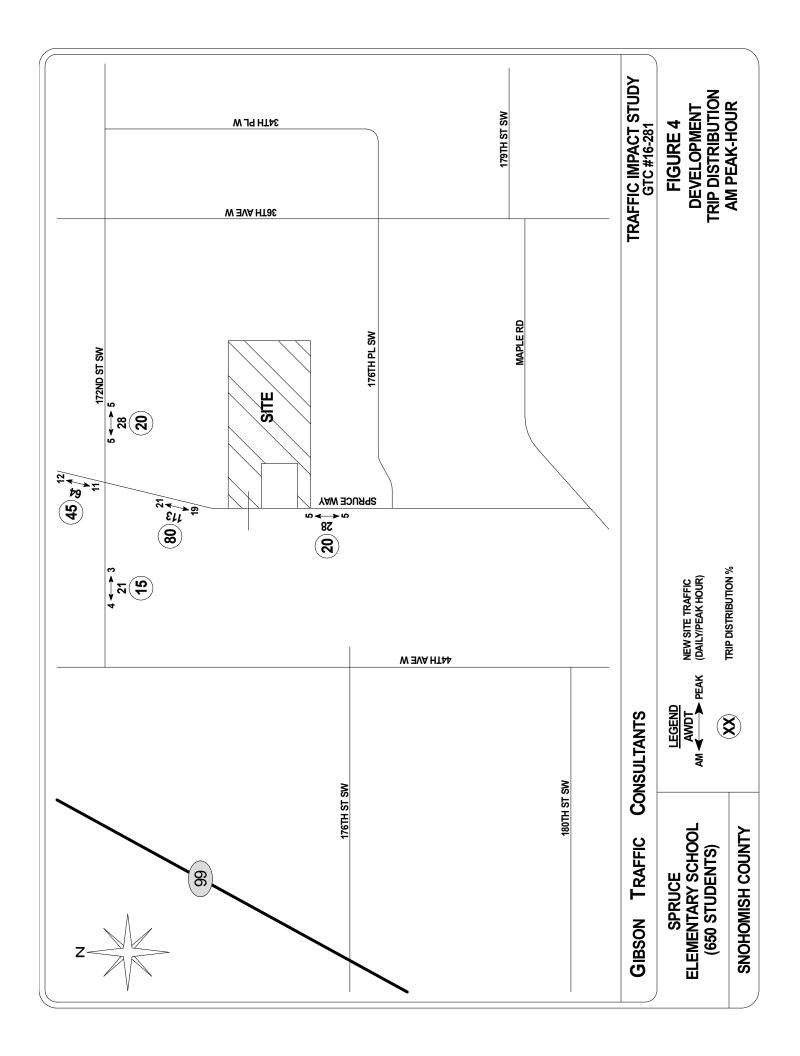
5.1 Trip Generation

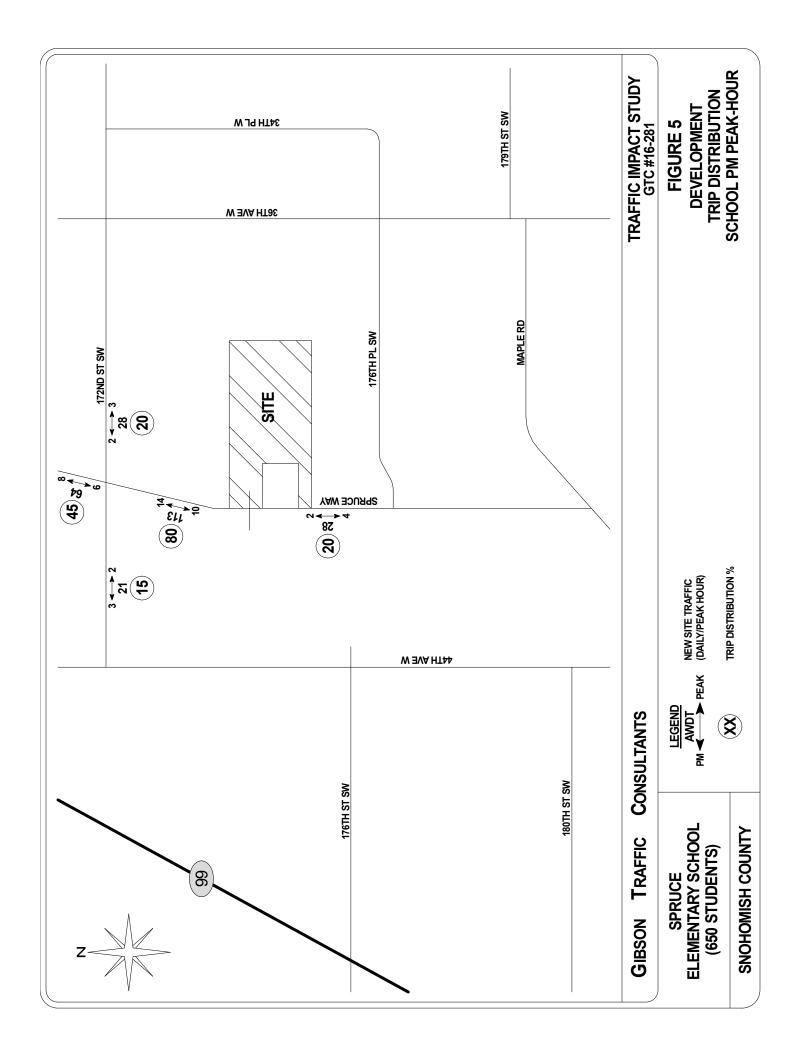
Consistent with the April 2017 TIA, the Office of Superintendent of Public Instruction, there were 558 students enrolled in May of the 2015-2016 school year. Per ITE *Trip Generation* (9th Edition, 2012) Land Use Code: 520, Elementary School, the trip generation rate per student is 1.29 for daily, 0.45 for AM peak-hour and 0.28 for PM peak-hour and the existing 558-student school would have an ITE trip generation of 720 daily, 251 AM and 156 School PM peak trips on an average weekday or school day.

AM peak traffic counts at the school entrances and exits taken on Wednesday November 16, 2016 indicate school trip volumes are higher than the ITE trip estimates, with 307 peak-hour trips (150 inbound and 157 outbound) during the AM peak hour for existing conditions, approximately 22% higher than ITE estimates. School PM peak traffic counts taken on Wednesday November 16, 2016 indicate school traffic volumes are also higher than ITE trip estimates with 179 peak trips (73 inbound and 106 outbound) during the school PM peak hour, approximately 15% higher than ITE estimates. In order to analyze "worst case" traffic conditions at the school site, GTC has utilized existing driveway count data to estimate future peak-hour traffic volumes and peak-hour LOS conditions.

For future school traffic with the proposed school reconstruction, GTC assumed the same traffic generation characteristics as counted at the existing school driveways with new school traffic proportional to the expected growth in the student enrollment. The expected enrollment increase at Spruce Elementary School is to 650 students, or an increase of 92 students. For the critical AM peak period, school traffic would increase by an estimated 50.3 trips (24.4 inbound/25.9 outbound) and by 29.8 trips (12.2 inbound/17.6 outbound) for the School PM peak. During the street peak-hour it is anticipated that there would be an increase of 13.8 PM peak-hour trips (6.8 inbound/7.0 outbound). The trip generation is summarized in Table 6.

Stord and a	Average	AM Peak-Hour			School PM Peak-Hour			PM Peak-Hour ⁴		
Students	Daily Trips	Inbound	Outbound	Total	Inbound	Outbound	Total	Inbound	Outbound	Total
92	140.85	24.4	25.9	50.3	12.2	17.6	29.8	6.8	7.0	13.8


 Table 6:
 Elementary School Trip Generation Summary


⁴ Based on ITE rates

⁵ Uses a ratio of ITE and on site trip generation rates.

5.2 Trip Distribution

Trip distribution is based on the existing traffic counts in the site vicinity and potential school draw areas. It is estimated that 20% of the site traffic will travel to and from the south along Spruce Way. An estimated 15% will travel to and from the west on 172nd Street SW. An estimated 20% will travel to and from the east on 172nd Street SW. The remaining 45% is expected to travel to and from the north on Spruce Way. Detailed trip distributions are shown in Figure 4 and Figure 5 for the AM peak-hour and School PM peak-hour respectively.

5.3 2021 Baseline Volumes and Level of Service

The 2021 baseline (future without project) turning movement volumes are estimated by applying a 2.0% annual compounding growth rate to the existing turning movement volumes. The 2021 baseline turning movement volumes for the AM peak-hour and School PM peak-hour are shown in Figure 6 and Figure 7.

With the addition of baseline growth, all the study intersections will continue to operate at LOS B or better during the AM and School PM peak-hours. The 2021 baseline level of service results for the AM peak-hour and School PM peak-hour are summarized in Table 7 and Table 8. The baseline level of service calculations are included in the attachments.

 Table 7: 2021 Baseline Level of Service Summary – AM Peak-Hour

	E	xisting Co	nditions	2021 Baseline Conditions			
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach	
1. Spruce Way at 172 nd Street SW	В	10.2 sec		В	11.0 sec		
2. Spruce Way at North Driveway	В	11.8 sec	Westbound	В	12.7 sec	Westbound	
3. Spruce Way at South Driveway	В	10.5 sec	Westbound	В	10.6 sec	Westbound	

Table 8:	2021 Baseline	Level of Service Sum	mary – School PM Peak-Hour
----------	---------------	----------------------	----------------------------

	E	Existing Co	onditions	2021 Baseline Conditions		
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach
1. Spruce Way at 172 nd Street SW	Α	9.4 sec		Α	9.9 sec	
2. Spruce Way at North Driveway	В	10.7 sec	Westbound	В	11.0 sec	Westbound
3. Spruce Way at South Driveway	Α	9.8 sec	Westbound	В	10.0 sec	Westbound

5.4 2021 Future with Project Volumes and Level of Service

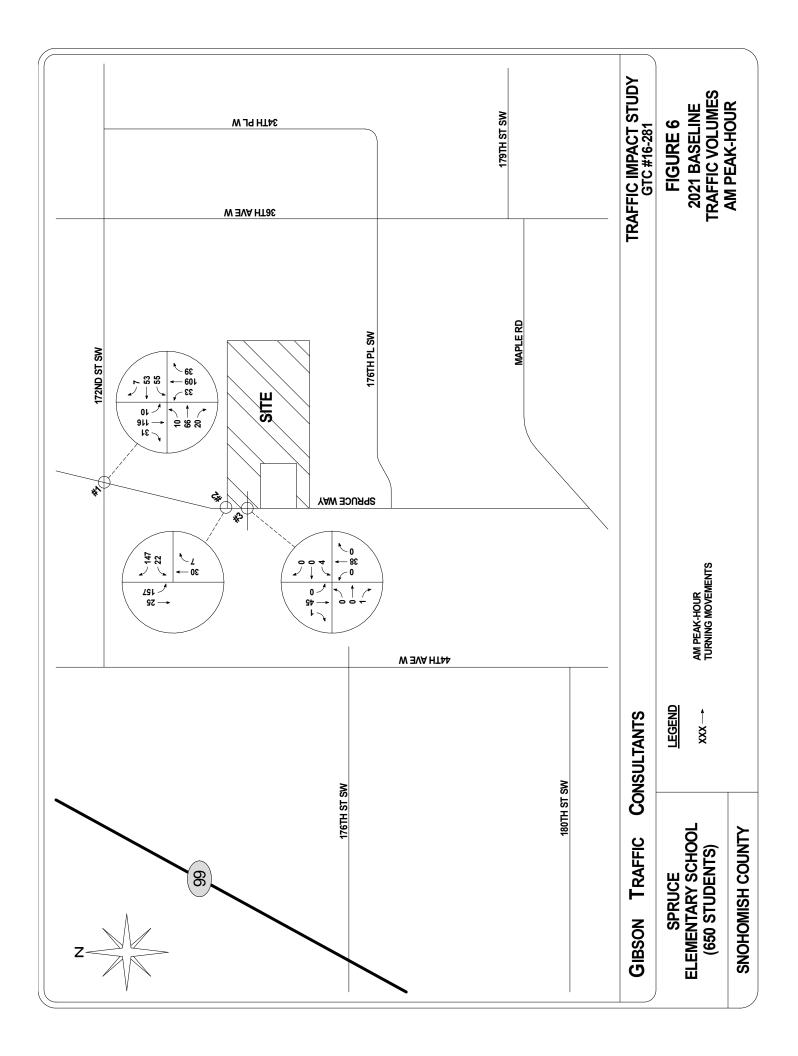
The 2021 future with project turning movement volumes are calculated by adding all the school traffic based on the trip distribution to the 2021 baseline turning movement volumes. It was assumed that the number of buses did not change with the reconstruction based on the low increase in student population. Additionally, all the traffic was rerouted so that all the bus traffic was utilizing the north driveway while all the parent traffic was utilizing the south driveway. The peak-hour factor and heavy vehicle percentage was also switched in conjunction with the driveway uses. The 2021 future with project turning movement volumes for the AM peak-hour and School PM peak-hour in Figure 8 and Figure 9.

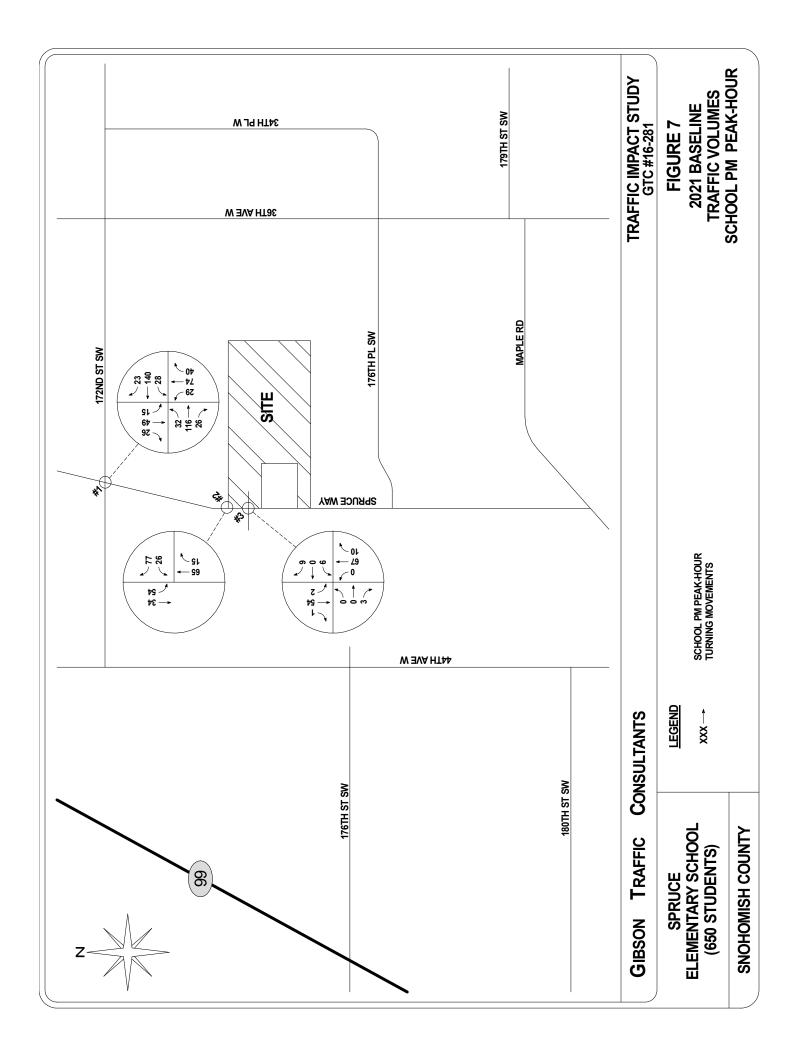
With the addition of school traffic, all the study intersections will continue to operate at LOS C or better during the AM peak-hour and LOS B or better during the School PM peak-hour. All the off-site study intersections will operate at acceptable City of Lynnwood Intersection Standards used for SEPA impact evaluation. The 2021 future with project level of service results for the AM peak-hour and School PM peak-hour are summarized in Table 9 and Table 10. The 2021 future with project level of service calculations are included in the attachments.

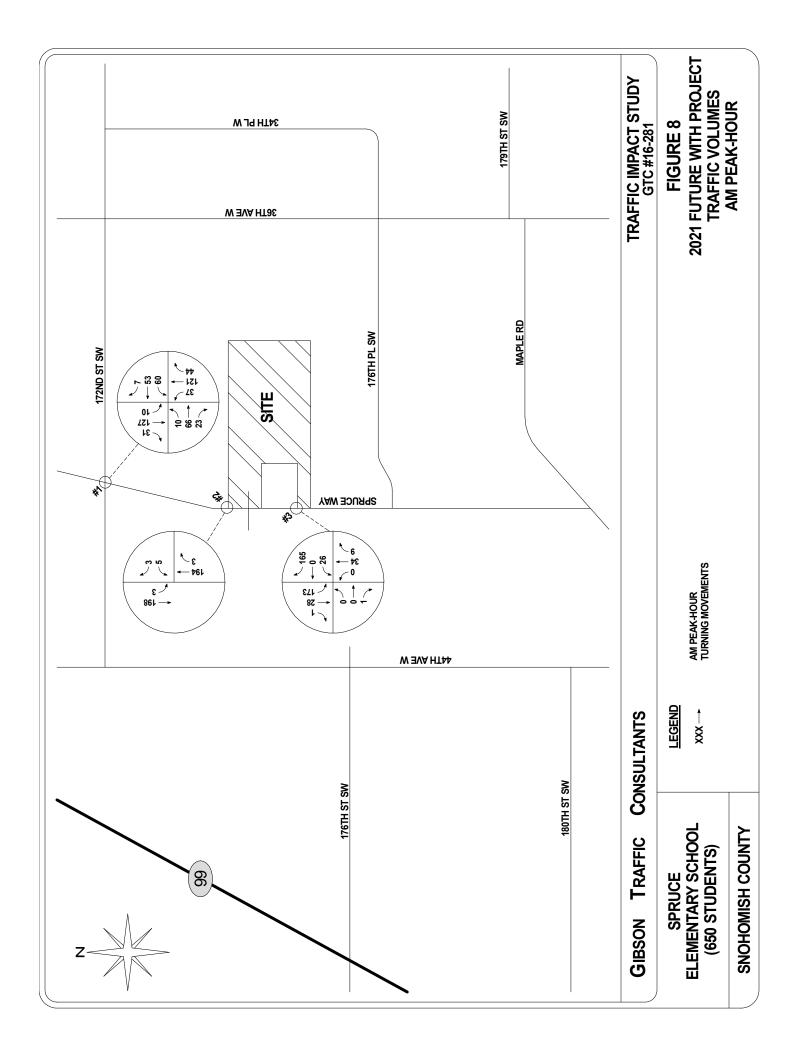
	202	1 Baseline	Conditions	2021 Future Conditions			
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach	
1. Spruce Way at 172 nd Street SW	В	11.0 sec		В	11.5 sec		
2. Spruce Way at North Driveway	В	12.7 sec	Westbound	С	17.9 sec	Westbound	
3. Spruce Way at South Driveway	В	10.6 sec	Westbound	В	12.7 sec	Westbound	

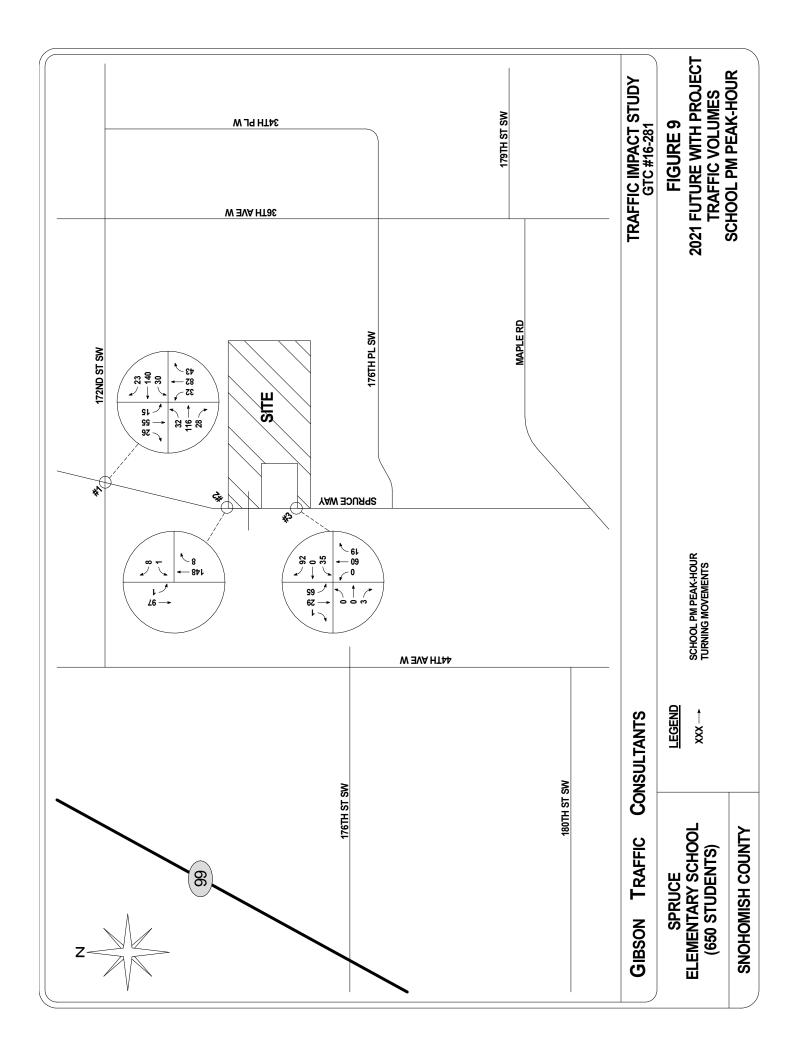
 Table 9: 2021 Future Level of Service Summary – AM Peak-Hour

	202	1 Baseline	Conditions	2	021 Future	e Conditions
Intersection	LOS	Delay	Critical Approach	LOS	Delay	Critical Approach
1. Spruce Way at 172 nd Street SW	Α	9.9 sec		В	10.1 sec	
2. Spruce Way at North Driveway	В	11.0 sec	Westbound	В	10.6 sec	Westbound
3. Spruce Way at South Driveway	В	10.0 sec	Westbound	В	11.3 sec	Westbound


5.5 2021 Opening Year Queuing


Table 11 below shows a comparison of vehicle queue lengths depending on the number of vehicles picking-up/dropping-off at one time. In the April 2017 TIA the proposed loop was 830 feet long with room for approximately 38 vehicles. The proposed loop will provide about 900 feet of service and queueing space before impacting Spruce Way. This provides space for about 45 vehicles (between 20-22 feet per vehicle) which would satisfy the requirement if only 4 vehicles could be serviced simultaneously. With increased drop-off/pick-up efficiency due to increased service area and additional parking on-site the proposed parent loop would provide adequate queuing space to limit impacts to the City street system.


Vehicles Served Simultaneously	50% Queue [vehicles]	95% Queue [vehicles]	Queuing Required [feet]	Total Loop Length Required
4	1	8	176	330
5	0	4	88	286
6	0	3	66	308


Table 11: Expected Drop-off/pick-up Queuing

This projected queuing is based on 172 vehicles (anticipated future parent traffic to the site) arriving in a 15-minute period and having a service rate of 15 seconds to drop-off a student. The 15 seconds is the measured time for a vehicle to stop, drop-off the student, start moving again based on video observations. The queue identified as the additional queue beyond the area required for the vehicles being served simultaneously. It was assumed that the length required to service X vehicles was 22 feet multiplied by (2*X-1). It was assumed that there will be enough width for vehicles to by-pass those dropping off. The width would allow for double stacking if queuing becomes a problem.

5.6 2021 Opening Year Parking Demand

For the future parking assessment, GTC assumed that the student enrollment would increase from 558 existing students (latest student data on OSPI) to 650 students projected by the Edmonds School District. The City of Lynnwood requires one parking space per six students and sufficient off-street space for safe loading and unloading of buses. This would result in a parking demand of 108 parking spaces. A parking study performed by GTC in November of 2016 shows that Spruce Elementary School has a parking demand of 0.083 vehicles per student. Assuming 85% represents a parking lot reaching capacity, the school would have a total parking demand of 63 parking spaces. Spruce Elementary School is proposing to have a total of 96 parking spaces, this represents a 12% reduction in parking from the City Code requirement of 108 parking spaces.

The parent and bus loops would have sufficient off-street space to load and unload students onsite. The 96 spaces plus parking provided in the loops on campus along with the additional onstreet parking spaces in the surrounding neighborhoods would provide additional event parking.

6. CONCLUSIONS

Spruce Elementary School will continue to serve grades kindergarten through 6th grade with a capacity of 650 students by the future analysis year, 2021. The school hours are from 9:20 AM and to 3:50 PM.

The reconstruction of Spruce Elementary School is estimated to generate a total of 140.8 new average daily trips with 50.3 trips (24.4 inbound/25.9 outbound) during the AM peak-hour and 29.8 trips (12.2 inbound/17.6 outbound) during the School PM peak-hour. During the street peak-hour between 4 and 6 PM it is anticipated that there would be an increase of 13.8 PM peak-hour trips (6.8 inbound/7.0 outbound).

In the 2021 future with the reconstruction analysis all off-site study intersections will continue to operate at LOS C or better during the AM peak-hour and LOS B or better during the School PM peak-hour, thus meeting the City of Lynnwood Intersection Standards used for SEPA impact evaluation. The main parent access for the school, the south driveway, will operate at LOS B during the AM peak-hour and School PM peak-hour with the westbound leg (school driveway) operating as the critical approach. The bus loop, utilizing the north driveway, is anticipated to operate at acceptable LOS C during the AM peak-hour and LOS B in the school PM peak-hour.

The site is expected to have sufficient parking to satisfy the long-term parking needs. Additionally, the site will have sufficient queuing space to satisfy the drop-off and pick-up queuing needs without impacting Spruce Way.

Trip Generation Calculations

Spruce Elementary School

Count Data:

	,	AM (8:45 AN	1 to 9:45 Al	VI)		PM (3:00 PN	/I - 5:00 PM)
Location	In	% of Total	Out	% of Total	In	% of Total	Out	% of Total
N Driveway	148	100%	153	97%	63	85%	94	88%
S Driveway	0	0%	4	3%	11	15%	13	12%
Frontage	0	0%	0	0%	0	0%	0	0%
Total	148	49%	157	51%	74	41%	107	59%

Trip Generation per student:

556	students						
	0,	School Rate:	S	IT	E Comparis	on	+/- to Lynnwood
	Rate	% In	% Out	Rate	% In	% Out	Trips
AM	0.55	49%	51%	0.45	68%	32%	54
School PM	0.32	41%	59%	0.28	33%	55%	25

New Trips

92 students

52	students		
	Total	In	Out
AM	50.3	24.4	25.9
School PM	29.8	12.2	17.6

Total Trips

650 students

	Total	In	Out
AM	355	172	183
School PM	211	86	125

Trip Generation for: Development Peak Weekday (a.k.a.): Average Weekday Daily Trips (AWDT)

												N	ΕΤ ΕΧΤΕ	NET EXTERNAL TRIPS BY TYPE	PS BY	ТҮРЕ				
		4								N	IN BOTH DIRECTIONS	RECTIO	NS			DIRECT	ONAL	ASSIG	DIRECTIONAL ASSIGNMENTS	
				Gross	Trips		Inte Cross	Internal Crossover	TOTAL	PASS-BY	S-BY	DIVE	DIVERTED LINK	NEW PASS-BY	PAS:		DIVERTED	TED K	NEW	
LAND USES	VARIABLE	ITE LU code	Trip Rate	% N	% ouT	% In+Out UT (Total)	% of Gross Trips	Trips In+Out (Total)	ut % of Trips In+Out % of In+Out Ext. (Total) Trips (Total) Trips (Total) Trips (Total) Trips (% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of In+Out Ext. (Total) (Total)		In Out In Out	5		E	Out
High School	92 students	stdy	1.53	50%	50%	140.8	%0	0.0	140.8 <mark>0%</mark>	%0	0.0	%0	0.0	140.8 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	70.4	70.4
Total						140.8		0.0	140.8		0.0		0.0	1408 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	70.4	70.4

Trip Generation for: Development Peak Weekday, Peak Hour of Adjacent Street Traffic, One Hour between 7 and 9 AM (a.k.a.): Weekday AM Peak Hour

												NET	NET EXTERNAL TRIPS BY TYPE	AL TRIPS	ВУ ТУ	ЪЕ				
		ļ								N	IN BOTH DIRECTIONS	IRECTIO	NS		DI	RECTIC	NAL /	ASSIGN	DIRECTIONAL ASSIGNMENTS	
				Gross	Trips		Inte Cros	Internal Crossover	TOTAL	PAS	S-BY	DIVERT	PASS-BY DIVERTED LINK NEW PASS-BY	NEW	PASS		DIVERTED LINK	LED	NEW	
LAND USES	VARIABLE	ITE LU code	Trip Rate	% N	% out	In+Out (Total)		% of Trips Gross In+Out Trips (Total)	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out In+Out (Total)	In+Out (Total)	In Out		In Out	Out	о ч	Out
High School	92 students stdy		0.55	49%	51%	50.3	%0	0.0	50.3	%0	0.0	%0	0.0	50.3	0.0 0.0 0.0 0.0	0.0	0.0	0.0	24.4 2	25.9
Total						50.3		0.0	50.3		0.0		0.0	50.3 0.0 0.0 0.0 24.4	0.0	0.0	0.0	0.0		25.9

Trip Generation for: Development Peak Weekday, School PM Peak-Hour, One Hour between 1:30 and 3:30 PM (a.k.a.): Weekday School PM Peak Hour

												NET	NET EXTERNAL TRIPS BY TYPE	VL TRIPS	BY TY	Ы				Π
										N	IN BOTH DIRECTIONS	RECTIO	SN		DIR	ECTIC	NAL A	DIRECTIONAL ASSIGNMENTS	MENTS	
				Gross	Trips		Inte Cross	Internal Crossover	TOTAL		PASS-BY	DIVERTE	DIVERTED LINK NEW PASS-BY	NEW	-SSA-		DIVERTED	ED	NEW	
LAND USES	VARIABLE	ITE LU code	Trip Rate	NI	% ouT	In+Out (Total)	% of Gross Trips	% of Trips Gross In+Out Trips (Total)	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out In+Out (Total) (Total)	In+Out (Total)	In Out	Dut	u u	Out In		Out
High School	92 students stdy	stdy	0.32	41%	59%	29.8	%0	0.0	29.8	%0	0.0	%0	0.0	29.8	0.0 0.0	0.0	0.0 0.0	1.0 1	12.2	17.6
Total						29.8		0.0	29.8		0.0		0.0	29.8 0.0 0.0 0.0 0.0 12.2	0.0	0.0	0.0	0.0	2.2	17.6

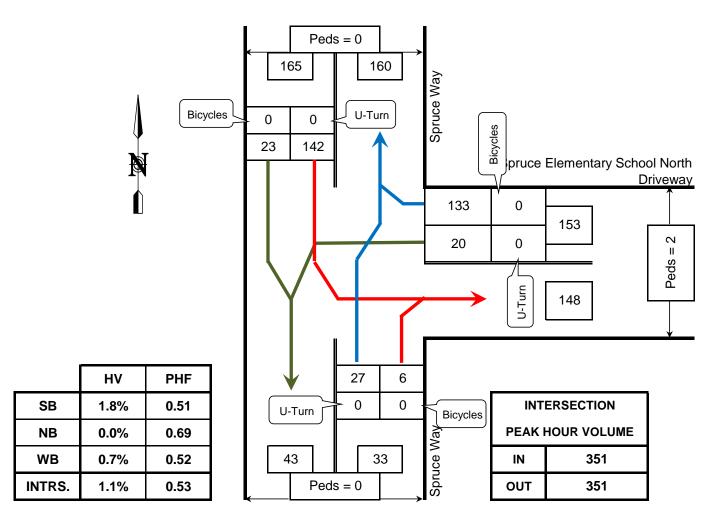
Trip Generation for: Development Peak Weekday, PM Peak-Hour of Adjacent Street Traffic, One Hour between 4 and 6 PM (a.k.a.): Weekday PM Peak Hour

												NET	NET EXTERNAL TRIPS BY TYPE	AL TRIPS	ВҮ ТҮ	Щ				
		1								N	IN BOTH DIRECTIONS	RECTIO	NS		DIF	ECTIC	NAL A	DIRECTIONAL ASSIGNMENTS	IENTS	
				Gross	Trips		Inte Cros	Internal Crossover	ΤΟΤΑΙ	PAS	S-BY	DIVERT	PASS-BY DIVERTED LINK NEW PASS-BY	NEW	PASS-		DIVERTED	ED	NEW	
LAND USES	VARIABLE	LU LU code	Trip Rate	% N	% ouT	In+Out (Total)	% of Trips Gross In+Out Trips (Total)	Trips In+Out (Total)	In+Out (Total)	% of Ext. Trips	In+Out (Total)	% of Ext. Trips	In+Out In+Out (Total) (Total)	In+Out (Total)	In Out	Dut	In Out	ut In	out	¥
High School	92 students 520	520	0.15 49%	49%	51%	51% 13.8	%0	0.0	13.8	%0	0.0	%0	0.0	13.8 0.0 0.0 0.0 0.0	0.0	0.0	0.0		6.8 7.0	0
Total						13.8		0.0	13.8		0.0		0.0	13.8 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	6.8 7.0	0

AM Peak-Hour

%	New	New AM	/I Peak Hou	ır Trips	%	New	New A	M Peak Hou	ır Trips
70	ADT	In	Out	Total	70	ADT	In	Out	Total
100%	141	24	26	50	100%	141	24	26	50
1%	1.41	0.24	0.26	0.50	51%	71.81	12.44	13.21	25.65
2%	2.82	0.49	0.52	1.01	52%	73.22	12.69	13.47	26.16
3%	4.22	0.73	0.78	1.51	53%	74.62	12.93	13.73	26.66
4%	5.63	0.98	1.04	2.01	54%	76.03	13.18	13.99	27.16
5%	7.04	1.22	1.30	2.52	55%	77.44	13.42	14.25	27.67
6%	8.45	1.46	1.55	3.02	56%	78.85	13.66	14.50	28.17
7%	9.86	1.71	1.81	3.52	57%	80.26	13.91	14.76	28.67
8%	11.26	1.95	2.07	4.02	58%	81.66	14.15	15.02	29.17
9%	12.67	2.20	2.33	4.53	59%	83.07	14.40	15.28	29.68
10%	14.08	2.44	2.59	5.03	60%	84.48	14.64	15.54	30.18
11%	15.49	2.68	2.85	5.53	61%	85.89	14.88	15.80	30.68
12%	16.90	2.93	3.11	6.04	62%	87.30	15.13	16.06	31.19
13%	18.30	3.17	3.37	6.54	63%	88.70	15.37	16.32	31.69
14%	19.71	3.42	3.63	7.04	64%	90.11	15.62	16.58	32.19
15%	21.12	3.66	3.89	7.55	65%	91.52	15.86	16.84	32.70
16%	22.53	3.90	4.14	8.05	66%	92.93	16.10	17.09	33.20
17%	23.94	4.15	4.40	8.55	67%	94.34	16.35	17.35	33.70
18%	25.34	4.39	4.66	9.05	68%	95.74	16.59	17.61	34.20
19%	26.75	4.64	4.92	9.56	69%	97.15	16.84	17.87	34.71
20%	28.16	4.88	5.18	10.06	70%	98.56	17.08	18.13	35.21
21%	29.57	5.12	5.44	10.56	71%	99.97	17.32	18.39	35.71
22%	30.98	5.37	5.70	11.07	72%	101.38	17.57	18.65	36.22
23%	32.38	5.61	5.96	11.57	73%	102.78	17.81	18.91	36.72
24%	33.79	5.86	6.22	12.07	74%	104.19	18.06	19.17	37.22
25%	35.20	6.10	6.48	12.58	75%	105.60	18.30	19.43	37.73
26%	36.61	6.34	6.73	13.08	76%	107.01	18.54	19.68	38.23
27%	38.02	6.59	6.99	13.58	77%	108.42	18.79	19.94	38.73
28%	39.42	6.83	7.25	14.08	78%	109.82	19.03	20.20	39.23
29%	40.83	7.08	7.51	14.59	79%	111.23	19.28	20.46	39.74
30%	42.24	7.32	7.77	15.09	80%	112.64	19.52	20.72	40.24
31%	43.65	7.56	8.03	15.59	81%	114.05	19.76	20.98	40.74
32%	45.06	7.81	8.29	16.10	82%	115.46	20.01	21.24	41.25
33%	46.46	8.05	8.55	16.60	83%	116.86	20.25	21.50	41.75
34%	47.87	8.30	8.81	17.10	84%	118.27	20.50	21.76	42.25
35%	49.28	8.54	9.07	17.61	85%	119.68	20.74	22.02	42.76
36%	50.69	8.78	9.32	18.11	86%	121.09	20.98	22.27	43.26
37%	52.10 53.50	9.03	9.58 9.84	18.61	87%	122.50	21.23	22.53 22.79	43.76
38%		9.27		19.11	88%	123.90	21.47		44.26
39%	54.91 56.32	9.52	10.10	19.62	89%	125.31	21.72	23.05	44.77
40% 41%		9.76	10.36	20.12	90% 91%	126.72	21.96	23.31	45.27
	57.73	10.00	10.62 10.88	20.62		128.13	22.20	23.57	45.77
42% 43%	59.14	10.25		21.13 21.63	92% 93%	129.54	22.45	23.83	46.28
43%	60.54	10.49	11.14		93%	130.94	22.69	24.09	46.78
44% 45%	61.95 63.36	10.74 10.98	11.40 11.66	22.13 22.64	94% 95%	132.35 133.76	22.94	24.35 24.61	47.28 47.79
45% 46%	64.77	10.98	11.00		95% 96%	133.76	23.18 23.42		47.79
40%			12.17	23.14	96%			24.86	48.79
47%	66.18 67.58	11.47 11.71	12.17	23.64 24.14	97%	136.58 137.98	23.67 23.91	25.12 25.38	40.79
48%	68.99	11.71	12.43	24.14	98%	137.98	23.91	25.30	49.29
49% 50%	70.40	12.20	12.09 12.95	24.05	100%	140.80	24.10 24.40	25.04 25.90	
50%	70.40	12.20	12.95	20.15	100%	140.00	24.40	25.90	50.30

School PM Peak-Hour


0/	New	New PM	l Peak Hou	ır Trips	0/	New	New P	M Peak Hou	ır Trips
%	ADT	In	Out	Total	%	ADT	In	Out	Total
100%	141	12	18	30	100%	141	12	18	30
1%	1.41	0.12	0.18	0.30	51%	71.81	6.22	8.98	15.20
2%	2.82	0.24	0.35	0.60	52%	73.22	6.34	9.15	15.50
3%	4.22	0.37	0.53	0.89	53%	74.62	6.47	9.33	15.79
4%	5.63	0.49	0.70	1.19	54%	76.03	6.59	9.50	16.09
5%	7.04	0.61	0.88	1.49	55%	77.44	6.71	9.68	16.39
6%	8.45	0.73	1.06	1.79	56%	78.85	6.83	9.86	16.69
7%	9.86	0.85	1.23	2.09	57%	80.26	6.95	10.03	16.99
8%	11.26	0.98	1.41	2.38	58%	81.66	7.08	10.21	17.28
9%	12.67	1.10	1.58	2.68	59%	83.07	7.20	10.38	17.58
10%	14.08	1.22	1.76	2.98	60%	84.48	7.32	10.56	17.88
11%	15.49	1.34	1.94	3.28	61%	85.89	7.44	10.74	18.18
12%	16.90	1.46	2.11	3.58	62%	87.30	7.56	10.91	18.48
13%	18.30	1.59	2.29	3.87	63%	88.70	7.69	11.09	18.77
14%	19.71	1.71	2.46	4.17	64%	90.11	7.81	11.26	19.07
15%	21.12	1.83	2.64	4.47	65%	91.52	7.93	11.44	19.37
16%	22.53	1.95	2.82	4.77	66%	92.93	8.05	11.62	19.67
17%	23.94	2.07	2.99	5.07	67%	94.34	8.17	11.79	19.97
18%	25.34	2.20	3.17	5.36	68%	95.74	8.30	11.97	20.26
19%	26.75	2.32	3.34	5.66	69%	97.15	8.42	12.14	20.56
20%	28.16	2.44	3.52	5.96	70%	98.56	8.54	12.32	20.86
21%	29.57	2.56	3.70	6.26	71%	99.97	8.66	12.50	21.16
22%	30.98	2.68	3.87	6.56	72%	101.38	8.78	12.67	21.46
23%	32.38	2.81	4.05	6.85	73%	102.78	8.91	12.85	21.75
24%	33.79	2.93	4.22	7.15	74%	104.19	9.03	13.02	22.05
25%	35.20 36.61	3.05	4.40	7.45	75% 76%	105.60 107.01	9.15	13.20	22.35
26% 27%	38.02	3.17 3.29	4.58 4.75	7.75 8.05	76%	107.01	9.27 9.39	13.38 13.55	22.65 22.95
27 %	39.42	3.29	4.73	8.34	78%	100.42	9.59	13.53	22.93
20%	40.83	3.54	5.10	8.64	70%	111.23	9.64	13.90	23.54
30%	42.24	3.66	5.28	8.94	80%	112.64	9.76	14.08	23.84
31%	43.65	3.78	5.46	9.24	81%	114.05	9.88	14.26	24.14
32%	45.06	3.90	5.63	9.54	82%	115.46	10.00	14.43	24.44
33%	46.46	4.03	5.81	9.83	83%	116.86	10.13	14.61	24.73
34%	47.87	4.15	5.98	10.13	84%	118.27	10.25	14.78	25.03
35%	49.28	4.27	6.16	10.43	85%	119.68	10.37	14.96	25.33
36%	50.69	4.39	6.34	10.73	86%	121.09	10.49	15.14	25.63
37%	52.10	4.51	6.51	11.03	87%	122.50	10.61	15.31	25.93
38%	53.50	4.64	6.69	11.32	88%	123.90	10.74	15.49	26.22
39%	54.91	4.76	6.86	11.62	89%	125.31	10.86	15.66	26.52
40%	56.32	4.88	7.04	11.92	90%	126.72	10.98	15.84	26.82
41%	57.73	5.00	7.22	12.22	91%	128.13	11.10	16.02	27.12
42%	59.14	5.12	7.39	12.52	92%	129.54	11.22	16.19	27.42
43%	60.54	5.25	7.57	12.81	93%	130.94	11.35	16.37	27.71
44%	61.95	5.37	7.74	13.11	94%	132.35	11.47	16.54	28.01
45%	63.36	5.49	7.92	13.41	95%	133.76	11.59	16.72	28.31
46%	64.77	5.61	8.10	13.71	96%	135.17	11.71	16.90	28.61
47%	66.18	5.73	8.27	14.01	97%	136.58	11.83	17.07	28.91
48%	67.58	5.86	8.45	14.30	98%	137.98	11.96	17.25	29.20
49%	68.99	5.98	8.62	14.60	99%	139.39	12.08	17.42	29.50
50%	70.40	6.10	8.80	14.90	100%	140.80	12.20	17.60	29.80

Count Data

TURNING MOVEMENTS DIAGRAM

8:45 AM - 9:45 AM PEAK HOUR: 8:45 AM TO 9:45 AM

HV = Heavy Vehicles PHF = Peak Hour Factor

Spruce Elementary School North Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY:	VT	

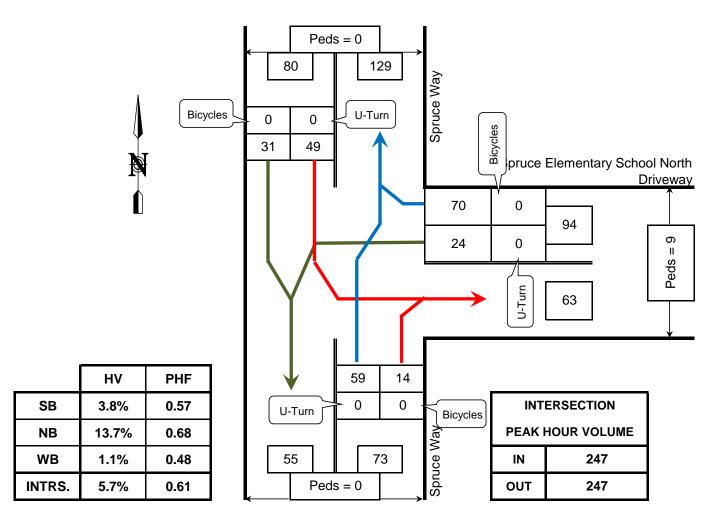
REDUCED BY: <u>CN</u>

REDUCTION DATE: Fri. 11/18/16

DATE OF COUNT:	Wed. 11/16/16
TIME OF COUNT:	8:45 AM - 9:45 AM
WEATHER:	Sunnv

D G TRAFFIC DATA GATHERING

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET


LOCATION:	Spruc Lynnv	Spruce Elementary School North Driveway @ Spruce Way Lynnwood, W.A	tary Sch	ool North	h Drive	way @	Spruce	Way					DATE TIME (DATE OF COUNT: TIME OF COUNT:	:TNI TN	Sö	Wed. 11/16/16 8:45 AM - 9:45	Wed. 11/16/16 8:45 AM - 9:45 AM							CO ME	COUNTED BY: WEATHER:	BY: R:	VT Sunny	
ТІМЕ			FROM	FROM NORTH ON	NO	1		1		FRON	FROM SOUTH ON	NOF	1				FROM	FROM EAST ON	z	1	-			FROM WEST ON	EST ON				
INTERVAL ENDING			Spr	Spruce Way						ß	Spruce Way	ž			Spi	Spruce Elementary School North Driveway	nentary	School N	lorth Dr	'iveway								INTERVAL	
AT	Peds	Peds Bicycle	Η	U-Turn	Left	Thru	Right	Peds	Bicycle	Η	U-Turn	Left	Thru	Right	Peds B	Bicycle	ΗV	U-Turn	Left -	ThruR	Right Pe	Peds Bic	Bicycle H	L-U VH	U-Turn Le	Left Th	Thru Right		
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0		0	
06:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
06:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
06:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	
09:00 AM	0	0	0	0	45	8	0	0	0	0	0	0	10	-	0	0	0	0	9	0	33	0	0	0	0 0	0	0	103	
09:15 AM	0	0	0	0	77	4	0	0	0	0	0	0	8	4	2	0	0	0	6	0	64	0	0	0	0 0	0	0	166	1
09:30 AM	0	0	3	0	18	5	0	0	0	0	0	0	4	0	0	0	0	0	4	0	31	0	0	0	0 0	0	0	62	
09:45 AM	0	0	0	0	2	9	0	0	0	0	0	0	5	-	0	0	1	0	٢	0	5	0 0	0	0	0 0	0	0	20	
PEAK HOUR TOTALS	0	0	3	0	142	23	0	0	0	0	0	0	27	9	2	0	-	0	20	0	133	0	0	0	0	0	0	INTERSECTION	NO
ALL MOVEMENTS		ſ			165	5			ſ			3	33			ŀ	1		153		+		╞	+		0		351	
VH %			1.8%							0.0%							0.7%						#	#N/A				1.1%	1
PEAK HOUR FACTOR					0.51	+						0.	0.69						0.52							#N/A		0.53	
HV - Heavy Vehicle																													
PHF = Peak Hour Factor	tor									8:45 A	8:45 AM - 9:45 AM PEAK HOUR:	5 AM F	EAK F	IOUR:	8:4	8:45 AM			TO 9	9:45 AM	_								
														•]								
REDUCED BY:	S	ı																			ď	DATE OF REDUCTION:	REDUCT	NOL				11/18/2016	
												RC	DLLIN	G HOL	ROLLING HOUR COUNT	UNT													
			FROM	FROM NORTH ON	N					FRON	FROM SOUTH ON	NOF					FROM	FROM EAST ON	z		┢			FROM WEST ON	EST ON				
			Spr.	Spruce Way						sp	Spruce Way	Ň			Spi	Spruce Elementary School North Driveway	nentary	School N	lorth Dr	iveway								INTERVAL TOTALS	
TIME INTERVAL	Peds	Peds Bicycle	٨H	U-Turn Left Thru	Left	Thru	Right	Peds	Bicycle	¥	U-Turn	Left	Thru	Right	Peds	Bicycle	٨H	U-Turn	Left -	ThruR	Right Pe	Peds Bic	Bicycle F	L-U VH	U-Turn Le	Left Th	Thru Right		
5:45 AM - 6:45 AM	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0 0	0	0 0	0 0	0		0	
	0			,	e		-			•		•		-				,	-										

		FRO	FROM NORTH ON	NO H					FROM SOUTH ON	OUTH C	N				Ϊ.	FROM EAST ON	ST ON					FROM	FROM WEST ON	N			
		S	Spruce Way	'ay					Spruc	Spruce Way				Spruc	Spruce Elementary School North Driveway	tary Sch	100 Nor	th Drive	way								INTERVAL TOTALS
TIME INTERVAL Per	ads Bicy	Peds Bicycle HV U-Turn Left Thru	U-Tur	n Left	t Thru	-	Right Peds	Bicycle	HV U	U-Turn	Left 1	Thru R	tight Pe	Right Peds Bicycle	sycle HV		U-Turn Left	oft Thru	ru Right	ht Peds	Bicycle	Ч	U-Turn	Left	Thru	Right	
5:45 AM - 6:45 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:15 AM - 7:15 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:30 AM - 7:30 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
6:45 AM - 7:45 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
7:00 AM - 8:00 AM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 8:15 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 8:30 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:45 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 9:00 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 9:15 AM 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 9:30 AM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:45 AM 0	0	e	0	142	23	0	0	0	0	0	0	27	9	2	0	0	20	•	133	0	0	0	0	0	0	0	351

DEG TRAFFIC DATA GATHERING

TURNING MOVEMENTS DIAGRAM

3:00 PM - 5:00 PM PEAK HOUR: 3:30 PM TO 4:30 PM

HV = Heavy Vehicles PHF = Peak Hour Factor

Spruce Elementary School North Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY: VT

REDUCED BY: <u>CN</u>

REDUCTION DATE: Fri. 11/18/16

DATE OF COUNT:	Wed. 11/16/16
TIME OF COUNT:	3:00 PM - 5:00 PM
WEATHER:	Sunny

D G TRAFFIC DATA GATHERING

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruce Elementary School North Driveway @ Spruce Way Lynnwood, WA	mentary WA	School	North Dr	iveway	@ Spri	uce Wa					DAT	DATE OF COUNT: TIME OF COUNT:	OUNT: NUNT:		Wed. 11/16/16 3:00 PM - 5:00	Wed. 11/16/16 3:00 PM - 5:00 PM	M		1 1					COUNTED WEATHER:	COUNTED BY: WEATHER:		VT Sunny
TIME		FR	FROM NORTH ON	NO HTS					FR(FROM SOUTH ON	NO HL					FRO	FROM EAST ON	r on					FRON	FROM WEST ON	NO			
INTERVAL			Spruce Way	Way						Spruce Way	Nay			57	Spruce Elementary School North Driveway	ementar	Ty Schot	ol North	Drivew	ay								INTERVAL TOTAL S
AT	Peds Bicycle	/cle HV	V U-Turn	urn Left	t Thru	u Right	ht Peds	s Bicycle	HV HV	/ U-Turn	urn Left	ft Thru	ru Right	ht Peds	Bicycle	₽	U-Turn	n Left	Thru	Right	Peds	Bicycle	ΛН	U-Turn	Left	Thru	Right	
01:15 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0 0	0	0	9	9	0	0	0	0	0	0	8	0	2	0	1	0	2	0	4	0	0	0	0	0	0	0	26
03:30 PM	0 0	2	0	9	7	0	0	0	0	0	0	ę	-	2	0	0	0	-	0	3	0	0	0	0	0	0	0	21
03:45 PM	0 0	-	0	7	12	0	0	0	0	0	0	12	2	-	0	0	0	-	0	0	0	0	0	0	0	0	0	34
04:00 PM	0 0	2	0	27	80	0	0	0	4	0	0	11	9	5	0	0	0	9	0	43	0	0	0	0	0	0	0	101
04:15 PM	0 0	0	0	13	7	0	0	0	5	0	0	22	5	2	0	1	0	8	0	22	0	0	0	0	0	0	0	77
04:30 PM	0 0	0	0	2	4	0	0	0	-	0	0	14	-	-	0	0	0	6	0	5	0	0	0	0	0	0	0	35
04:45 PM	0 1	0	0	4	10	0	0	0	-	0	0	15	-	0	0	0	0	-	0	-	0	0	0	0	0	0	0	32
05:00 PM	0 0	0	0	2	5	0	0	0	2	0	0	14	-	0	0	0	0	е	0	10	0	0	0	0	0	0	0	35
PEAK HOUR TOTALS	0		3 0	49	31	0	0	0	10	0	0	59	9 14	6	0	-	0	24	0	70	0	0	0	0	0	0	0	INTERSECTION
ALL MOVEMENTS					80				-			73						6	94				T		0			247
VH %		3.8%	3%						13.7%	%						1.1%							#N/A					5.7%
PEAK HOUR FACTOR				-	0.57							0.68						0.	0.48						W/N#	A		0.61
HV = Heavy Vehicle																												
PHF = Peak Hour Factor	or								3:00	3:00 PM - 5:00 PM PEAK HOUR:	:00 PM	1 PEAK	K HOUR		3:30 PM			5	TO 4:30 PM	M								
REDUCED BY:	CN																				DATE C	DATE OF REDUCTION:	JCTION:				ļ	11/18/2016
											æ	SOLLI	NG HC	ROLLING HOUR COUNT	OUNT													
_		Ħ	FROM NORTH ON	NO HTS					FR(FROM SOUTH ON	NO HL					FRO	FROM EAST ON	LON					FROM	FROM WEST ON	NO			
_			Spruce Way	Way						Spruce Way	Nay			57	Spruce Elementary School North Driveway	lementar	ry Schoo	ol North	Drivew:	ay								INTERVAL TOTALS
TIME INTERVAL	Peds Bicycle	/cle HV	V U-Turn	urn Left	t Thr	Thru Right		Peds Bicycle	le HV	v U-Turn	urn Left	ft Thru	ru Right	nt Peds	Peds Bicycle	₽	U-Turn	n Left	Thru	Right	Peds	Bicycle	ΛH	U-Turn	Left	Thru	Right	101 413
1:00 PM - 2:00 PM	0 0			0	0	0	0	0	0	0	0	0		0	0		0	0		0	0	0	0	0	0	0	0	0

									FROM	FROM SOUTH ON	z				Ē	ROM E4	FROM EAST ON					2 E		z			
		Spru	Spruce Way	>					Spru	Spruce Way				Spruc	Spruce Elementary School North Driveway	tary Scl	100 Nor	th Driv	eway								INTERVAL TOTALS
TIME INTERVAL Peds Bicycle HV U-Turn Le	Bicycle	HV	U-Turn	Left	Thru	Right	Peds	Bicycle	HV L	U-Turn	Left 1	Thru R	light P	Right Peds Bicycle	ycle HV		U-Turn Le	Left Thru	ru Right	tht Peds	Is Bicycle	HV	U-Turn	Left	Thru	Right	
1:00 PM - 2:00 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
1:15 PM - 2:15 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0
1:30 PM - 2:30 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
1:45 PM - 2:45 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
2:00 PM - 3:00 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0
2:15 PM - 3:15 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0
2:30 PM - 3:30 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:45 PM 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 4:00 PM 0	0	5	0	46	33	0	0	0	4	0	0	34	9	10 C	0 1		0 10	0 0	50	0	0	0	0	0	0	0	182
3:15 PM - 4:15 PM 0	0	5	0	53	34	0	0	0	6	0	0	48	14 1	10 C	0 1	5	0 16	16 0	68	0	0	0	0	0	0	0	233
3:30 PM - 4:30 PM 0	0	ю	0	49	31	0	0	0	10	0	0	59	14	9	0 1	-	0 24	4	70	0	0	0	0	0	0	0	247
3:45 PM - 4:45 PM 0	٢	2	0	46	29	0	0	0	11	0	0	62	13	8	0 1		0 24	4	71	0	0	0	0	0	0	0	245
4:00 PM - 5:00 PM 0	-	0	0	21	26	0	0	0	6	0	0	65		3	0	5	0 21	1	38	0	0	0	0	0	0	0	179

TURNING MOVEMENTS DIAGRAM 8:45 AM - 9:45 AM PEAK HOUR: 8:45 AM TO 9:45 AM Peds = 0Bicycles U-Turn Spruce Way 43 34 0 1 1 41 0 Spruce Elementary School South Private Driveway Driveway 0 0 Bicycles 0 1 4 = 2 Peds = 04 0 U-Turn Peds : 0 0 U-Turn 0 0 1 Bicycles 0 1 0 34 0 PHF ΗV Spruce Way 0 0 INTERSECTION SB 4.7% 0.72 PEAK HOUR VOLUME 46 34 2.9% 0.61 NB U-Tum Bicycles IN 82 WB 100.0% 0.25 OUT 82 EΒ 0.0% 0.25 Peds = 0INTRS. 8.5% 0.71

PHF = Peak Hour Factor HV = Heavy Vehicle

Spruce Elementary School South Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY:	VT	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	8:45 AM - 9:45 AM
REDUCTION DATE:	Wed. 11/16/16	WEATHER:	Sunny

D G TRAFFIC DATA GATHERING

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruce Elementary School South Driveway @ Spruce Way	mentary	v Schoo	I South	Drivewa	v @ Sr	oruce W	٨e,				á	ATE OF	DATE OF COUNT:		Wed.	Wed. 11/16/16								COUNT	COUNTED BY:	5	F
	Lynnwood, WA	I, WA										F	ME OF (TIME OF COUNT:		8:45 /	8:45 AM - 9:45 AM	5 AM							WEATHER:	ER:		Sunny
TIME		Ľ	ROM N	FROM NORTH ON	z		-		[FROM S	FROM SOUTH ON	z		╞		FR	FROM EAST ON	ST ON					FRON	FROM WEST ON	NO			
INTERVAL			Spruc	Spruce Way						Spruc	Spruce Way				Spruce	Spruce Elementary School South Driveway	ary Sch	ool South	Drivew	/ay			Privat	Private Driveway	vay			INTERVAL
ENDING	Pade Ricycla		HV	11-Turn	1 off Th	Thru Di	Picht Do	Dede Ric	Ricycle	ни	1LTurn	T #el	Thru Pi	Picht Pode	de Biovelo	UN PI	11-Turn	rn left	Thru	Picht	Pade	Bicycle	Н	11-Turn	1 oft	- International Provide Provid	Picht	TOTALS
DR:DD AM												-						-			0		-					-
06:15 AM			0		0				0	0						0) O		0	0	0	, o	0	0	0	0	0	
06:30 AM			0		0				0	0						0			0	0		0	0	0	0	0	0	0
06:45 AM			0						0	0					-	0	0		0	0	0	0	0	0	0	0	0	• •
07:00 AM	-		0		0 0			-	0	0		_			-	0	0		0	0	0	0	0	0	0	0	0	0
07:15 AM	-		0	0	0	-		-	0	0	_	-	_		-	0	0	_	0	0	0	0	0	0	0	0	0	0
07:30 AM	0		0	0	0 0		0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0 0		0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00 AM	0	0	0	0	0	15 (0	0	0	0	0	0	14 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	29
09:15 AM	0	0	0	0	0	12 (0	0	0	0	0	0	10 0	0 2	0	4	0	4	0	0	0	0	0	0	0	0	0	26
09:30 AM	0	0	-	-	3	8	0	0	0	1	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
09:45 AM	0	0	+	0	0 6	. 9	1	0	0	0	0	0	5 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	13
PEAK HOUR TOTALS	0	0	2	-	0 4	41	-	0	0	-	0	0	34 (0 2	0	4	0	4	0	0	0	0	0	0	0	0	-	INTERSECTION
ALL MOVEMENTS		ŀ			43				ŀ			34				-			4			Ī			-			82
VH %		4	4.7%				_		.,	2.9%						100.0%	%						0.0%					8.5%
PEAK HOUR FACTOR					0.72							0.61						5	0.25						0.25	2		0.71
HV = Heavy Vehicle																					_							
PHF = Peak Hour Factor	ctor								ø	:45 AM	8:45 AM - 9:45 AM PEAK HOUR:	AM PE/	AK HOL	Ë	8:45 AM	Σ		10	9:45 AM	AM								
REDUCED BY:	CN																				DATE C	DATE OF REDUCTION:	JCTION:					11/16/2016
												ROLI		HOUR	ROLLING HOUR COUNT	F												
		Ľ.	ROM N	FROM NORTH ON	z		╞		[FROM S	FROM SOUTH ON	z				Ę	FROM EAST ON	ST ON					FRON	FROM WEST ON	NO			
			Spruc	Spruce Way						Spruc	Spruce Way				Spruce	Spruce Elementary School South Driveway	ary Sch	ool Soutl	n Drivew	'ay			Privat	Private Driveway	vay			INTERVAL TOTALS
TIME INTERVAL	Peds Bic	Bicycle	HV U	U-Turn L	Left Th	Thru Ri	Right Pe	Peds Bic	Bicycle	HV U	U-Turn L	Left T	Thru Ri	Right Peds	ds Bicycle	cle HV	U-Turn	urn Left	t Thru	Right	Peds	Bicycle	Η	U-Turn	Left	Thru	Right	
5:45 AM - 6:45 AM	0		0	0	0	-		0	0	0	0			0	-	0	0		0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 AM		+	0		0			+	0	0					-	0	0		0	0	0	0	0	0	0	0	0	0
6:15 AM - 7:15 AM					0			_		0						0	0		0	0	0	0	0	0	0	0	0	0
6:30 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

B - 6

<

0 0 0

~

c

c 0 0 0 0

0 0 0

c 0 0 0

0 0

c

0 0

c c

8:45 AM - 7:45 AM 7:00 AM - 8:00 AM 7:15 AM - 8:15 AM 7:45 AM - 8:45 AM 7:45 AM - 8:45 AM 8:00 AM - 9:00 AM 8:50 AM - 9:30 AM 8:45 AM - 9:45 AM

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

~ ~

0 0

0 0

0 0 0 0

0 0

< c

0 0 0 0

0 0 0

0 0

0 0

0 0 0

0 0 0

3 0 0

0 0

0 0 0

0 0 0 4

0 0

0 0

0 0 0 -

.

0 0

0 0 0 0

TURNING MOVEMENTS DIAGRAM 3:00 PM - 5:00 PM PEAK HOUR: 3:45 PM TO 4:45 PM Peds = 0Bicycles U-Turn Spruce Way 52 69 0 1 1 49 2 Spruce Elementary School South Private Driveway Driveway 8 0 Bicycles 0 1 13 9 || Peds = 15 0 U-Turn Peds : 0 0 U-Turn 3 0 11 Bicycles 0 3 0 61 9 PHF ΗV Spruce Way 0 0 INTERSECTION SB 1.9% 0.87 PEAK HOUR VOLUME 57 70 NB 12.9% 0.80 U-Tum Bicycles IN 138 WB 53.8% 0.54 OUT 138 EΒ 0.0% 0.25 Peds = 10INTRS. 12.3% 0.84

PHF = Peak Hour Factor HV = Heavy Vehicle

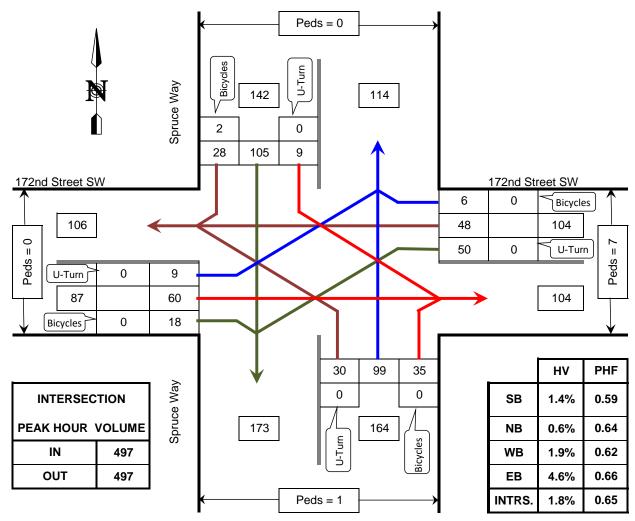
Spruce Elementary School South Driveway @ Spruce Way

Lynnwood, WA

COUNTED BY:	VT	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	3:00 PM - 5:00 PM
REDUCTION DATE:	Sat. 11/19/16	WEATHER:	Sunny

D G TRAFFIC DATA GATHERING

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET


LOCATION:	Spruce Elementary School South Driveway @ Spruce Way Lynnwood, WA	nentary S WA	chool	South Dr	riveway	@ Spr	ruce Wa	2				DATI TIME	DATE OF COUNT: TIME OF COUNT:	UNT: UNT:		Wed. 11/16/16 3:00 PM - 5:00 PM	/16/16 - 5:00 P	×						0 5	COUNTED BY: WEATHER:	D BY: R:	VT Sunny	Ń
TIME		FRO	M NOF	FROM NORTH ON			_		FR	FROM SOUTH ON	NO HT					FRON	FROM EAST ON	NO		╞			FROM V	FROM WEST ON	z			
INTERVAL		S	Spruce Way	Way					-	Spruce Way	Vay			ŝ	pruce Ele	Spruce Elementary School South Driveway	School	South L	Drivewa				Private Driveway	Drivewa	~		-	INTERVAL TOTALS
AT	Peds Bicycle	cle HV	U-Turn	urn Left	ft Thru	u Right	ht Peds	ls Bicycle	cle HV	/ U-Turn	Irn Left	ft Thru	u Right	Peds	Bicycle	۶H	U-Turn	Left	Thru	Right F	Peds Bio	Bicycle	HV U	U-Turn	Left T	Thru Ri	Right	101813
01:15 PM	0 0			0	0	0	0	0	0	0	0	0	0	0	0		0			0	0		0	0	0	0	0	0
01:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 PM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0 0	-	0	0	8	0	0	0	0	0	0	80	-	е	0	0	0	0	0	0	0	0	0	0	0	0	0	17
03:30 PM	0 0	-	0	0	9	0	0	0	0	0	0	e	0	2	0	0	0	2	0	-	-	0	0	0	0	0	1	13
03:45 PM	0 0	-	0	З	6	0	-	0	0	0	0	16	0	1	0	0	0	0	0	0	-	0	0	0	0	0	0	28
04:00 PM	0 0	1	0	٢	11	0	4	0	4	0	0	14	9	3	0	4	0	3	0	3	0	0	0	0	0	0	0	38
04:15 PM	0 0	0	0	-	14	0	9	0	2	0	0	21	-	2	0	з	0	0	0	4	0	0	0	0	0	0	0	41
04:30 PM	0 0	0	0	0	13	0	0	0	-	0	0	14	-	٢	0	0	0	2	0	0	0	0	0	0	0	0	0	30
04:45 PM	0 1	0	0	0	11	-	0	0	2	0	0	12	-	0	0	0	0	0	0	-	-	0	0	0	0	0	e	29
05:00 PM	0	0	0	0	8	0	0	0	-	0	0	13	0	0	0	1	0	0	0	-	0	0	0	0	1	0	0	23
PEAK HOUR TOTALS	S 0 1	-	0	2	49	-	10	0	6	0	0	61	6	6	0	7	0	5	0	8	-	0	0	0	0	0	3 INT	INTERSECTION
ALL MOVEMENTS		-			52				-			70						13				ŀ			3			138
VH %		1.9%							12.9%	%						53.8%						5	0.0%				_	12.3%
PEAK HOUR FACTOR					0.87						5	0.80						0.54	4						0.25			0.84
HV = Heavy Vehicle PHF = Peak Hour Factor	tor								3:00	3:00 PM - 5:00 PM PEAK HOUR:	:00 PM	PEAK	HOUR		3:45 PM			5	4:45 PM	5								
REDUCED BY:	CN																			Δ	DATE OF REDUCTION:	REDUC	:NOIT				Ţ	11/19/2016
											Ľ	SOLLIN	NG HO	ROLLING HOUR COUNT	DUNT													
		FRO	M NOF	FROM NORTH ON			╞		FR	FROM SOUTH ON	TH ON			L		FROM	FROM EAST ON	NO		┢			FROM V	FROM WEST ON	z			
		S	Spruce Way	Way					-	Spruce Way	Vay			ด้	pruce Elé	Spruce Elementary School South Driveway	School	South L	Drivewa				Private Driveway	Drivewa	~		-	INTERVAL TOTALS
TIME INTERVAL	Peds Bicycle	cle HV	U-Turn	urn Left	ft Thru	u Right	ht Peds	s Bicycle	cle HV	/ U-Turn	urn Left	ft Thru	u Right	Peds	Bicycle	Ν	U-Turn	Left	Thru	Right F	Peds Bid	Bicycle	HV U	U-Turn	Left T	Thru Ri	Right	
1:00 PM - 2:00 PM	_	0	0		0	0		0	0	0			0	0	0	0	0	0	0	0		0	0	0			0	0
1:15 PM - 2:15 PM	-	+	0		0	0		0	0	0			0	0	0	0	0	0	0	0		0	0	0			0	0
1:30 PM - 2:30 PM 1:45 PM - 2:45 PM		0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
IN 1 CH:7 - INI 1 CH:1		+	2	+	2	+		>	>	>	-		2	>	>	>	2	>	2	5	+	5	5	2	+	-	_	>

			FROM P	FROM NORTH ON	N				FR	FROM SOUTH ON	TH ON					FRON	FROM EAST ON	NO					FROM \	FROM WEST ON	N			
			Spru	Spruce Way						Spruce Way	/ay			S	Spruce Elementary School South Driveway	mentary	School	South I	Jrivewa	×			Private Driveway	Drivewa	ау			INTERVAL TOTALS
TIME INTERVAL	Peds E	Peds Bicycle HV	NH	U-Turn Left		Thru Ri	Right Pe	Peds Bicycle	cle HV	/ U-Turn	rn Left	t Thru	u Right		Peds Bicycle	Η	U-Turn	Left	Thru	Right	Peds B	Bicycle	ר HA ר	U-Turn	Left	Thru R	Right	
1:00 PM - 2:00 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 PM - 2:15 PM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:30 PM - 2:30 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:45 PM - 2:45 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM - 3:00 PM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM - 3:15 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM - 3:30 PM	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:45 PM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 4:00 PM	0	0	4	0	4	34 (0 5	5 0	4	0	0	41	7	6	0	4	0	5	0	4	2	0	0	0	0	0	1	96
3:15 PM - 4:15 PM	0	0	3	0	5	40 (0 11	1 0	9	0	0	54	7	8	0	7	0	5	0	8	2	0	0	0	0	0	1	120
3:30 PM - 4:30 PM	0	0	2	0	5	47 (0 11	1 0	7	0	0	65	8	7	0	7	0	5	0	7	1	0	0	0	0	0	0	137
3:45 PM - 4:45 PM	0	-	-	0	2	49	1	10 0	6	0	0	61	ი	9	0	7	0	5	0	80	-	0	0	0	0	0	e	138
4:00 PM - 5:00 PM	0	2	0	0	-	46	1	6 0	9	0	0	09	ю	3	0	4	0	2	0	9	-	0	0	c		C	e.	123

TURNING MOVEMENTS DIAGRAM

8:45 AM - 9:45 AM PEAK HOUR: 8:45 AM TO 9:45 AM

PHF = Peak Hour Factor HV = Heavy Vehicle

Spruce Way @ 172nd Street SW

Lynnwood, WA

COUNTED BY:	CN	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	8:45 AM - 9:45 AM
REDUCTION DATE:	Wed. 11/16/16	WEATHER:	Sunny

D G TRAFFIC DATA GATHERING

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET

LOCATION:	Spruce Way @ 172nd Street SW Lynnwood, WA	ay @ 17 I, WA	'2nd Str	eet SW								DATE (TIME G	date of count: Time of count:	Ϊ	8	Wed. 11/16/16 8:45 AM - 9:45	Wed. 11/16/16 8:45 AM - 9:45 AM							S IN	COUNTED BY: WEATHER:	ж В	CN Sunny
TIME		-	FROM NORTH ON	ORTH C	NC		-		FRC	FROM SOUTH ON	TH ON					FROM	FROM EAST ON	-		<u> </u>			FROM WEST ON	EST ON			
INTERVAL ENDING			Spru	Spruce Way					5	Spruce Way	łay					172nd S	172nd Street SW	>				-	172nd Street SW	reet SW			INTERVAL TOTALS
АТ	Peds Bicycle		HV U	U-Turn	Left Th	Thru Ri	Right Pe	Peds Bicycle	cle HV	U-Turn	rn Left	Thru	Right	Peds Bicycle		HV U	U-Turn	Left 1	Thru R	Right Pe	Peds Bicycle		L-U VH	U-Turn L	Left Tr	Thru Right	ht
06:00 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	_	0	0	0 0	0	0
06:15 AM	0 0	0	0	0	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0 0	0
06:30 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	_	0	0	0 0	0	0
06:45 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
07:00 AM	0 0	0	0	0	0 0	_	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0	0	0 0	0 0	0
07:15 AM	0 0	0	0	0	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0 0	0
07:30 AM	0 0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
07:45 AM	0 0	0	0	0	0 0	_	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
08:00 AM	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0
08:15 AM	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
08:30 AM	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0 0	0	0
08:45 AM	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	_	0	0	0 0	0	0
09:00 AM	0	0	0	0	1 29		4 0	0	0	0	9	22	6	2	0	0	0	18	5	1	0 0		0	0	0 8	3	105
09:15 AM	0	0	-	0	2 49		0 6	0	0	0	14	36	14	5	0	0	0	28	12	2	0 0		-	0	2 14	4 8	190
09:30 AM	0	2	0	0	2 20		3	0	-	0	7	35	10	0	0	1	0	е	18	3	0 0		+	0	2 12	2 6	121
09:45 AM	0	0	+	0	4 7	7 1	12 0	0	0	0	e	9	2	0	0	1	0	-	13	0	0 0		2	0	5 26	6 2	81
PEAK HOUR TOTALS	0	2	2	0	9 10	105 2	28 1	1 0	-	0	30	66	35	7	0	2	0	50	48	6	0	0	4	0	9 6	60 18	8 INTERSECTION
ALL MOVEMENTS		ŀ			142				-		7	164			-			104				ŀ			87		497
% HV		•	1.4%						0.6%	ي					•	1.9%				_		4.	4.6%				1.8%
PEAK HOUR FACTOR					0.59						o.	0.64						0.62							0.66		0.65
HV = Heavy Vehicle PHF - Peak Hour Factor	ž								8-45	- M 4-	8-45 AM - 9-45 AM PEAK HOUR-	н и		8-4	8-45 AM			0 D	TO 9-45 AM	Γ							
	5								ł				1	5				2]							
REDUCED BY:	CN																			DA	DATE OF REDUCTION:	REDUCT	NO				11/16/2016
											RC	ILLING	ROLLING HOUR COUNT	R COU	INT												
-							╞						ľ							ŀ							-

		Ē	ROM NC	FROM NORTH ON	z				FRO	FROM SOUTH ON	NO H					FRON	FROM EAST ON	z					FROM W	FROM WEST ON	_		
			Spruc	Spruce Way					S	Spruce Way	٧Ē					172nd	172nd Street SW	8					172nd Street SW	treet SW			INTERVAL
TIME INTERVAL	Peds B	Peds Bicycle HV	-n ^-	U-Turn L	-eft T	Thru R	Right P	Peds Bicycle		HV U-Turn	n Left		Right	Peds	Thru Right Peds Bicycle	H	U-Turn	Left	Thru	Right P.	Peds Bicycle	cycle	-n NH	U-Turn Left		Thru Ri	Right
5:45 AM - 6:45 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0
6:00 AM - 7:00 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
6:15 AM - 7:15 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
6:30 AM - 7:30 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
6:45 AM - 7:45 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
7:00 AM - 8:00 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0
7:15 AM - 8:15 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
7:30 AM - 8:30 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
7:45 AM - 8:45 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
8:00 AM - 9:00 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
8:15 AM - 9:15 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
8:30 AM - 9:30 AM	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
8:45 AM - 9:45 AM	0	2 2	2	0	9 1	105 2	28	1 0	1	0	30	66	35	7	0	2	0	50	48	6	0	0	4	0	9 6	60 1	18 497

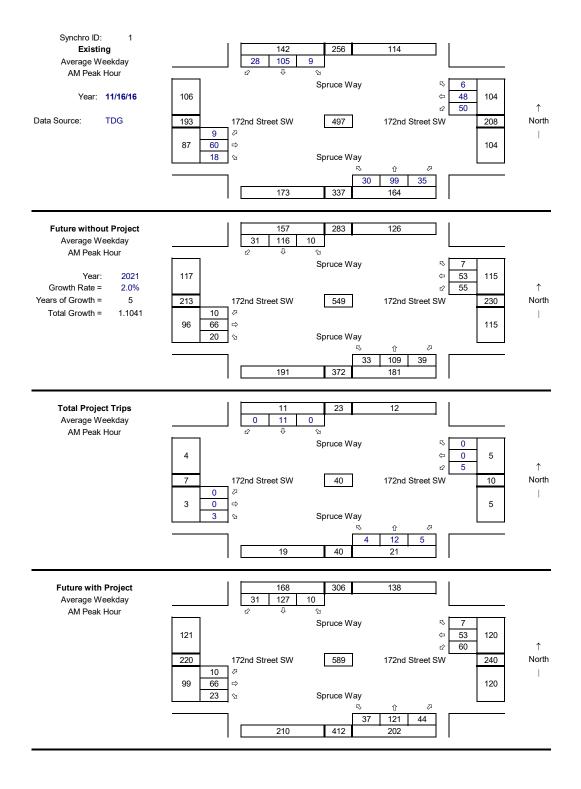
TURNING MOVEMENTS DIAGRAM 3:00 PM - 5:00 PM PEAK HOUR: 3:30 PM TO 4:30 PM Peds = 0Bicycles U-Turn Spruce Way 82 117 0 0 24 44 14 172nd Street SW 172nd Street SW 21 0 Bicycles 177 127 173 Peds = 26Peds = 00 25 U-Turn U-Turn [0 29 158 105 155 Bicycles 0 24 26 67 36 ΗV PHF Spruce Way 0 0 INTERSECTION SB 3.7% 0.89 PEAK HOUR VOLUME 93 129 NB 8.5% 0.58 U-Tum Bicycles IN 542 WB 2.3% 0.92 OUT 542 EΒ 3.8% 0.82 Peds = 1 INTRS. 4.4% 0.83

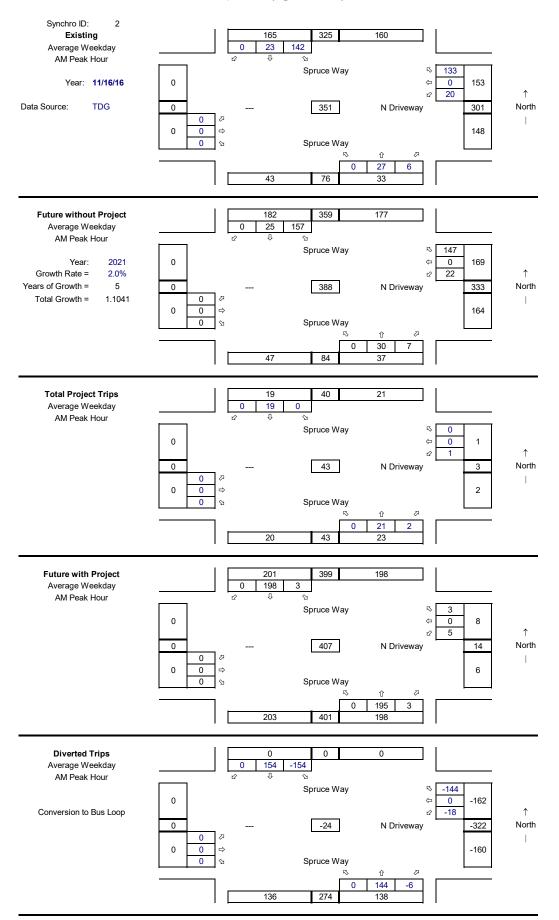
PHF = Peak Hour Factor HV = Heavy Vehicle

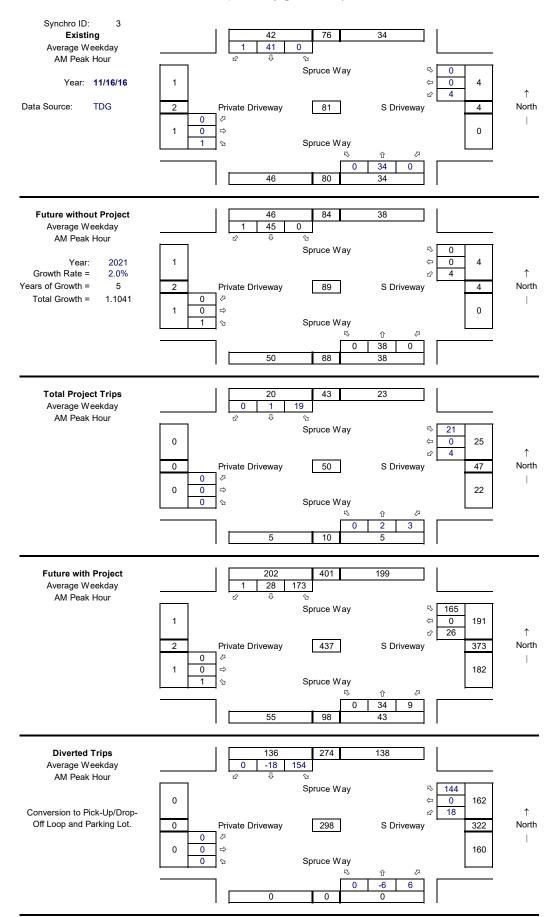
Spruce Way @ 172nd Street SW

Lynnwood, WA

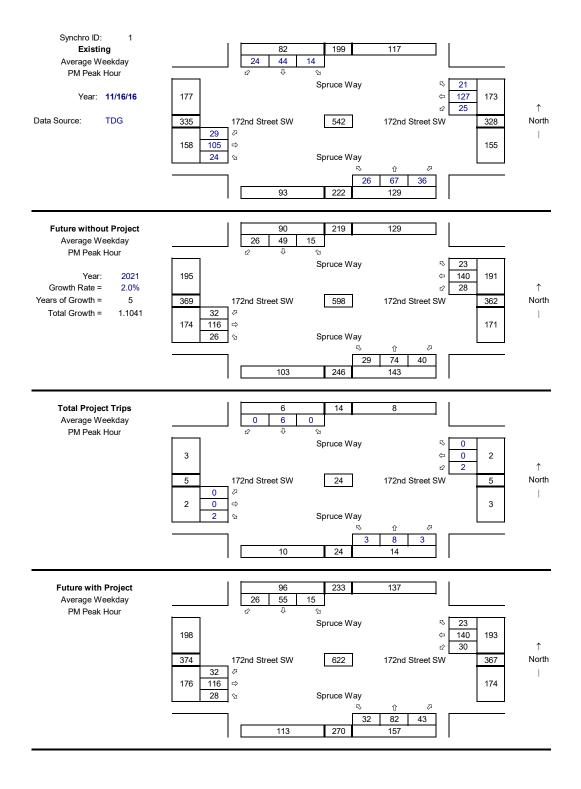
COUNTED BY:	CN	DATE OF COUNT:	Wed. 11/16/16
REDUCED BY:	CN	TIME OF COUNT:	3:00 PM - 5:00 PM
REDUCTION DATE:	Wed. 11/16/16	WEATHER:	Sunny

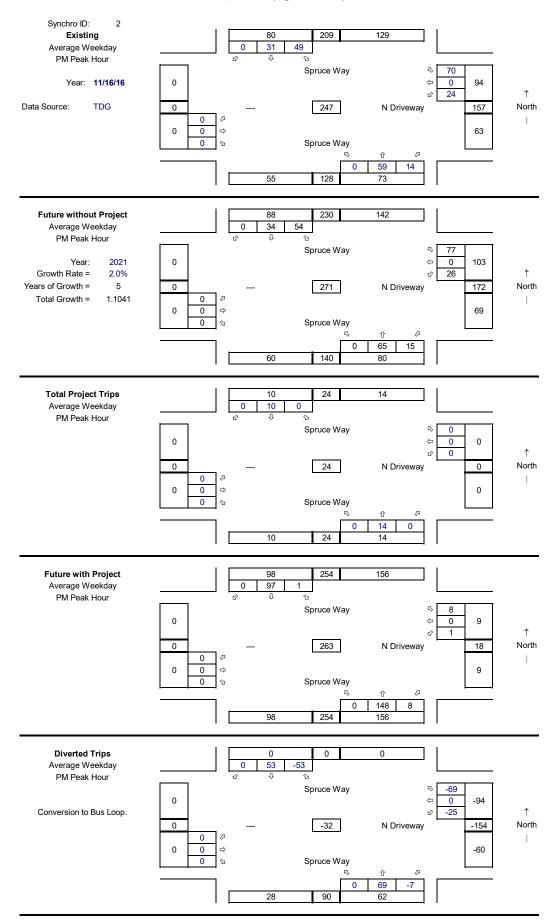

D G TRAFFIC DATA GATHERING

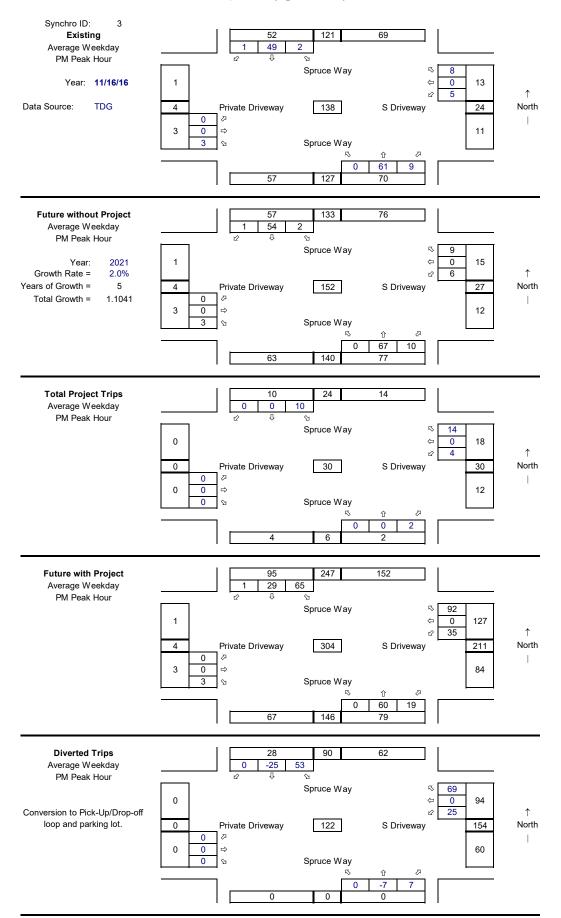

INTERSECTION TURNING MOVEMENTS REDUCTION SHEET


LOCATION:	Spruce Way @ 172nd Street SW Lynnwood, WA	iy @ 172n , WA	d Stree	t SW								DATE TIME (date of count: Time of count:	Ë U	-1 *1	Wed. 11/16/16 3:00 PM - 5:00	Wed. 11/16/16 3:00 PM - 5:00 PM	Σ						~ ~	COUNTED BY: WEATHER:	D BY: IR:	CN Sunny	Ń
TIME		FRO	ION MO	FROM NORTH ON	_		-		FROM	FROM SOUTH ON	NO H					FROM	FROM EAST ON	NO					FROM	FROM WEST ON	z			
INTERVAL ENDING			Spruce Way	Way					ŝ	Spruce Way	ay					172nc	172nd Street SW	SW					172nd	172nd Street SW	3		<u> </u>	INTERVAL TOTALS
АТ	Peds Bicycle	ycle HV		U-Turn Le	Left Th	Thru Riç	Right Pe	Peds Bicycle	٨	U-Turn	n Left		Thru Right	Peds Bicycle	Bicycle	ΗV	U-Turn	Left	Thru	Right I	Peds Bicycle	sicycle	HV	U-Turn	Left T	Thru Ri	Right	
01:15 PM	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	0
01:30 PM	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	0
01:45 PM	0	0 0	0		0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	0
02:00 PM	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0	0 0	0	_	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	0
02:30 PM	0	0 0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	0
03:00 PM	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	0
03:15 PM	0	0 1	0		2 7	4		0 0	0	0	4	F	0	3	0	0	0	2	24	e	0	0	0	0	4	24 2	2	77
03:30 PM		0	0		5 7				0	0	-	9	e	-	0	0	0	4	29	4	0	0	0	0			5	108
03:45 PM			0		5 14	4	0		0	0	9	9	-	e	0	-	0	6	30	5	0	0	-	0	5	25 5		115
04:00 PM			0						-	0	с С	27	1	16	0	-	0	7	29	9	0	0	2	0			-	136
04:15 PM	0	0 0	0		3 11	5	0	0	6	0	15	26	15	7	0	2	0	9	29	5	0	0	2	0	13 3	30 5		163
04:30 PM						-				- c	•	8	σ	. c			, c		30	, с.	0 0		-	, c				128
04:45 PM	-	-	0						• •	0	4	~		0	0	2	0	, -	31	2	0	0		0				115
05:00 PM			0							0	e	18	-	0	0	0	0	2	21	4	0	0	0	0			0	104
					_	_																				_		
PEAK HOUR TOTALS	0	0 3		0		44	24	0	+	•	26	67	36	26	0	4	0	25	127	24	0	0	9	0	29 1	105 2	24 INTE	INTERSECTION
		ř			70		+		0.10		1	67			F	,00 G		21	~				ìõ		8			24C
		3.1%	°				+		%C.8				ĺ		1	2.3%				1		1	3.8%					4.4%
FACTOR					0.89						o.	0.58						0.92	32						0.82			0.83
HV = Heavy Vehicle PHF = Peak Hour Factor	5								3:00 F	- 5:1	3:00 PM - 5:00 PM PEAK HOUR:	EAK F	four:		3:30 PM			10	4:30 PM	Σ								
REDUCED BY:	NC																			-	NATE OF	DATE OF REDITION:	NOILC				÷	11/16/2016
	5														!					-			200					
											R C		ROLLING HOUR COUNT	JR CO	IND													
		FR	ION WC	FROM NORTH ON	_				FROM	FROM SOUTH ON	NO H					FROM	FROM EAST ON	NO					FROM	FROM WEST ON	N			
			Spruce Way	Way					SF	Spruce Way	ay					172nc	172nd Street SW	MS					172nd	172nd Street SW	3		≤ '	INTERVAL TOTALS
TIME INTERVAL	Peds Bicycle	ycle HV		U-Turn Le	Left Th	Thru Rig	Right Pe	Peds Bicycle	e HV	U-Turn	n Left	Thru	Right	Peds	Peds Bicycle	ΗV	U-Turn	Left	Thru	Right I	Peds B	Bicycle	NH I	U-Turn	Left T	Thru Ri	Right	
1:00 PM - 2:00 PM	0 0	0 0	0 0		0 0			_	0	0	0	0	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0		0	_	0 0
M1 61:2 - M1 61:1		+			-			-				-	-						-							-		
1:30 PM - 2:30 PM 1:45 PM - 2:45 PM																0 0												o c
2:00 PM - 3:00 PM			0						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
2:15 PM - 3:15 PM	0	0 0	0		0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM - 3:30 PM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0
2:45 PM - 3:45 PM	+	+	0	-	-			+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			_	0
3:00 PM - 4:00 PM 3:15 PM - 4:15 PM	0 0	4 6	0		12 43				- ;	0	14 25	40 EF	30	23	0 0	7	0	22 26	112	y 18	0 0	0 0	т и	0 0	17 1 26 1	104 23 110 26		436 522
3:30 PM - 4:30 PM	-		0					- 1	= =	0	26	67	8	26	0	4	0	25	127	21	0	0	n 0	0		_	24	542
3:45 PM - 4:45 PM			0		13 39			1 0	11	0	24	68	38	23	0	5	0	17	128	18	0	0	5	0			22	542
4:00 PM - 5:00 PM	-	0 0	0	-	3 30	24		0 0	13	0	24	59	28	7	0	4	0	12	120	16	0	0	e	0	49 1	121 14	4	510

B - 12


AM Turning Movement Calculations





School PM Turning Movement Calculations

Existing AM Peak-Hour Level of Service Analysis

Intersection Intersection Delay, s/veh Intersection LOS												
	10.2 B											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4 9	ç		c.	÷	.		d	4 5	
LTAILIC VOI, VEIVIT		ۍ م	00 04	2 0		00	40	0 4		30	66	30 35
r uture vui, verini Peak Hnir Factor		0.65	0 4F	0.65	0 0	00.6F	40 0.65	0.45	000	0.65 0.65	77 0.65	0.65
Heavy Vehicles. %		2000	20.00	20.00	10	20.20		20.00	2	0000	2000	2000
Mvmt Flow	10	14	92	28	10	11	74	9 0	10	46	152	54
Number of Lanes	0	0		0	0	0		0	0	0	-	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		-				-				-		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		-				, -				, -		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		-								,		
HCM Control Delav		9.6				10.2				10.6		
HCM LOS		A				В				В		
Lane	NB	NBLn1 E	EBLn1 V	WBLn1	SBLn1							
Volleft %		18%	10%	48%	Y04							
Vol Thru %		%0%	%0%	70%	70VC							
Vol Diabt %		2/ 70 70 / 70	01% 21%	70%	200C							
		0/ 1- 10	C+01	0.00	C+010							
Jugit Cutturu Traffic Viol hv Lane	,	doic 144	doic La	104								
		00	5 0	5	10							
Through Vol		8 8	604	β	105							
DT Mol		35	9 q	₽ ✓	co ac							
Lano Elour Dato		лг. Лг.	124	140	710							
Comotri Cm		707	+0 +0	001	7 I0							
	0		- 101 C	- 170	0.205							
Depeter of office Arms (14)	- C	700 V	U.17/	U.241	0.000							
ueparture неаамау (на)	4		667.0	5.4 I4	61 0.c							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap			677	664	719							
Service Time	2		3.332	3.446	3.026							
HCM Lane V/C Ratio	0		0.198	0.241	0.303							
HCM Control Delay		10.6	9.6	10.2	10.2							
HCM Lane LOS		8	A	в	8							
HCM 95th-tile Q		1.6	0.7	0.9	1.3							

Existing AM Conditions.syn 1: Spruce Way & 172nd Street SW

Spruce Reconstruction (16-281) 28 28 0.65 43 0 SBR 105 105 0.65 162 162 SBT SBL 0 0.92 0 0 SBU Approach Opposing Lanes Conflicting Approach Left Conflicting Approach Left Conflicting Lanes Left Conflicting Lanes Right HCM LOS HCM LOS Intersection Intersection Delay, s/veh Intersection LOS Movement Lane Configurations Traffic Vol, veh/h Fedure Vol, veh/h Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes

Existing Conditions AM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

Existing Conditions AM Peak-Hour

nt Delay, s/veh 8	.5						
Novement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	Y		4î			ب ا	
Traffic Vol, veh/h	20	133	27	6	142	23	
Future Vol, veh/h	20	133	27	6	142	23	
Conflicting Peds, #/hr	0	0	0	2	2	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	_	0	-	-	0	
Grade, %	0	_	0	-	-	0	
Peak Hour Factor	52	52	69	69	51	51	
Heavy Vehicles, %	1	1	0	0	2	2	
Nymt Flow	38	256	39	9	278	45	
	50	230	57	7	270	45	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	647	45	0	0	50	0	
Stage 1	45	-	-	-	-	-	
Stage 2	602	-	-	-	-	-	
Critical Hdwy	6.41	6.21	-	-	4.12	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.309	-	-	2.218	-	
Pot Cap-1 Maneuver	437	1028	-	-	1557	-	
Stage 1	980	-	-	-	-	-	
Stage 2	549	-	-	-	-	-	
Platoon blocked, %	017		-	-		-	
Nov Cap-1 Maneuver	356	1026	-	-	1557	-	
Nov Cap-2 Maneuver	356	-	_	_	1007	_	
Stage 1	978	-	-	-	-	-	
	978 449	-	-	-	-	-	
Stage 2	449	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	11.8		0		6.7		
HCM LOS	В						
	_						
Vinor Lane/Major Mvmt	NBT	NBRWBLn1 SBL	SBT				
Capacity (veh/h)	-	- 823 1557	-				
HCM Lane V/C Ratio	-	- 0.358 0.179	-				
HCM Control Delay (s)	-	- 11.8 7.8	0				
HCM Lane LOS	-	- B A	А				
HCM 95th %tile Q(veh)	-	- 1.6 0.7	-				

Intersection												
Int Delay, s/veh 1	.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	_	- 4 >			4			- 4 >	_		4	
Traffic Vol, veh/h	0	0	1	4	0	0	0	34	0	0	41	1
Future Vol, veh/h	0	0	1	4	0	0	0	34	0	0	41	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	_ 2	_ 2	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	25	25	25	61	61	61	72	72	72
Heavy Vehicles, %	0	0	0	100	100	100	3	3	3	5	5	5
Mvmt Flow	0	0	4	16	0	0	0	56	0	0	57	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	114	116	58	118	116	58	58	0	0	58	0	0
Stage 1	58	58	-	58	58	-	-	-	-	-	-	-
Stage 2	56	58	-	60	58	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	8.1	7.5	7.2	4.13	-	-	4.15	-	-
Critical Hdwy Stg 1	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	4.4	4.9	4.2	2.227	-	-	2.245	-	-
Pot Cap-1 Maneuver	868	778	1014	674	624	789	1540	-	-	1527	-	-
Stage 1	959	851	-	756	688	-	-	-	-	-	-	-
Stage 2	961	851	-	754	688	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	868	777	1014	670	623	787	1540	-	-	1527	-	-
Mov Cap-2 Maneuver	868	777	-	670	623	-	-	-	-	-	-	-
Stage 1	959	851	-	755	687	-	-	-	-	-	-	-
Stage 2	961	849	-	751	688	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.6			10.5			0			0		
HCM LOS	A			В			, c			Ū		
Minor Lane/Major Mvmt	NBL	NBT		EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1540	NUT		1014 670	1527	501	501					
HCM Lane V/C Ratio	1040	-	-	0.004 0.024	1027	-	-					
HCM Control Delay (s)	-	-	-	8.6 10.5	0	-	-					
HCM Lane LOS	0	-	-	A B		-	-					
HCM 95th %tile Q(veh)	A 0	-	-	а в 0 0.1	A 0	-	-					
	U	-	-	0 0.1	U	-	-					

Existing School PM Peak-Hour Level of Service Analysis

Exis	Inters Inters Inters	Move Lane F Fatur Peaku	
-281)		NBR 36 033 434 43 43 43 43 43 43 43 43 43 43 43	
Spruce Reconstruction (16-281)		NBT 0 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Reconstr		NBL 26 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28	
Spruce		MBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		WBR 21 21 21 21 23 0.83 25 0	
		WBT 127 127 127 133 0.83 153 1 1	
		WBL 25 25 25 25 25 083 083 084 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		WBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C'D
		EBR 24 24 24 29 29 29 29 21 127 21 11	2
<		EBT EBR 105 24 105 24 105 24 105 24 127 29 127 29 127 29 128 13 128 13 128 13 128 13 128 13 128 13 129 25 127 100 10 129 25 127 128 2345 127 127 4 21 127 23 128 2345 127 4 21 127 23 128 2345 127 10 127 10 127 10 127 10 128 10 127 10 128 10 127 10 128	-
s.syn reet S\		EBL 29 29 29 29 29 29 29 29 29 29 28 28 28 28 28 28 28 28 28 28 28 28 28	0.0
ndition 2nd St	9.4 A	EBU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Existing Sch PM Conditions.syn 1: Spruce Way & 172nd Street SW	Intersection Intersection Delay, s/veh Intersection LOS	Movement Lane Configurations Traffic Vol, verMh Peak Hour Factor Heavy Venices. % Munner fol Lanes Munner of Lanes Approach Opposing Janes Left Confilding Approach Left Confilding Janes Left Confilding Janes Left Confilding Janes Left Confilding Janes Right HCM Control Delay HCM Control Delay HCM LOS Sign Control Traffic Vol by Lane Lane Vol Right, % Vol Right, % Sign Control Traffic Vol by Lane Lane Flow Rate Geomery Gip Degree of Unil (X) Degree of Unil	

xisting Sch PM Conditions.syn Spruce Way & 172nd Street SW ≝section

Spruce Reconstruction (16-281)

tersection					
tersection Delay, s/veh tersection LOS					
ovement	SBU	SBL	SBT	SBR	
ane Configurations			¢		
affic Vol, veh/h	0	14	44	24	
uture Vol, veh/h	0	14	44	24	
eak Hour Factor	0.92	0.83	0.83	0.83	
aavy Vehicles, %	2	4	4	4	
vmt Flow	0	17	53	29	
umber of Lanes	0	0	-	0	
oproach		SB			
pposing Approach		NB			
pposing Lanes		-			
onflicting Approach Left		WB			
onflicting Lanes Left		-			
onflicting Approach Right		EB			
onflicting Lanes Right		-			
CM Control Delay		8.9			
CM LOS		A			

Existing Conditions Sch PM Peak-Hour

Gibson Traffic Consultants, Inc. [SPF]

ntersection nt Delay, s/veh 6	.2							
Novement	WBL	WBR		NBT	NBR	SBL	SBT	
ane Configurations	Υ			¢Î			ર્સ	
Fraffic Vol, veh/h	24	70		59	14	49	31	
Future Vol, veh/h	24	70		59	14	49	31	
Conflicting Peds, #/hr	0	0		0	9	9	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized		None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	48	48		68	68	57	57	
Heavy Vehicles, %	1	1		14	14	4	4	
Nymt Flow	50	146		87	21	86	54	
	00	110		07	21	00	01	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	332	106		0	0	116	0	
Stage 1	106	-		-	-	-	-	
Stage 2	226	-		-	-	-	-	
Critical Hdwy	6.41	6.21		-	-	4.14	-	
Critical Hdwy Stg 1	5.41	-		-	-	-	-	
Critical Hdwy Stg 2	5.41	-		-	-	-	-	
Follow-up Hdwy	3.509	3.309		-	-	2.236	-	
Pot Cap-1 Maneuver	665	951		-	-	1460	-	
Stage 1	921	-		-	-	-	-	
Stage 2	814	-		-	-	-	-	
Platoon blocked, %				-	-		-	
Nov Cap-1 Maneuver	619	943		-	-	1460	-	
Nov Cap-2 Maneuver	619	-		-	-	-	-	
Stage 1	913	-		-	-	-	-	
Stage 2	764	-		-	-	-	-	
						00		
Approach	WB			NB		SB		
HCM Control Delay, s	10.7			0		4.7		
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-	- 832	1460	-				
HCM Lane V/C Ratio	-	- 0.235		-				
HCM Control Delay (s)	-	- 10.7	7.6	0				
HCM Lane LOS	-	- B	A	Ă				
HCM 95th %tile Q(veh)		- 0.9	0.2	-				

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4 2			- 4 >			- 42			- 4 >	
Traffic Vol, veh/h	0	0	3	5	0	8	0	61	9	2	49	1
Future Vol, veh/h	0	0	3	5	0	8	0	61	9	2	49	1
Conflicting Peds, #/hr	0	0	10	10	0	0	1	0	6	6	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	25	25	25	54	54	54	80	80	80	87	87	87
Heavy Vehicles, %	0	0	0	54	54	54	13	13	13	2	2	2
Mvmt Flow	0	0	12	9	0	15	0	76	11	2	56	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	151	156	68	165	151	88	58	0	0	94	0	0
Stage 1	62	62	-	88	88	-	-	-	-	-	-	-
Stage 2	89	94	-	77	63	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.64	7.04	6.74	4.23	-	-	4.12	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.986	4.486	3.786	2.317	-	-	2.218	-	-
Pot Cap-1 Maneuver	821	740	1001	696	655	844	1479	-	-	1500	-	-
Stage 1	954	847	-	806	731	-	-	-	-	-	-	-
Stage 2	923	821	-	817	751	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	805	734	991	677	650	839	1465	-	-	1500	-	-
Mov Cap-2 Maneuver	805	734	-	677	650	-	-	-	-	-	-	-
Stage 1	953	845	-	801	727	-	-	-	-	-	-	-
Stage 2	907	816	-	799	750	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.7			9.8			0			0.3		
HCM LOS	A			A			0			0.0		
Minor Lane/Major Mvmt	NBL	NBT	NRRF	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1465	וטמ		991 768	1500	- 301	-					
HCM Lane V/C Ratio	1400	-	-	0.012 0.031		-	-					
HCM Control Delay (s)	-	-	-	8.7 9.8	0.002	-	-					
HCM Control Delay (S) HCM Lane LOS	0	-	-	A A	7.4 A	0 A	-					
HCM Lane LOS HCM 95th %tile Q(veh)	A 0	-	-	0 0.1		А	-					
	U	-	-	U U.I	0	-	-					

2021 Baseline AM Peak-Hour Level of Service Analysis

Intersection												
Intersection Delay, s/veh	11											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$						\$			\$	
Traffic Vol, veh/h	10	66	20	55	53	7	33	109	39	10	116	31
Future Vol, veh/h	10	66	20	55	53	7	33	109	39	10	116	31
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	15	102	31	85	82	11	51	168	60	15	178	48
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.2			10.8			11.5			11		
HCM LOS	В			В			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		18%	10%	48%	6%							
Vol Thru, %		60%	69%	46%	74%							
Vol Right, %		22%	21%	6%	20%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		181	96	115	157							
LT Vol		33	10	55	10							
Through Vol		109	66	53	116							
RT Vol		39	20	7	31							
Lane Flow Rate		278	148	177	242							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.397	0.226	0.276	0.347							
Departure Headway (Hd)		5.132	5.506	5.609	5.173							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		702	651	640	696							
Service Time		3.167	3.548	3.649	3.209							
HCM Lane V/C Ratio		0.396	0.227	0.277	0.348							
HCM Control Delay		11.5	10.2	10.8	11							
HCM Lane LOS		B	В	B	B							
HCM 95th-tile Q		1.9	0.9	1.1	1.6							

Intersection						
Int Delay, s/veh	8.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		4			÷
Traffic Vol, veh/h	22	147	30	7	157	25
Future Vol, veh/h	22	147	30	7	157	25
Conflicting Peds, #/hr	0	0	0	2	2	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	52	52	69	69	51	51
Heavy Vehicles, %	1	1	0	0	2	2
Mvmt Flow	42	283	43	10	308	49
	72	205	75	10	500	77
	Minor1		Najor1		Major2	
Conflicting Flow All	715	50	0	0	55	0
Stage 1	50	-	-	-	-	-
Stage 2	665	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.12	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.309	-	-	2.218	-
Pot Cap-1 Maneuver	399	1021	-	-	1550	-
Stage 1	975	-	-	-	-	-
Stage 2	513	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	316	1019	-	-	1547	-
Mov Cap-2 Maneuver	316	-	-	-		-
Stage 1	773	_	_	_	_	-
Stage 1	513	-	-	-	-	-
Juge 2	212	-	-	-	-	-
Approach			ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	12.7		0		6.8	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	790	1547	-
HCM Lane V/C Ratio		-	-	0.411		-
HCM Control Delay (s))	-	-	12.7	7.9	0
HCM Lane LOS	,	-	-	B	A	Å
HCM 95th %tile Q(veh	1)	-	-	2	0.7	-
	·,			2	0.7	

Intersection													
Int Delay, s/veh	1.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			4			4			4		
Traffic Vol, veh/h	0	0	1	4	0	0	0	38	0	0	45	1	
Future Vol, veh/h	0	0	1	4	0	0	0	38	0	0	45	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	2	2	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	25	25	25	25	25	25	61	61	61	72	72	72	
Heavy Vehicles, %	0	0	0	100	100	100	3	3	3	5	5	5	
Nvmt Flow	0	0	4	16	0	0	0	62	0	0	63	1	
Major/Minor M	linor2		ſ	/linor1		ſ	Major1		ſ	Major2			
Conflicting Flow All	126	128	64	130	128	64	64	0	0	64	0	0	
Stage 1	64	64	-	64	64	-	-	-	-	-	-	-	
Stage 2	62	64	-	66	64	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	8.1	7.5	7.2	4.13	-	-	4.15	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	4.4	4.9	4.2	2.227	-	-	2.245	-	-	
Pot Cap-1 Maneuver	852	766	1006	660	613	783	1532	-	-	1519	-	-	
Stage 1	952	846	-	750	683	-	-	-	-	-	-	-	
Stage 2	954	846	-	748	683	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	852	764	1006	656	612	782	1532	-	-	1516	-	-	
Mov Cap-2 Maneuver	852	764	-	656	612	_	-	-	-	-	-	-	
Stage 1	952	846	-	749	682	-	-	-	-	-	-	-	
Stage 2	954	844	-	745	683	-	-	-	-	-	-	-	
Ŭ													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	8.6			10.6			0			0			
HCM LOS	А			В									
Minor Lane/Major Mvmt		NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1532	-	-	1006	656	1516	-	-				
HCM Lane V/C Ratio		-	-	-	0.004	0.024	-	-	-				
HCM Control Delay (s)		0	-	-	8.6	10.6	0	-	-				
noin control Doldy (3)													
HCM Lane LOS		А	-	-	Α	В	A	-	-				

2021 Baseline School PM Peak-Hour Level of Service Analysis

Intersection												
Intersection Delay, s/veh	9.9											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4			4	
Traffic Vol, veh/h	32	116	26	28	140	23	29	74	40	15	49	26
Future Vol, veh/h	32	116	26	28	140	23	29	74	40	15	49	26
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	39	140	31	34	169	28	35	89	48	18	59	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay HCM LOS	10 A			10.2 В			9.8 A			9.2 A		
	A			Б			A			A		
Lane		NBLn1	EBLn1	W/RI n1	SBLn1							
Vol Left, %		20%	18%	15%	17%							
Vol Thru, %		20 <i>%</i> 52%	67%	73%	54%							
Vol Right, %		28%	15%	12%	29%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		143	174	191	90							
LT Vol		29	32	28	15							
Through Vol		74	116	140	49							
RT Vol												
		40	26	23	26							
Lane Flow Rate		40 172	26 210	23 230								
Geometry Grp		172 1	210 1	230 1	26 108 1							
Geometry Grp Degree of Util (X)		172 1 0.242	210 1 0.286	230 1 0.313	26 108 1 0.154							
Geometry Grp Degree of Util (X) Departure Headway (Hd)		172 1 0.242 5.047	210 1 0.286 4.91	230 1 0.313 4.894	26 108 1 0.154 5.129							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		172 1 0.242 5.047 Yes	210 1 0.286 4.91 Yes	230 1 0.313 4.894 Yes	26 108 1 0.154 5.129 Yes							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		172 1 0.242 5.047 Yes 703	210 1 0.286 4.91 Yes 723	230 1 0.313 4.894 Yes 727	26 108 1 0.154 5.129 Yes 691							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		172 1 0.242 5.047 Yes 703 3.134	210 1 0.286 4.91 Yes 723 2.992	230 1 0.313 4.894 Yes 727 2.974	26 108 1 0.154 5.129 Yes 691 3.225							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		172 1 0.242 5.047 Yes 703 3.134 0.245	210 1 0.286 4.91 Yes 723 2.992 0.29	230 1 0.313 4.894 Yes 727 2.974 0.316	26 108 1 0.154 5.129 Yes 691 3.225 0.156							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		172 1 0.242 5.047 Yes 703 3.134 0.245 9.8	210 1 0.286 4.91 Yes 723 2.992 0.29 10	230 1 0.313 4.894 Yes 727 2.974 0.316 10.2	26 108 1 0.154 5.129 Yes 691 3.225 0.156 9.2							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		172 1 0.242 5.047 Yes 703 3.134 0.245	210 1 0.286 4.91 Yes 723 2.992 0.29	230 1 0.313 4.894 Yes 727 2.974 0.316	26 108 1 0.154 5.129 Yes 691 3.225 0.156							

Intersection						
Int Delay, s/veh	6.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		eî 👘			ન
Traffic Vol, veh/h	26	77	65	15	54	34
Future Vol, veh/h	26	77	65	15	54	34
Conflicting Peds, #/hr	0	0	0	9	9	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	48	48	68	68	57	57
Heavy Vehicles, %	1	1	14	14	4	4
Mvmt Flow	54	160	96	22	95	60
WWWWW TOW	54	100	70	22	/0	00
	Minor1		Najor1		Major2	
Conflicting Flow All	366	116	0	0	127	0
Stage 1	116	-	-	-	-	-
Stage 2	250	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.14	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.309	-	-	2.236	-
Pot Cap-1 Maneuver	636	939	-	-	1447	-
Stage 1	911	-	-	-	-	-
Stage 2	794	-	-	-	-	-
Platoon blocked, %	,,,,		-	-		-
Mov Cap-1 Maneuver	588	931	_	_	1435	_
Mov Cap-1 Maneuver	588	751		-	JJJ	-
	500 842	-	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	794	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11		0		4.7	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBT	NRR\	VBLn1	SBL	SBT
Capacity (veh/h)					1435	- 100
HCM Lane V/C Ratio		-	-	0.264		-
	`	-	-		0.066	-
HCM Control Delay (s HCM Lane LOS)	-	-	11 P		0
		-	-	B	A	A
HCM 95th %tile Q(veh	IJ	-	-	1.1	0.2	-

ntersection													
nt Delay, s/veh	2												
Vlovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		\$			4			4			\$		
raffic Vol, veh/h	0	0	3	6	0	9	0	67	10	2	54	1	
uture Vol, veh/h	0	0	3	6	0	9	0	67	10	2	54	1	
Conflicting Peds, #/hr	0	0	10	10	0	0	1	0	6	6	0	1	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
T Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	25	25	25	54	54	54	80	80	80	87	87	87	
leavy Vehicles, %	0	0	0	54	54	54	13	13	13	2	2	2	
/wmt Flow	0	0	12	11	0	17	0	84	13	2	62	1	
/lajor/Minor M	linor2		ı	Minor1		i	Major1		I	Major2			
Conflicting Flow All	167	171	74	180	165	97	64	0	0	103	0	0	
Stage 1	68	68	- 14	97	97	97	04	0	0	105	0	0	
Stage 2	99	103	-	83	68	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.64	7.04	6.74	4.23	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.1	5.5	0.2	6.64	6.04	0.74	4.23	-	-	4.12	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.64	6.04	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.986	4.486	3.786	2 2 1 7	_		2.218		_	
Pot Cap-1 Maneuver	802	726	993	680	643	834	1471	_		1489		_	
Stage 1	947	842		796	724	034	14/1	_		1407		_	
Stage 2	912	814	_	811	747	_	_	_				_	
Platoon blocked, %	712	014		011	/4/			_				_	
Nov Cap-1 Maneuver	784	720	983	661	638	829	1470	_	_	1480	_	_	
Nov Cap-2 Maneuver	784	720	- 105	661	638	027	1470	_	_	1400	_	_	
Stage 1	946	840	_	791	720			_	_	_	_	_	
Stage 2	894	809	-	793	746	-	-	-	-	-	-	-	
				14/5						~ ~ ~			
pproach	EB			WB			NB			SB			
ICM Control Delay, s	8.7			10			0			0.3			
ICM LOS	A			В									
/inor Lane/Major Mvmt		NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1470	-	-	983	752	1480	-	-				
ICM Lane V/C Ratio			-	-		0.037		-	-				
ICM Control Delay (s)		0	-	-	8.7	10	7.4	0	-				
ICM Lane LOS		A	-	-	Α	B	A	A	-				

2021 Future With Project AM Peak-Hour Level of Service Analysis

Intersection												
Intersection Delay, s/veh	11.5											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	10	65	22	59	52	6	36	119	43	10	125	30
Future Vol, veh/h	10	65	22	59	52	6	36	119	43	10	125	30
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	15	100	34	91	80	9	55	183	66	15	192	46
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.4			11.1			12.3			11.4		
HCM LOS	В			В			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		18%	10%	50%	6%							
Vol Thru, %		60%	67%	44%	76%							
Vol Right, %		22%	23%	5%	18%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		198	97	117	165							
LT Vol		36	10	59	10							
Through Vol		119	65	52	125							
RT Vol		43	22	6	30							
Lane Flow Rate		305	149	180	254							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.439	0.233	0.287	0.371							
Departure Headway (Hd)		5.188	5.627	5.745	5.259							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		695	636	625	683							
Service Time		3.229	3.678	3.794	3.302							
HCM Lane V/C Ratio		0.439	0.234	0.288	0.372							
HCM Control Delay		12.3	10.4	11.1	11.4							
HCM Lane LOS		В	В	В	В							
HCM 95th-tile Q		2.2	0.9	1.2	1.7							

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			ન
Traffic Vol, veh/h	5	0	194	2	0	198
Future Vol, veh/h	5	0	194	2	0	198
Conflicting Peds, #/hr	0	0	0	2	2	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	69	69	51	51
Heavy Vehicles, %	100	100	0	0	2	2
Mvmt Flow	20	0	281	3	0	388
WWWIITET IOW	20	0	201	5	0	500
	Minor1		Najor1		Major2	
Conflicting Flow All	673	285	0	0	286	0
Stage 1	285	-	-	-	-	-
Stage 2	388	-	-	-	-	-
Critical Hdwy	7.4	7.2	-	-	4.12	-
Critical Hdwy Stg 1	6.4	-	-	-	-	-
Critical Hdwy Stg 2	6.4	-	-	-	-	-
Follow-up Hdwy	4.4	4.2	-	-	2.218	-
Pot Cap-1 Maneuver	301	570	-	-	1276	-
Stage 1	584	-	-	-	-	-
Stage 2	515	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	300	569	-	-	1274	-
Mov Cap-1 Maneuver	300	- 00	_	_	- 121	-
Stage 1	583	-	-	-	-	-
Stage 2	505 515	-	-	-	-	-
Slaye Z	010	-	-	-	-	-
Ammanah						
Approach	WB		NB		SB	
HCM Control Delay, s	17.9		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	300	1274	-
HCM Lane V/C Ratio		-	-	0.067	-	-
HCM Control Delay (s)		-	-	17.9	0	-
HCM Lane LOS		-	-	С	A	-
	`			0.2	0	
HCM 95th %tile Q(veh))	-	-	U.Z	0	-

Intersection						
Int Delay, s/veh	9.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		ef 👘			- କି
Traffic Vol, veh/h	26	165	33	9	173	27
Future Vol, veh/h	26	165	33	9	173	27
Conflicting Peds, #/hr	0	0	0	2	2	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	52	52	61	61	72	72
Heavy Vehicles, %	1	1	3	3	5	5
Mvmt Flow	50	317	54	15	240	38
Major/Minor	Minor1	Ν	Major1	I	Major2	
Conflicting Flow All	582	64	0 0	0	101aj012 71	0
Stage 1	562 64	- 04	U	U	/ 1	U
Stage 2	04 518	-	-	-	-	-
		- 6.21	-	-	- 4.15	-
Critical Hdwy	6.41 5.41		-	-	4.10	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509		-	-	2.245	-
Pot Cap-1 Maneuver	477	1003	-	-	1510	-
Stage 1	961	-	-	-	-	-
Stage 2	600	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	398	1001	-	-	1507	-
Mov Cap-2 Maneuver	398	-	-	-	-	-
Stage 1	802	-	-	-	-	-
Stage 2	600	-	-	-	-	-
3						
Approach	WB		NB		SB	
HCM Control Delay, s	12.7		0		6.8	
HCM LOS	B		5		0.0	
	J					
Minor Lano/Major Mum	.t	NBT		VBLn1	SBL	СРТ
Minor Lane/Major Mvm	IL	NDI	INDKV			SBT
Capacity (veh/h)		-	-	830	1507	-
HCM Lane V/C Ratio		-	-	0.443		-
HCM Control Delay (s) HCM Lane LOS		-	-	12.7	7.8	0
		-	-	В	А	A
HCM 95th %tile Q(veh)				2.3	0.6	

2021 Future With Project School PM Peak-Hour Level of Service Analysis

Intersection												
Intersection Delay, s/veh	10.1											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4			4	
Traffic Vol, veh/h	32	116	28	30	140	23	32	82	43	15	55	26
Future Vol, veh/h	32	116	28	30	140	23	32	82	43	15	55	26
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	39	140	34	36	169	28	39	99	52	18	66	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.2			10.4			10.1			9.4		
HCM LOS	В			В			В			А		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		20%	18%	16%	16%							
Vol Thru, %		52%	66%	73%	57%							
Vol Right, %		27%	16%	12%	27%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		157	176	193	96							
LT Vol		32	32	30	15							
Through Vol		82	116	140	55							
RT Vol		43	28	23	26							
Lane Flow Rate		189	212	233	116							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.267	0.293	0.321	0.17							
Departure Headway (Hd)		5.086	4.979	4.971	5.292							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		698	712	714	682							
Service Time		3.185	3.077	3.066	3.292							
HCM Lane V/C Ratio		0.271	0.298	0.326	0.17							
HCM Control Delay		10.1	10.2	10.4	9.4							
HCM Lane LOS		В	В	В	A							
HCM 95th-tile Q		1.1	1.2	1.4	0.6							

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		4			र्स
Traffic Vol, veh/h	1	8	148	8	1	97
Future Vol, veh/h	1	8	148	8	1	97
Conflicting Peds, #/hr	0	0	0	9	9	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	54	54	68	68	57	57
Heavy Vehicles, %	54	54	14	14	4	4
Mvmt Flow	2	15	218	14	4	4 170
	Z	15	210	12	Z	170
Major/Minor	Minor1	Ν	Najor1		Major2	
Conflicting Flow All	407	233	0	0	239	0
Stage 1	233	-	-	-	-	-
Stage 2	174	-	-	-	-	-
Critical Hdwy	6.94	6.74	-	-	4.14	-
Critical Hdwy Stg 1	5.94	-	-	-	-	-
Critical Hdwy Stg 2	5.94	-	-	-	-	-
Follow-up Hdwy	3.986	3.786	-	-	2.236	-
Pot Cap-1 Maneuver	512	693	-	_	1316	-
Stage 1	698		-	-		-
Stage 2	745	-	-	-	-	-
Platoon blocked, %	J		-	-		_
Mov Cap-1 Maneuver	506	687	-	-	1305	-
Mov Cap-1 Maneuver	506	007	-	-	1303	-
•	506 690	-	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	745	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.6		0		0.1	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)				661	1305	
HCM Lane V/C Ratio		-	-	0.025		-
	`	-	-	10.6	7.8	0
HCM Control Dolay (a)				1110	10	0
HCM Long LOS)					
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh		-	-	B 0.1	A 0	Ă

Intersection													
Int Delay, s/veh	7.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			- 4 >			- 44			- 44		
Traffic Vol, veh/h	0	0	3	35	0	92	0	60	19	65	29	1	
Future Vol, veh/h	0	0	3	35	0	92	0	60	19	65	29	1	
Conflicting Peds, #/hr	0	0	10	10	0	0	1	0	6	6	0	1	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
/eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	25	25	25	48	48	48	80	80	80	87	87	87	
Heavy Vehicles, %	0	0	0	1	1	1	13	13	13	2	2	2	
Nvmt Flow	0	0	12	73	0	192	0	75	24	75	33	1	
Major/Minor N	/linor2		ſ	Minor1			Major1			Major2			
Conflicting Flow All	368	290	45	293	278	93	35	0	0	105	0	0	
Stage 1	300 185	290 185	40	293 93	278 93	93	- 30	-	U	100	0	U	
Stage 2	183	105	_	200	185	_		_	_	_			
Critical Hdwy	7.1	6.5	6.2	7.11	6.51	6.21	4.23	_	_	4.12			
Critical Hdwy Stg 1	6.1	5.5	- 0.2	6.11	5.51	0.21	4.25	_	_	т. 12 -	_		
Critical Hdwy Stg 2	6.1	5.5	-	6.11	5.51	_	_	_	_	_	_	_	
Follow-up Hdwy	3.5	4	3.3	3.509	4.009	3.309	2.317	_	_	2.218	_	_	
Pot Cap-1 Maneuver	592	624	1031	661	632	967	1508	_	_	1486	_		
Stage 1	821	751	-	916	820	- 107	-	_	_		_	_	
Stage 2	823	812	-	804	749			_	_		_		
Platoon blocked, %	025	012		004	777			_	_		_	_	
Nov Cap-1 Maneuver	455	587	1020	618	595	961	1507	-	-	1478	-	_	
Nov Cap-2 Maneuver	455	587	- 1020	618	595	-	-	-	-	-	-	-	
Stage 1	820	711	-	911	815	-	-	-	-	-	-	-	
Stage 2	659	807	-	746	709	-	-	-	-	-	-	-	
) waara a da													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	8.6			11.3			0			5.2			
HCM LOS	A			В									
/linor Lane/Major Mvmt	t	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1507	-	-	1020	834	1478	-	-				
HCM Lane V/C Ratio		-	-	-		0.317		-	-				
HCM Control Delay (s)		0	-	-	8.6	11.3	7.6	0	-				
HCM Lane LOS		Ă	-	-	A	В	A	Ă	-				
HCM 95th %tile Q(veh)		0	-	-	0	1.4	0.2	-	-				

Parking Data

Matt

From:	Carla Nasr <carlan@trafficdatagathering.com></carlan@trafficdatagathering.com>
Sent:	Sunday, November 20, 2016 10:30 PM
То:	Matt
Subject:	RE: Spruce ES, GTC 16-281
Attachments:	Spruce ES N Drvwy @ Spruce Way AM.pdf; Spruce ES N Drvwy @ Spruce Way PM.pdf; Spruce ES S
	Drvwy @ Spruce Way AM.pdf; Spruce ES S Drvwy @ Spruce Way PM.pdf; Spruce Way @ 172 St SW
	AM.pdf; Spruce Way @ 172 St SW PM.pdf

Hi Matt,

Attached are the Spruce ES counts.

The number of vehicles parked at 9:45 AM in the school's parking lot is: 44 cars including 2 in the ADA stalls. The number of vehicles parked at 3:00 PM in the school's parking lot is: 42 cars including 1 in the ADA stalls.

Number of Vehicles parked on Street at South Driveway:

At 8:45 AM	0	at 3:00 PM 2
9:00 AM	1	3:15 PM 4
9:15 AM	(-1,1,-1) 0	3:30 PM 5
9:30 AM	0	3:45 PM 3
9:45 AM	0	4:00 PM (+1, -3) 1
		4:15 PM 0
		4:30 PM 0
		4:45 PM 0
		5:00 PM 0
	•	4:00 PM (+1, -3) 1 4:15 PM 0 4:30 PM 0 4:45 PM 0

I observed Queuing at the North driveway between 9:00-9:15AM of 2 cars coming from the South and turning Right into the driveway. As well as queuing of about 14 cars coming from the North and turning Left into the driveway. And a constant queuing coming out of the North Driveway during this 15 minutes period.

Regards,

Carla Nasr

Traffic Data Gathering 11410 13th Street SE Lake Stevens, WA 98258 (425) 345-1148 C (425) 334-3348 O CarlaN@TrafficDataGathering.com

From: Matt [mailto:Mattp@gibsontraffic.com]
Sent: Tuesday, November 15, 2016 9:26 AM
To: Carla Nasr <CarlaN@trafficdatagathering.com>
Subject: RE: Spruce ES, GTC 16-281

Queuing Analysis

Arrivals	172 / 15 mins	λ
Service	240 / 15 mins	μ

Average number of cars in the system	$\lambda/(\mu - \lambda)$	2.529412	2.529412 vehicles
Average waiting time in the system	$1/(\mu \!-\! \lambda)$	0.014706 1	.80 2.647059 minutes
Average number of cars in the queue	λ ~2 $/\mu(\mu-\lambda)$	1.812745	1.812745 vehicles
Average waiting time in the queue	$\lambda/\mu(\mu{-}\lambda)$	0.010539 1	.80 1.897059 minutes
Average system utilization	λ/μ	0.716667	72%
Probability of no cars in system	$1 - \lambda / \mu$	0.283333	28%
Probability of n cars in system	$(1\!-\!\lambda/\mu)(\lambda/\mu)\!\!\sim\!\!{\sf n}$		

- max queue available

		$(1{-}\lambda/\mu)$ (λ/μ) ^n		P(n)	
P(0)	0	0.283333333	1	0.283333	
P(1)	1	0.283333333	0.716666667	0.203056	49%
P(2)	2	0.283333333	0.513611111	0.145523	4570
P(3)	3	0.283333333	0.368087963	0.104292	
P(4)	4	0.283333333	0.263796373	0.074742	
P(5)	5	0.283333333	0.189054068	0.053565	
P(6)	6	0.28333333	0.135488748	0.038388	
P(7)	7	0.28333333	0.09710027	0.027512	
P(8)	8	0.28333333	0.069588527	0.019717	95%
		Probability of	8 or fewer Cars	95.01%	

Probability of 8 or fewer Cars95.01%Probability of more than 8 Cars4.99%

Arrivals	172 / 15 mins	λ
Service	300 / 15 mins	μ

Average number of cars in the system	$\lambda/(\mu{-}\lambda)$	1.34375	1.34375 vehicles
Average waiting time in the system	$1/(\mu \!-\! \lambda)$	0.007813	180 1.40625 minutes
Average number of cars in the queue	λ ~2/ $\mu(\mu-\lambda)$	0.770417	0.770417 vehicles
Average waiting time in the queue	$\lambda/\mu(\mu{-}\lambda)$	0.004479	180 0.80625 minutes
Average system utilization	λ/μ	0.573333	57%
Probability of no cars in system	$1\!-\!\lambda/\mu$	0.426667	43%
Probability of n cars in system	$(1\!-\!\lambda/\mu)(\lambda/\mu)\!\!\sim\!\!{\sf n}$		
and the second sec			

- max queue available

		$(1{-}\lambda/\mu)$ (λ/μ) ^n		P(n)	
P(0)	0	0.426666667	1	0.426667	43%
P(1)	1	0.426666667	0.573333333	0.244622	67%
P(2)	2	0.426666667	0.328711111	0.14025	
P(3)	3	0.426666667	0.188461037	0.08041	
P(4)	4	0.426666667	0.108050995	0.046102	94%
		Probability of	4 or fewer Cars	93.81%	

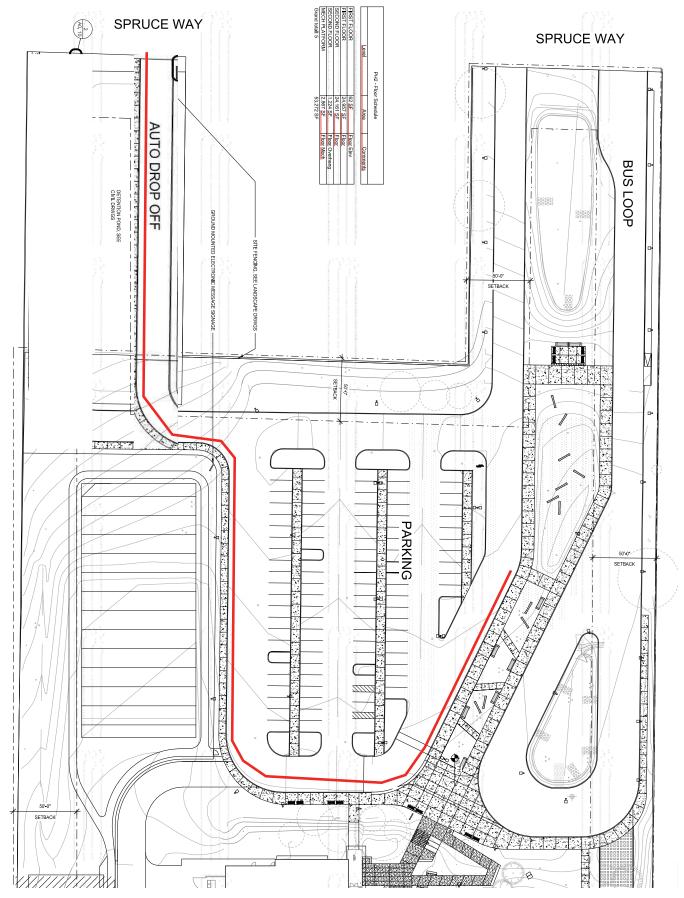
Probability of more than 4 Cars 6.19%

Arrivals	172 / 15 mins	λ
Service	360 / 15 mins	μ

Average number of cars in the system	$\lambda/(\mu{-}\lambda)$	0.914894	0.914894 vehicles
Average waiting time in the system	$1/(\mu\!-\!\lambda)$	0.005319	180 0.957447 minutes
Average number of cars in the queue	λ ~2 $/\mu(\mu-\lambda)$	0.437116	0.437116 vehicles
Average waiting time in the queue	$\lambda/\mu(\mu{-}\lambda)$	0.002541	180 0.457447 minutes
Average system utilization	λ/μ	0.477778	48%
Probability of no cars in system	$1\!-\!\lambda/\mu$	0.522222	52%
Probability of n cars in system	$(1\!-\!\lambda/\mu)(\lambda/\mu)\!\!\sim\!\!{\sf n}$		

- max queue available

		$(1{-}\lambda/\mu)$ $(\lambda/\mu$) ^ n	P(n)	
P(0)	0	0.52222222	1	0.522222	52%
P(1)	1	0.52222222	0.477777778	0.249506	
P(2)	2	0.52222222	0.228271605	0.119209	
P(3)	3	0.52222222	0.1090631	0.056955	95%
			ty of 3 or fewer Cars of more than 3 Cars	94.79% 5.21%	


Collision Data

At Intersection and Related At Intersection and Related	JUNCTION RELATIONSHIP			
Passenger Car At Intersection and Related Pickup, Panel Truck or Vanette under 10,000 lb At Intersection and Related	VEHICLE 2 TYPE			
0 2 0 0 Pickup,Panel Truck or Vanette under 10,000 lb Passenger Car 0 2 0 0 Passenger Car	VEHICLE 1 TYPE			
200	H S S	EDE	V E K	# H B B I
0 0 0 0	⊢ ¬	۲ ۲	_ ц	# #
2015-02-02 17:54 No Apparent Injury 2017-07-05 11:23 No Apparent Injury	MOST SEVERE INJURY TYPE			
17:54 11:23	TIME			
2015-02-02 2017-07-05	DATE			
E397346 E688455	UMBER	REPORT		
000	POINT NUMBER	REF RE	FROM	DIST
3900 SPRUCE WAY SPRUCE WAY	REFERENCE POINT NAME	INTERSECTING TRAFFICWAY/		
3900 5	BLOCK NUMBER			
72ND ST SW 72ND ST SW	PRIMARY TRAFFICWAY			
000 17	CITY			
MUL NUL				
Dity Street Snohomish Lynnwood 172ND ST SW Dity Street Snohomish Lynnwood 172ND ST SW	URISDICTION COUNTY			

HICLE 1 COMPASS DIRECTION FROM VEHICLE 1 COMPASS DIRECTION TO VEHICLE 2 COMPASS DIRECTION FROM	South North	
VEHICLE 1 COMPASS DIRECTION TO	West West	
VEHICLE 1 COMPASS DIRECTION FROM	East East	
VEHICLE 2 ACTION	Making Left Turn Starting in Traffic Lane	
VEHICLE 1 ACTION	Going Straight Ahead Going Straight Ahead	
LIGHTING CONDITION FIRST COLLISION TYPE / OBJECT STRUCK	Entering at angle Entering at angle	
LIGHTING CONDITION	Dark-Street Lights On Entering at angle Daylight Entering at angle	
ROADWAY SURFACE CONDITION	Wet Dry	
WEATHER	Overcast Clear or Partly Cloudy	

2010 - FORWARD	920211.05
WA STATE PLANE SOUTH - Y	
WA STATE PLANE SOUTH - X 2010 - FORWARD WA STATE PLANE SOUTH - Y 2010 - FORWARD	1201251.68
FIRST IMPACT LOCATION (City, County & Misc Trafficways - 2010 forward)	Lane of Primary Trafficway Lane of Primary Trafficway
MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 2)	Other None
MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 1)	Other Disregard Stop Sign - Flashing Red
VEHICLE 2 COMPASS DIRECTION TO	West Couth

Site Layout

